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In this paper a theory is presented of antiferromagnetic superconductors in which a spin-

density wave (SDW) ordering with a wave vector Q may coexist with superconductivity. The
effect of the antiferromagnetic molecular field h~( T) on the Cooper pairing is studied, and it is

shown that, below the magnetic transition temperature Tz, the Bardeen-Cooper-Schrieffer cou-

pling parameter is reduced by a factor i l —constlh~ (T) llaF] due to the formation of energy

gaps of SDW on the Fermi surface along Q and this reduction c ~n explain the anomaly in the

upper critical field H, 2 just below T& as observed in RMo6S~ (R = C~d, Tb, &nd Dy). Taking ac-

count of both the spin-orbit scattering and spin-fluctuation effect near T& in addition to the ef-

fect of h(T), a theoretical calculation of the superconducting transition temperataure T, tnd

H, &(T) is performed. Detailed quantitative comparisons between theory ~nd experiments on

H, 2(T) are made with fairly good accord for the above three compounds. Some speculation is

devoted to the remaining discrepancies between theory and experiments ~nd cert ~in phenome-

na not yet explained by the theory.

I. INTRODUCTION

Since new superconducting materials in which mag-
netic moments are built in to form a regular lattice
have been synthesized, new light is shed on the "old
problem" of the coexistence of magnetism and super-
conductivity. ' It is evident from experiments on the
rare-earth ternary compounds (HoMo6Ss and
ErRh4B4) that the onset of ferromagnetism at low

temperatures simply destroys superconductivity, and
that these two types of long-range order cannot coex-
ist in general except at a very narrow temperature re-
gion for which a definite conclusion is not yet ob-
tained. On the other hand, there is no a priori reason
to exclude the coexistence of antiferromagnetism and
superconductivity, because periodicity of antifer-
romagnetic ordering (usually a few angstroms) is so
short compared with the superconducting coherent
length (of the order of a few hundred angstroms).
Then spin fluctuations are averaged out and are inef-
fective in destroying the superconducting state. His-

torically, several authors' predict the coexistence of
antiferromagnetism and superconductivity. In fact
such coexistence has been found recently in several
ternary compounds with rare-earth atoms: the Che-
vrel Phases R Mo6Ss (R =Gd, Tb, and Dy) and the
rhodium-boride phase SmRh4B4.

In the former compounds, neutron experiments'
have been done to identify their magnetic structures,
which are sinusoidal spin-density-wave states along
the crystal c axis commensurate with the underlying
crystal lattice.

A basic picture of the electronic origin to describe
such ternary rare-earth compounds is established and

widely accepted now; that is, a characteristic of these
compounds is to have partially filled localized 4f'elec-
trons which are responsible for magnetism. These lo-
cal moments interact very weakly with conduction
electrons mainly coming from d bands via exchange
interaction I. Moreover, one of the dominant
mechanisms which mediate between local moments is

the indirect-exchange-RKKY (Ruderman-Kittel-
Kasuya-Yosida) interaction via the conduction elec-
trons which play an important role in superconduc-
tivity.

In a series of papers' one of the authors has in-

vestigated the spin-fluctuation effect of both fer-
romagnetic' and antiferromagnetic cases on super-
conductivity to generalize the Abrikosov-Gorkov
theory of paramagnetic impurities to correlated spin
systems. This spin-fluctuation theory succeeds in ex-
plaining several aspects of coexistence problem: It
gives a correct explanation for the bell-shaped upper
critical field (H, 2) in the ferromagnetic case ErRh4B4
and for systematic change in the superconducting
transition temperatures (T, ) for RMo6Ss (R being
heavy rare-earth atoms). However, this theory fails
to explain the anomaly in H, 2 near the Neel tempera-
ture (T~), which is commonly observed in the anti-
ferromagnetic superconductors of the Chevrel phase,

In this paper we shall present a theory of antifer-
romagnetic superconductors that suppliments our
previous theory taking into account the effects of the
antiferromagnetic molecular field exerted by aligned
local moments in addition to the spin-fluctuation ef-
fect, because the antiferromagnetic energy gap form-
ed on the Fermi surface perturbs the superconducting
state below T~. This is a similar situation to that dis-
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cussed by Fulde and Ferrell in which superconduct-
ing pairings are modified by the ferromagnetic molec-
ular field. As we have discussed previously, ' if the
Fermi surface is highly anisotropic or one-dimen-
sional-like (in other words if Fermi-surface nesting is

large enough), then we have demonstrated that the
superconducting state is heavily perturbed by the
presence of anitiferromagnetic energy gap. In this

paper we only consider an ordinary three-dimensional
Fermi-surface model to clarify the situation. We also
restrict ourself to the magnetic order of the spin-
density-wave type characterized by a single wave vec-
tor Q. This is the case in the Chevrel phase com-
pounds.

Organization of the paper is as follows: The next
section discusses stability of a superconducting state
under a periodic antiferromagnetic molecular field
and introduces a simple band model to describe the
perturbed superconducting state by antiferromagne-
tism. In Sec. III we calculate the temperature depen-
dence of the order parameter and the upper critical
field. In Sec. IV, in addition to the simplified band
model, we take into account the spin-fluctuation ef-
fect and analyze the experimental data of H, 2 on
RMo6Stt (R =Gd, Tb, and Dy). The final section
will be devoted to discussion and conclusion.

H = X(kCknCkn —X(hgo CknCk+gn+H. C. )
kcr

(2.2)

below T&, where

I
, (g, —l)'IJ, I' .

2N 2
(2.3)

We now consider instability of a superconducting
state under a spatially periodic molecular field hg to
examine what kind of pairing states are the most
stable. The stability may be investigated by the fol-
lowing linearized gap equation" for a spatially varying
order parameter h(r):

where the conduction electrons interact with the 4 f'

moment J; localized at the lattice site i of rare-earth
ion and gj is the Lande g factor. Below T& the sub-
lattice magnetization J~ of the antiferromagnetic state
becomes nonvanishing where Jg is the Qth com-
ponent of the Fourier transform of J; and Q is the
wave vector characterizing the antiferromagnetic
state. Therefore the 4f local moment system exerts a
spatially periodic antiferromagnetic molecular field on
the conduction-electron system. The above Hamil-
tonian reduces

II. STABILITY OF SUPERCONDUCTING
STATE AND SIMPLIFIED BAND

MODEL

A(r) =gT $ Jt K (r r', o)„)4(r') dr' (2.4)

I

We take the following "s-f" exchange Hamiltonian:

H = XgkCknCkn
I i (k —k )R,.

(gj —l) X J; o.„„Ck„C„,e

(2. l)

K (r, i', 4n„) = Gt(r, r', rn„)Gt(r, r', —o)„), (2.5)

~here G (r, r', cu„) is the thermal Green's function
of the normal state under the antiferromagnetic
molecular field. The Fourier transformation of the
integral kernel K (r, r', co„) is given by

K(p, —p', (nn) = $ Gt(kt~k2, (nn)Gt(k3, k4, —4nn) 5(kt+k) —p)5(k2+k4 —p')
k.

(2.6)

Assuming Q = 2kr (kr is the Fermi wave number) to simplify the following argument, " let us evaluate
K(0, 0, co„), that is,

K (0, 0, (n„) = X Gt(k, k', rn„) Gt( —k, —k', —4n„)
kk

=X[G1(kk ~ )Gt( k —k ~„)+Gt(kk Q „„)Gt( k k+Q —~„)
k

+ Gt(k, k + Q, 4n„)Gt( —k, —k —Q, —cu„) j

where

I 4nn 4-g —

(rhea

G (kk ~ )=- G.(kk —Q )=
(I ~n tk ) ( ~ ~n (k-g ) hg (I~ Ck )n(~ ~ nek g) h{?—

(2.7)

(2.g)
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The basic assumptions we now make are (1) the spherical Fermi surface of the three dimensions and (2)
lhgl (( fe where ee is the Fermi energy. From Eq. (AS) in the Appendix we can evaluate K(0, 0. pi„) as

~lhg I

'

4eq-
(2.9)

where W(0) is the density of states at the Fermi energy. In a similar way from Eq. (A10) the off-diagonal ele-
ment K (Q, 0, pi„) is given by

K(Q, O, pi„) = X [Gt(k+Qk +Q, pi„)Gt(—k +Q, —k —Q, —pi„)
k

+G'(k+Qk —Q, pi„)G'( —k+Q, —k+Q, —pi„)] =N(0)/16q e (2.10)

Then it turns out that since the off-diagonal elements
such as K (Q, 0, cu„) are negligibly small
[=—0 (T/~F)] compared with the diagonal element
K (0, 0, pi„), the simple Bardeen-Cooper-Schrieffer
(BCS) state characterized by a spatially uniform order
parameter is most stable. Therefore, it readily yields
to the gap equation of the BCS type:

of an order of 0.1, which is estimated by substituting
typical values for the parameters I =112.2 K (we will

derive this value later), er —=5000 K (from the band
calculation in similar compounds"), (gJ —1)
&& [J(J+1)]' ' =4 (the free-[on value for Gd),
and gN (0) =—0.2 into Eq. (2.13).

~ I/g I

'

5 = gN (0) 1 — ri T X4~F
(2.11)

III. ORDER PARAMETER AND- THE UPPER
CRITICAL FIELD

gN (0) =gN (0) [1 —ain (T) ]

„, I& I/~F
u = —'m(gj —1)[J(J + 1) ]'~'

4 gN (0)

(2.12)

(2.13)

This shows that the effective attractive interaction
gN (0), or equivalently the density of states at the
Fermi energy, - is diminished by the periodic molecu-
lar field, that is,

In this section we determine the temperature
dependence of the order parameter h(T) and the
upper critical field H, 2 on the basis of the simplified
band model derived in the previous section. The
basic equation for 5( T) is given by the BCS theory
in which the effective attractive interaction is simply
replaced by the temperature-dependent one gN (0)
which is a function of in (T). The self-consistent
equation of A(T) is given by

Jg( T)
in(T) =

g
(2.14)

A(T) =gN (0) $ pi„'+ 5'( T)
{3.1)

where in ( T) is the normalized sublattice magnetiza-
tion of the antiferromagnetic state. The physical
meaning of Eq. (2.12) is that the particular portions
of the pairing states on the Fermi surface, which are
brought together by the translation Q, are mixed
strongly to yield antiferromagnetic energy gaps.
These states on the Fermi surface are unable to partic-
ipate in forming a superconducting state antifer-
romagnetic ordering takes place. So far the spherical
Fermi-surface model has been used. A closed exami-
nation of the above derivation together with the Ap-

pendix 8 where a simplified and intuitive derivation
of Eq. (2.12) is given reveals that the detailed shape
of the Fermi surface delicately affects evaluation of o.

and changes its numerical factor. Because detailed
information on the band structure of the ternary
compounds we are now considering is not available at
present, we regard n as an adjustable- parameter.
However, we should keep in mind that o. is roughly

where gN (0) is determined by Eq. (2.12). Near
T =0 the order parameter reduces to the following
BCS form:

&(T)
&(0)

]/2
2mT
6(0) e

—h(0)/T
85(0) (3.2)

5(0) =ape ~ {3.3)

where hp(T, p) is the order parameter (transition tem-
perature) of the pure BCS superconductor without lo-
cal moments. Between T,o and T& (we assume
T, p ) Tii) the order parameter is nothing but that of
the BCS theory. Since below T& the magnetization
in ( T) becomes nonvanishing, gN (0) is weakened
which results in a sudden drop of h(T) immediate
below Tv As in (T) saturates .at lower temperatures,
6 (T) gradually recovers its value with increasing the
superconducting condensation energy. As we can see
from the functional form of Eq. (3.3), the supercon-
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h (T)
hp

0.8-

06-

0.2-

0.2 08 I -0 T/T,

ducting state is never destroyed by antiferromagnetic
ordering as long as our approximation (Ih~l && eF)
is valid. If the spin-fluctuation effect is taken into
account, this is not the case, as we will see later.

1If a is large enough (a ~ a„=0.8 for J = —), on

decreasing temperature superconductivity ceases to
exist by the onset of antiferromagnetism to reentrant
to the normal state at T = T„and then appears once
again at a lower temperature TI. The order parameter
A(T) behaves near T= T„or TI for a~ o„=0.8

(J = —, case) as follows:

&(T)
Ap

r ' 1/2
8

7g(3)

—am(T. )
I

x 1+o.Ti
dT r,

i/2

1 ——
T

(3.4)

I =u or I

where y is the Euler constant and ((3) is the zeta
function. We will further discuss this "interrupted
superconductivity" later. In Fig. 1 we depict several
numerical examples of h(T) where the normalized
sublattice magnetization m (T) is assumed to be
given by the Brillouin function. Note that the total
angular momentum J delicately influences on the
shape of h(T) near TN. Sharp rise of m(T) near T+
causes a pronounced drop in A(T) at T~. We com-
pare two cases of J = —, and ~ in Fig. 1(b).

It should be emphasized that even a fairly small
value o. drastically suppresses superconductivity; for
instance, 5(0) is half of Ao when u = 0.1 [gN (0)
=0.2]. This means that destruction of a small area
on the Fermi surface due to the onset of antifer-
romagnetism results in a drastic change of the super-
conducting state. This becomes important later when
interpreting experimental data.

The equation for the upper critical field' II,2 is
given by the standard formula" except that gN (0) is
replaced according to Eq. (2.12); that is, in the dirty
limit (the diffusion constant D is small) it is given by

h (T)
hp

0.8—

0.6—

b)

1

~m(T)+In +y —+ —y( —) =0, (3.S)
T 1 DeB '

Tp 2 2n T

where we have neglected change in m (T) due to ap-
plied magnetic field. . A detailed analysis of this equa-
tion will be given in the next section.

0.4— IV. SPIN-FLUCTUATION EFFECT AND
DATA ANALYSIS OF H, 2

0.2—

I

0.2
I

0.4
I

0.6
I

08 1.0 T/Tco

FIG. 1. (a) Temperature dependence of the order param-

eter A(T) for J =
2

and Tz/T, p=0.7: Curve (1) a=0.1,
I

curve (2) 0.2, curve (3) 0.3, curve (4) 0.6, and curve (5)
1.0. Curve (5) shows the interrupted superconductivity in
which the normal state appears in 0.40 ~ T/T, p

~ 0.62. (b)
Temperature dependence of the order parameter 6( T) for
n =0.3, Tjv/T, p =0.7: Curve (1) J = ~ and curve (2) J = 2.

1

Note that the total angular momentum J affects the shapes
of h(T) near Tz.

In the previous section we have investigated
several characteristics of the superconducting state
under the periodic antiferromagnetic molecular field.
In order to check our idea on the truncated Fermi-
surface model, and to analyze experimental data of
H, 2 on the series of the rare-earth Chevrel-phase
compounds, we must take into account spin-fluc-
tuation effect both above and below T~, which gives
rise to a finite lifetime in conduction-electron motion.
This effect gives a satisfactory explanation to some
aspects of experiments. Firstly, we briefly summarize
our previous theory' of the spin-fluctuation effect.

We treat the exchange interaction I within the Born
approximation because IN(0) is very small. The re-
laxation time r(T) of the conduction-electron system
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is given by

r(T)
=2miV(0)( ' I)—'(g, —1)' ~I dAqS, (T)

(4. 1)

S, (T) = (iq 3,) (4.2)

where S~( T) is the correlation function between local
moments. We assume that the most important spin-
fluctuation effect on the superconducting state comes
short wavelengths, q =0. Since the superconducting
coherence length is so large, and small-wavelength
fluctuations are averaged out on that scale, then
long-wavelength fluctuations are effective in sup-
pressing the superconducting state. We adopt a
mean-field Curie-Weiss-type correlation function for
So( T): When T ~ T&,

J(J+1)T
(4.3)+ /V

of the heavy rare-earth antiferromagnetic Chevrel
compounds RMo6S6 (R = Gd, Tb, and Dy). Using
the same procedure as before, ' that is, assuming (1)
the free-ion values of each rare-earth atom for J and
gj, (2) the hypothetical transition temperature T,o to
be determined by the interpolation of the two transi-
tion temperatures of the end members LaMo6S8 and
LuMo6S8 in the Periodic Table as done by Ishikawa
and Muller, '6 and (3) I being held constant for three
compounds, then we evaluate T, as shown i' Table I.
Here we have chosen a slightly larger value I =112.2
K than before (I = 104 K).

B. Upper critical field

It is easy to generalize the calculation for H, 2 in the
previous section to take into account the spin-fluc-
tuation effect. Combining the discussions in the pre-

when T ( T&, .

So(T) = —, [Sii(T)+2Si(T)] (4.4)

J(J+1) TSiiT=
IV

(4.5)
]0.0—

PeH
keT

(10 ]

3TJ BJ (2zi il'liirI/T)
Sg( T)=, (4.6)

T +2z )$)J'BJ (2zJ (4) gJ/ T) 8.0

We have introduced the Brillouin function BJ(x), its
first derivative BJ (x) and the number of the nearest
neighbors of a magnetic ion, z. The thermal average
JtI is determined by J~ = JBq (2zi ~J~JII/T), where

~g~ is the exchange integral between 4f moments,
and gives the Neel temperature T~ = —,zJ (J + 1) I~]I.

Since conduction electrons moving through a sample
frequently change direction, the fluctuation field they
feel should be averaged over all directions. The re-
laxation time thus reduces to

1/r( T) = 2m N (0) ( —,
' I )'(g, —1)'So( T) . (4.7)

2.0

A. Transition temperature

The depression of the superconducting transition
temperature T, is determined by

0.4
TI'Tco

06 0.8 ].0

with the pair-breaking parameter p(T, ) =—1/[2'
x T,r(T, ) ] and where T,o is the hypothetical transition
temperature with I =0. We now consider the series

FIG. 2. Upper critical field II, 2 as ~ function of tempera-
ture for several values of I/T, o.'Curve (1) I/T, 0=0, curve
(2) 15, and curve (3) 31.16. The following par [meters are
used D~ /2~ p, z = 1.0, 1/6~ T„T,o = 350, Tz jT,o

——0.28, J = 6,
3

,1;J = —,and o. =0.4. Curve (I) corresponds to the c use

without the spin-fluctuation effect.
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vious paper (Sec. 4) and in the Sec. III, we readily obtain the equation for H„ in the dirty limit as follows:
1

am(T)+In + —, I+ . ' . .„Q(—, +p )+ I —
p pp Q(p +p+) —Q( —, ) =0, (4.9)

where
r

p+= — +—+DeB+(h —h )
1 i/~

2n T r(T) (4.10)

h = —-- = —,n,.& (0) J) d fI iv„i'sin'8,
SO

(4.11)

h = g pJlsS p ( T) H/ T + p s 8 (4.12)

4.0

3.0

~—4.05 Hca
kgTco

(10 )

(a)
PBHcZ
ksTco

(10 2)

2,0

(b)

2.0
1.0

0.1 02
T/Tco

03 04

0.2
T/Tco

0.3 0.4

4.0

(c) (d)

3.0 3.0

PSHcZ
eTco

(10 'I

2.0

PBHcz
kgTco

(10 ')

i!.0

1.0 1.0

0.1 0.2
T/Tco

04 05 0.1 0.2
T/Tco

0,4

FICi. 3. Upper critical field fI, ~ 1s a function of temperature. The following parameters are used Df.'/2n p, &
= 1.0,

3
1/6n Tso T&p = 350, J = 6, ,&J =, I/T&p = 31.16, and o. = 0.4, unless stated otherwise. (a) Curve (1) o. = 0.0, curve (2) 0.25, curve

(3) 0.50, curve (4) 0.75, curve (5) 1.00, and curve (6) 1,25. Curve (6) corresponds to the intervened superconductivity in
which the normal state appears between 0.16 ~ T/T, p

~ 0.25. (b) Curve (1) Ty T p
= 0.25 &nd curve (2) 0.14. (c) Curve (1)

D( /2n p& = 1.0, curve (2) 2.0, and curve (3) 3.0. (d) Curve (1) 1/67rv. „T,p = 350, curve (2) 100, curve (3) 50, and curve (4) 20.
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The effect of the spin-orbit scattering b and of the in-

duced molecular field h by applied field have been in-

cluded.
In Figs. 2 and 3 we show typical numerical results

for H, q Cu. rve (I) in Fig. 2 corresponds to the cal-
culation in the Sec. III where the spin fluctuation is
neglected. In Fig. 3(a) curve (I) for a =0.0 corre-
sponds to the calculation in the previous paper, ' and
curve (6) for n = 1.25 shows that superconductivity
in interrupted by the normal state in the intermediate
temperature region.

1.5-

10
c2

(KG)

0.5

Gd, 2Moe Ss

C. Analysis of the experimental data for H, 2

0.5 1.0 1,5
We now come to data analysis of the three rare-

earth Chevrel compounds' RMo6SS (R =Gd, Tb, and
Dy). We use the following procedure to fit the data:
(I) We use the same set of parameters (i, gj, T,p,

and T~) as were adopted in Table I for each com-
pound keeping / (= 112.2 K) and N (0) (= 0.2 eV ')
constant. (2) The remaining parameters D, b, and a
are adjusted to reproduce the data.

The results are shown in Figs. 4—6. The overall
feature of H, 2 for all three compounds is reproduced
for the experimental data fairly well; that is, we can
successfully explain the abrupt changes of H, 2 below
T& which are a common characteristic of the data in
all three Chevrel-phase compounds of antiferromag-
netic superductors. However, in DyMo6S8 (Fig. 6)
the theoretical curve (dotted curve) deviates from the
data at low temperatures even if we choose an ex-
tremely short spin-orbit scattering rate (I/6mT T p

=5000). As shown in the same figure we have de-
picted the other theoretical curve (solid curve) which
corresponds to the theory without the spin-
fluctuation effect (I =0). This improves the fit at
low temperatures considerably. It might be possible
in DyMo6S8 to neglect the spin-fluctuation effect
which is suppressed by external applied fields at low

temperatures because applied fields are relatively
strong in this temperature region.

T(K)

FIG. 4. GdMo6S8. The following parameters are used
I = 112.2 K, T/t/ =0.97 K, Tcp =4.5 K, De/2m@, a = 3.0
I/6m7soT, p=80, and o. =0.5. The free-ion values are used

7
for J = —and g&=2 (Gd).

2

Tb, 2MO6$8

2.0

1.5

Hc2
(KG)

1.0

TABLE I. Superconducting transition temperatures for
RMo6S8 compounds t I =112.2 K, N (0) =0.2/e~].

0.5

Tcp T, (expt) T, (theor) 0.5 1.0
r(K)

Gd
Tb
Dy

4.50
3.60
3.40

0.97
1.00
0.40

1.2 —1.5
1.4 —2.05
1.7 —2. 15

1.49
1.64
1.69

FIG. 5. TbMo6S8. The following parameters are used

I = 112.2 K Tg = 1.0 K, T p=3.6 K, De/2mp, ~ = 1.0,
I/6m 7„T,p=350, and o, =0.4. The free-ion values are used

for J = 6 and pj = —(Tb).3
J
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Dy, &Mo6SS

Hca
1 o

(&G)

0.5 1.0
v(K)

FIG. 6. DyMo6S8. T& =0.4 is assumed and the free-ion
15 4

values are used for J = —— and gj = —(Dy) for both curves.
3

The dotted curve with the spin-fluctuation effect: The other
parameters are I =112.2 K, T«=3.40 K, De/2mp, & =1.0,
I/6m7, T« = 5000, and o, = 0.6. The solid curve without the
spin-fluctuation effect: The other parameters are I =0 K,
T,0=1.67 K, De/27rp, 8 =1.5, 1/67r7„T, o =100, and o. =0.5

V. DISCUSSION AND CONCLUSION

We have developed a theory of superconductivity
which coexists with antiferromagnetic ordering and
have demonstrated that the superconducting state can
be well described by a model in which the effective
interaction between conduction electrons is modified
and reduced by the formation of the antiferromagnet-
ic energy gap. In addition to this we have taken into
account the scattering effects or spin-fluctuation ef-
fects, which lead to finite lifetime of conduction elec-
trons, due to localized 4f moments in order to
analyze the experimental data of T, and H, 2 on the
rare-earth Chevrel-phase compounds.

The upper critical-field data of the antiferromagnet-
ic superconductors RMo6SS (R =Gd and Tb) are well

described by the present model, by assuming the
free-ion values for J and gJ and a constant I (112.2
K) and by adjusting the three parameters (the diffu-
sion constant, the spin-orbit scattering rate, and a).
On the other hand, H, 2 of DyMo6S8 does not seem to
follow the present model. Rather, it fits well with the
theory neglecting the spin-fluctuation effect. It is in-
teresting to note that H, 2 of SmRh484, which is
another ternary compound of the antiferromagnetic
superconductor, can be explained quite satisfactorily
by the present theory with o. =0.4

In the context of the present theory we may classi-

fy these four antiferromagnetic superconductors into
three groups: (1) The fluctuation dominant super-
conductor, SmRh4B4. It might be possible that for
band-structural reasons the wave vector Q is greater
or smaller than 2k~', therefore, the antiferromagnetic
order hardly affects on the superconducting state.
This means o. is very small in the present model. It
is highly desirable to determine the antiferromagnetic
structure by neutron experiments, which has not
been done yet. (2) The nonfluctuation superconduc-
tor, DyMo6S8. In this case the high applied magnetic
field suppresses the spin fluctuation. The formation
of the antiferromagnetic energy gap on the Fermi
surface is the most important for this superconductor.
(3) The intermediate-type superconductors, GdMo6S8
and TbMo6S8. We must take into account both ef-
fects, spin fluctuation and partial destruction of the
Fermi surface due to the antiferromagnetic energy
gap.

Needless to say, it is possible to interprete the
results in the previous section in a different way,
partly because in DyMo6S8 the spin-flipping applied
magnetic field' which destroys the antiferromagnetic
state is so low (=—1.2 kG) compared with the rela-

tively high H, 2 at low temperatures. Thus the
anomalous behavior of H, 2 in DyMo6S8 at low tem-
peratures in which our theory markedly deviates from
the data might be attributed to this magnetic-phase
change under applied magnetic fields. This point
remains unsettled.

As we have mentioned before if we substitute
I =112.2 K, W(0) =0.2 eV ', and gIV(0) =0.2 into
Eq. (2.13) we can estimate n =0 (0.1). This is the
same order of magnitude as the values of o. we have
chosen. We have attributed the relatively constant
values of a for three compounds RMo6Sg (Gd,
a=0.5; Tb, u=0.4; and Dy, u=0. 5 or 0.6) by

analyzing the H, 2 data. This choice is not unreason-
able because a, which is calculated by Eq. (2.13),
should be constant for all three compounds except
that only the factor (gj —1 ) [J (J + 1) ] ' ' depends ex-
plicitly on the rare-earth atoms [Gd, (gJ —1)[J(J
+1)]' ' =3.97; Tb, 3.24; and Dy, 2.66], because it
is not so unnatural to assume that the electronic
band structures for the series of these compounds
should be nearly the same as a crude approximation.
This assumption seems to be consistent with the fact
that the antiferromagnetic structures of TbMo6S8 and
DyMo6S8 are the same, ' in other words the wave vec-
tors Q are the same which should be given by the
electronic band structure. Moreover, the constant oI.

(0.4 —0.6) means that for all three compounds the
area destroyed by the antiferromagnetic energy gap
on the Fermi surface is an order of 10% or less com-
pared with the total Fermi surface. This value re-
minds us of the estimation by Ishikawa, "who inferred
that "the magnetic electrons, " which contribute
the RKKY interaction between 4f moments, are 30%
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of the total conduction electrons by analyzing the
magnetic transition temperatures for the series of the
heavy rare-earth Chevrel-phase compounds in the

. Periodic Table.
Throughout this paper we have assumed that the

magnetic phase, which is regarded as described by the
mean-field theory, is unaffected by the presence of
superconductivity, because the formation energy of
antiferromagnetism [=—0(Trr)] is mich larger than
the superconducting condensation energy
[=0 (T,'/eF) ]. As a first approximation we can
neglect the effect of superconductivity on the mag-
netic phase; however, the neutron experiment' shows
that in DyMo6S8 the sublattice magnetization of anti-
ferromagnetism does not follow the mean-field-type
theory. This is another problem.

Finally, we should point out an interesting possibil-
ity, that compounds with relatively large o. exhibit su-
perconductivity interrupted by the normal state in the
intermediate temperature region. If, in other words,
the Fermi surface is anisotropic and the antifer-
romagnetism can be explained by Fermi-surface nest-
ing condition, then o. increases substantially. This
condition might be fulfilled in highly anisotropic or
"low-dimensional" materials.
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APPENDIX A EVALUATION OF THE INTEGRAL KERNEL K (pkp n o)It )

A. Diagonal element K (0, 0, co„}

Substituting Eq. (2.8) into Eq. (2.7), we evaluate K (0, 0, Or„ ) of the following form:

(i or„—(k Q)( i rd„——(k g)K(0, 0, rn„) =2
k )0 [(r rr rn(k) ( rom 6k-Q) hg] [( r rrrn 4k) ( tran fk Q) 'h—g l

—A+2X
k [(r~n $k) (r rr r$nk —g) hQ1 [( r ~n $k) ( r ~n fk —Q) hg'l

where we have assumed Q = (0, 0, 2kF). If we substruct the term

2
1

k (0 (r~. 4)( r~. ——6-k)—

(A I)

(A2)

then we can extend the summation in the first term of Eq. (Al) to all k„ that is

4) (—r rnn 8k) "g
K(0, 0, 0r„) =2 $—

k [(/trrn (k)(rom —4 g) —hg][( rtr r(nk)( —ro) (kng) ——hg]

—2 $ 1

k (0 (ror (nk)( tran 4 k)— (A3)

We define the integral Ik of the first term of Eq. (A3)

Ik = $2C/AA'
k

A =t2 —t(2iru„—L+ —L )+(iru„—L+)(ior„—L ) —hg

(A4)

C = —, (A +A') —t(L+ —L )+2m„—L+L + (L )2

where we have introduced the cylindrical coordinates (kn, k&, and k, ), t = kn'/2m, and L —= k,'/2m + k, Q/2m.
After some manipulation we obtain

t r '2'[

( 2™„t dk, dt
1 + 1 +4 ~2+ nQ 1

(2')' "-" "' A A' 2m AA'

where

hg (r g2 hg3~dk, 1 —-» ln- ——, 2- ln
(2m)' — '

2i rn„y'+ Or
2

grg2 2y (y'+ r02)
(A5)

mr 2=i rn„—x +y, x =k,'/2m, y = [(k, Q/2m)'+hg]' '
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dx'

v x'(x'+ 1) [x'+ (/tg2+ co„')/hg2]

(A6)
with P=2eF+[(2eq)'+hg]' '. In a similar way the second integral I2 in Eq. (AS) is given by

' l/2
2mm m

~
Q n

(2m )' 2 4mF Ag'

In view of the fact that cu„/eF is very small (= T,/e~) the first integral l~ over k, in Eq. (AS) is performed as

g2 1/2 4 @h2 I ~ 2 4e~P/hg2rrm m (2 )~i2 2~p
g [ g dx + n t g

(2~)' I~. l 4&F, "' Jx'(x'+ I) 2~e~hg

"g cu„' t' d„' (x'+1)' '+(hg/4eF)x'
4~F &g

"' (x') ' '(x'+ I ) '"[ x+ (hg+ co„')/hg] (x'+1) 'i' —(hg/4eF )x'

noting that Ihgl (( eF and retaining the lowest order of )hg~/e~, we finally obtain

~fitgf
'

4eF
(A8)

B. Off-diagonal element E(Q, 0, ~„)

Then
(io)„—$k g)hg+ (—hg)( i co„—g„)—

K(Q, O, a)„)= $
[ (i cu „—gk ) (i co„—gq g ) —hg ] [( i co„——

gk ) ( i co„——(„g) —hg ]

2/rg k, Q
I &dq +-

2m

hg ™ I bi42 i~„
(2~)' 4 " * y'+~,' (i42 y(y'+~.') (A9)

In a similar way, after some manipulation we obtain

N (0) 2i o)„hg
K(Q 0 co)= 1+ "f'

'EI. ' vT 0 EF' /f 0
(A10)

APPENDIX 8: A SIMPLE AND INTUITIVE
DERIVATION OF THE EFFECTIVE
ATTRACTIVE INTERACTION gN (0)

Along the direction k, parallel to Q = (0, 0, 2kF)
the antiferromagnetic energy gap is formed on sma11
area of the Fermi surface (its radius is 2kF). This
area is estimated as follows: the radius k~ of the cir-
cle on the Fermi surface, in which the conduction-
electron wave functions mix strongly with the wave
functions on the Fermi surface of the opposite side to
form the antiferromagnetic energy gap, is given by

kp = (2« I/tg I) '" Then the reduction of the avail-
able conduction-electron states due to the formation
of the energy gaps is (4mk' —2rrk~2 ) dk = N (0)
(1 —

~ hg ]/2mF ) de. Therefore, the resultant modifica-
tion of the effective attractive interaction gN (0)
amounts to gN(0) =gN(0)(l —]hg~/2eF). This in-
tuitive estimation is essentially the correct answer of
Eq. (2. 12). Now it is easy to understand that the de-
tailed geometry of the Fermi-surface affects the nu-
merical factor of this modification. If we go to low-
dimensional systems or highly anisotropic Fermi-
surface systems, the weight of this small area to the
total Fermi surface becomes substantially increased.
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