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Using the Ginzburg-Landau theory the magnetic response of a long hollow cylinder is c ilcu-

lated. Emphasis is placed on the magnetic properties as a function of temperature in i constant

applied magnetic field. The only restriction is that the wall thickness is less than twice the

temperature-dependent coherence length. The penetration depth is of arbitrary v balue as ire the

cylinder r idius and wall thickness. The fluxoid is quantized. In the limit th &t the order parame-

ter approaches zero, we obtain the quasiperiodic m ignetic-field-temperature ph use bound iry

between the normal and superconducting states. This boundary is either a second-order phase

-transition or a supercooling boundary. The dividing point between the two, the L ind iu critical

point, was derived and investigated for arbitrary values of the fluxoid quantum number. The

latter does not always exist for arbitrary cylinder dimensions and quantum numbers. A conse-

quence of the appearance of a supercooling bound iry is i superhe sting boundary which w is ob-

tained numerically from the nonlinear equations. The latter m iy exist, in particul ir for larger

fluxoid quantum numbers, at a temperature beyond that of the maximum supercooling tem-

perature. Agreement of our results with published experiments is found to be good.

I. INTRODUCTION

Recent experiments' show that a large, solid, type-t
superconducting cylinder with a surface sheath
(~ ) 0.42) in a constant applied axial magnetic field

H„ larger than the thermodynamic critical field

H, (T), changes its magnetic moment reversibly from
diamagnetic for.temperatures just below T(H, 3) to
paramagnetic just above T(H, ) when thermally cy-
cled. The theoretical explanation of these experi-
ments' was based upon the premise that the fluxoid
quantum number was conserved when thermally cy-
cled over /atone temperature intervals and the quan-
tum number was uniquely determined' when sweep-
ing the temperature from above T(H, 3) to lower

temperatures. The adiabatic invariance of the fluxoid
under Mna// thermal perturbations was found previ-
ously in thin-film rings. '

Experiments by Little and Parks, ' Groff and
Parks, and Meyers and Meservey' show that the
magnetic phase boundary between the normal (N)
and superconducting (S) states of thin-walled micro-
cylinders is a quasiperiodic function of temperature.
This is a consequence of fluxoid conservation as sug-
gested originally by Little and Parks' based upon the
theory of Byers and Yang. ' The existence of the su-
perconducting fluxoid was established by the experi-
ments of Deaver and Fairbank and Doll and
Nabauer' and later by Goodman et a/. " Theoretica1
explanations are given by Onsager, "Bardeen, " and
Keller and Zumino. "

Approximate equations of the quasiperiodic varia-

tion of the A'S phase boundary were derived for
thin-walled microcylinders with certain assumptions
by Tinkham"' including the angular variation of the
latter when the magnetic field is tilted with respect to
the axis of the cylinder. The angular variation was

investigated experimentally by Meservey and

Meyers
Previous to the measurements of Ref. 1 there had

been evidence of fluxoid conservation effects by

measuring the magnetic moment of superconducting
cylinders when sweeping a magnetic field between

H, 3(T) and ff, (T) at constant temperature (Refs. 18

and 19). In that case the conservation of the fiuxoid
quantum state was linked to the induced currents
produced by the change of the external field and was

evidenced by the reversibility of the magnetization
upon cycling of the applied magnetic field. Exceeding
the critical current causes a change in the fluxoid
quantum number in a solid cylinder. ' The sample
then switches into a different quantum state and the
magnetic moment does not behave any longer rever-
sibly" ' when reversing the direction of the varia-

tion of the magnetic field. The explanation of these
experiments' ' can be linked to the concept of the
giant vortex" which was also employed in explaining
the experiments of de la Cruz et a/. '

A si»gly connected surface sheath in its lowest-

energy state has two opposing currents of equal mag-

nitude. The temperature dependence of the spatially

varying current density is then responsible for the
temperature-dependent magnetic properties. '" On a

large cylinder this state can be realized by destroying
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superconductivity along a strip parallel to the axis of
the sample. The superconducting surface region then
becomes singly connected and the fields outside and
deep inside the cylinder have the same value. This
condition ensures that there is no net current in the
surface sheath. ' Since the order parameter is finite
in the sheath, the superfluid velocity must be zero on
some open contour inside the surface sheath. At this
point the current density changes sign.

When the sample is Ir~ultiply connected, the zero-
current contour becomes a closed circle in the plane
perpendicular to the axis of the cylinder. This new
constraint forces the field inside the cylinder to adjust
itself so as to keep the quantum state fixed. A

consequence of this constraint is a net temperature-
dependent current in the surface sheath, caused by
an imbalance of the two opposing surface-sheath
currents, which is mainly responsible for the
temperature-dependent magnetic properties' of the
multiply connected sheath. A manifestation of this
constraint is also a quasiperiodic variation of the sur-
face critical field H, 3 with cylinder radius R.""

In the experiments of Ref. l the applied field was

kept constant but it was found that the total flux
through the sample changed when sweeping tempera-
ture. The obvious conclusion is that the closed con-
tour of zero velocity adjusts itself with temperature in
order to keep the fluxoid quantum number constant.
It is important to realize that a zero magnetic mo-
ment below T, (H, ) (surface critical temperature)
does not mean that H, is equal to H(0), the field in

the center of the cylinder. The field H (0) can be
equal to H, and the magnetic moment zero only for
temperatures higher than T3 or for a material with in-
finite penetration depth. In the latter case, no mag-
netic effects are observed. It is then reasonable to
think, when the magnetic moment below T3 is zero,
that the field H (0) is larger than H, in order to com-
pensate for the expulsion of the field from the sur-
face superconducting region. Clearly one is not al-
lowed to make the approximation of constant current
density across the surface sheath as it is often done,
for example, over the wall thickness of a hollow
cylinder. This argument is valid, in general, indepen-
dently of whether T or H, is the external variable. In
the latter instance one might conceive of an experi-
ment in which the zero-current-density contour is
driven out of the sample. This can happen only for
fixed quantum states in certain temperature or field
ranges, when the field H (0) is very different from
H, (always within the limits imposed by the critical
currents). In this case the magnetization is either
strongly paramagnetic or strongly diamagnetic and the
approximation of constant current density across the
surface will then be very approximately valid.

We feel that the above arguments elucidate the
essential physics better than the usual consideration
of having a penetration depth long in comparison to

the thickness of the superconducting region, since
the magnetic properties tend to zero in the latter
case. From the above discussion it seems that sur-
face superconductivity or the giant-vortex state does
not seem to be a necessary condition for the inver-
sion of magnetization to be observed. We have,
therefore, decided to investigate the magnetic
response of a hollow cylinder in particular with em-
phasis on its temperature dependence in a constant
applied magnetic field. The only assumptions we
make are: (a) the cylinder is long enough so that
demagnetization effects can be neglected, and (b) the
wall thickness, c/, of the cylinder is smaller than
2((T) while the penetration depth A, (T) is arbitrary.
The latter assumption implies that the modulus of
the order parameter, f', is approximately a constant
over the wall thickness of the cylinder and the solu-
tions are then valid for Ginzburg-Landau (GL) K

values smaller than 2X/d.
Within the context of the London equations Lipkin

et at. "developed the general equations for the mag-
netic response of a hollow cylinder. These were
developed further by Douglass" in general terms of
the Ginzburg-Landau theory with the same assump-
tions as stated above. Douglass'" then investigates in
detail the case X( T) » d.

This work is also based upon the Ginzburg-Landau
theory. The GL theory, which is local, can be modi-
fied to take nonlocal effects into account
[X(t) ( (, =Q. l gtuF/kT, ]. These modifications are
discussed in Ref. 28, Sec. 2.7. The general considera-
tions in the following Sec. II up to Eq. (16) are con-
ceptionally similar to Douglass's work up to his Eq.
(27). In Sec. III the limit of f approaching zero is in-
vestigated including the magnetization for f' &( 1

and the Landau critical point (LCP), the dividing
point between first- and second-order NS phase tran-
sitions. Complete solutions of the nonlinear GL
equations are presented in Sec. IV and in Sec. V we
make comparisons of our results with published ex-
periments. Section VI is devoted to the conclusions.

II. THEORY

Consider a hollo~ cylinder of wall thickness d, out-
side radius R, and inside radius R, , The applied
magnetic field H, is parallel to the cylinder axis. The
length of the cylinder is assumed to be very large in
comparison to R so that demagnetization effects can
be neglected. We make the assumption that d & 2g,
where g is the temperature-dependent (r =—T/T, )
coherence length, ((r) The latter .assumption im-
plies that the modulus of the order parameter F(r) is
approximately independent of the spatial coordinate I,
We make no restriction concerning the value of cf in
comparison to the temperature-dependent Ginzburg-
Landau (GL) penetration depth h(t) = h. . We . permit



22 TEMPERATURE DEPENDENCE OF FLUXOID QUANTIZATION IN. . . 2291

an arbitrary number of fluxoids to be locked-in in the
cylinder, the number of which is denoted by b. Be-
cause d & 2g and )( is arbitrary, the solutions found
in this work are valid for GL K values K(t) & 2)(./d.

In cylindrical coordinates (r, tjz), w, ith the applied
field parallel to the: direction, the order parameter,
the Gibbs free energy, and the Ginzburg-Landau
equations are as follows:

(It = F ( r) e 'be

/R
hG = „' —F'+ F4+ ——. [h (r) —h, ]'

R2 R2 dP 2 2
0

be determined below and b is the fluxoid quantum
number which must be an integer.

Interpreting Eq. (4) in terms of one of Maxwell's
equations the local magnetic field H (l ) is

H (r) =)(.J2H, '(7 x Q = H, + f/, R~—
2 l' (Pl'

(6)

For l ( R, the values of F(l) and H(r) are:
F(r) =0 and H (r) = fl (0). The boundary condition
at t =R'i,s H(R, ) =H(0), where H(0) is uniform
over the volume of the hole because the cylinder is

assumed to be infinitely long. The function ~(l) for
0(l'~~R0 ls

+—— +F'Q r dr
1 dF

dl'
(2) &(r) = [h (0) —h, ](r/R)', (7)

g ——r =(F +Q —1)F
dl dl

)(. ——r —~ =F Q=- — j . (4)
1 d dg r} q 4m 2m/)(' .

r dr dr r~ c
( t

The value of b in Eq. (1) must be an integer for (]( to
be single valued,

In Eqs. (2) to (4) we define:

AG = (G, —G„)/( VH, '/8m ) = 2t;

H, =H, (t)=H, (0)(l —t') and t=T/T,

(T, measured at zero field),

V =mL (R' —R,2)

is the volume of the cylinder excluding the hole and

h (r) = H (r)/H, (t)

where H (r) is the local magnetic field and H, (t) is

the temperature-dependent thermodynamic critical
field.

Also,

h, = H, /H, (t)

g = Q(({r)=([2m( A $, ) + V(P]((

where the phase of the order parameter 4 = —b0 in

our case, A& is the vector potential, the fluxoid quan-
tum (t(, = hc/2e = 2m'(%2H, and j = j,(r) is the su-

percurrent density,
For Q we write

where h (0) —= H (0)/H, (t)
The magnetization per unit volume of the hollow

cylinder„4aM (I) is defined by

4mM(l) = 2 [h(l) h. ]l dt =9(R),
fl (t) R' ~p

h (x) = d2/'[Al()(x) —BK()(x) ] (10)

When x, is substituted into Eq. (9) and Eq. (9) is

equated to Eq. (5) with {0(r) given by Eq. (7), one
obtains

Q(x, ) =Al((x, )+BK((x,)

where Eq. (6) was substituted into the integral and
the boundary condition p(l =0) =0 was applied.
The magnetization per unit length of the cylinder is

then (4mM)(mR' ).
As mentioned above, we assume that d & 2( so

that F(r) =—f = const, bracketed by 1 ~ f ) 0. /' is

nonzero over the interval R, ~ t ~ R while Q, Eq.
(5), is determined everywhere by taking the appropri-
ate value of tlat(r). Substituting/into Eq. (4), and de-
fining x = / r/)(. ; .x, = fR, /'); x, =fR—/)(. , the solu—tion
of Eq. (4) over the interval x, ~x ~x] is

Q (x) = Ai({x) + BK((x)

A and B are constants of integration, and l((x) and
K((x) are modified Bessel functions of the first kind.
A and 8 are determined below from the boundary
conditions at R, and R. Eq. (9) must be equal to Eq.
(5) over the interval x, ~ x ~ x, .

Substituting Q(x), Eq. (9), into Eq. (6) one ob-
tains over the interval x, ~x ~x] the magnetic field

t

mr'H, mR'H,
+ '- tf'(r) —b

l'
(5)

= [h (0)x,/242/'] —( fb/Kxo )

Eliminating h (0) = h (x, ) by substituting Eq. (10)
into Eq. (11) leads to

where the first term in the parentheses is proportion-
al to the vector potential arising from the applied
magnetic field. The second term is the contribution
of the persistent supercurrents to the vector potential.
Here tft(r) is as yet an unknown function which will

A/q(x, ) —BK~(x, ) = (2/ b)/(Kx, )'
Furthermore, at l = R we have

h (x() = h = J2/ [A/p(x() BKp(x()]'(12)

(13)
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Solving Eqs. (12) and (13) for the constants of in-

tegration, one obtains

~2fA = ho [K2{xo) nKO(xl ) ]/~

J2 f8 = ho [I2(xo) ulo{xl ) ]/h

(14}

(15)

with

5 = Ill{XI )K2(x, ) —Kll(XI ) l2(x, )

uh, = 242(b/K) ()I/R, )' =—P

(16)

(17)

A and Bare functions of R/)I. , R, /). , h„b/K, and f.
R/h. , R, /)I. , and h, are parameters over which an ex-
perimentalist has control, and b refers to a particular
fluxoid quantum state of the cylinder. Within the
present theory the values of b and K occur always in

the combination b/K. Since, however, the value of f
is unknown at this point, A (f), 8( f'), and d are to
this extent still undetermined.

ln solving Eq. (4) with f = const we found that

Q = Q (fi /). ). We, therefore, cannot solve readily
Eq. (3) for J'since '72f is unk'nown; while it is most
likely very small, it cannot be exactly zero since then
the equation Q'(r) = f' —1 = const would lead to a
contradiction. Hence, we disregard Eq. (3) and find
the value of f from the Gibbs function Eq. (2) as fol-
lows. We substitute Q(x) and h(x), Eqs. (9) and
(10), into Fq. (2), let F =f and disregard the term
df/dr, keeping in mind that the constants of integra-
tion of Q(x) and h(x) are functions of f integrat'-.

ing Eq. (2) from r =0 to r =R with f =0 over the
interval 0 ~ I & R„, the result is

AG =2( —J'+ —, f' ) + h,'[(a'loll2, —2aclolK2I+c'KolK2I)[ .4

+ s [a {lpp 2IOI ) f20+ I {Kpp 2KOI )K 20 2ac (Kool2o Kol/2o IplK2p) ]]/( 1 —s)

(18)

The foliowing definitions are used in Eq. (18):
s = R,'/R; Ipl —= Ip(XI)'„ l2I = I2(XI) K2I =K2(XI),
etc. , and h, a = &2f'A „h,c = J2fB, where the con-
stants of integration A (f) and 8(f) are given by

Eqs. (14) and (15).
After recasting Eq. (18) into a more convenient

form for numerical computation, the extrema of AG
with respect to f were found for constant values of
h„R/P„R, /h. , and b/K by varying f between zero
and unity, or what is equivalent, from

BING

B.f'
(19)

At the extrema of AG the values of f were recorded
and substituted into A ( f'), 8(f), Q ( fi. /)I. ). giving
h (fr/k) and EG(J') as final results from our compu-
tation.

For 0» r» R, the function 92(r) is calculated
from Eq. (7) with h(0) =h(x, ), where h(x, ) is ob-
tained from Eq. (10) with the appropriate value of I:
For R, » r» R the function rp(r) is obtained by

equating Eqs. (5) and (9) with the appropriate f
values obtained from Eq. (19). 0'(r) and drP{r)/dr
are continuous at r = R, [see Eqs. (6) and (7)].

A quantity which is directly measurable is the mag-
netization. The magnetization per unit volume of the
cylinder, Eq. (8), is obtained by equating Eqs. {5)
and (9) at the surface of the cylinder

Q(xl) =All(xl)+BKI(XI)

=xl[h, + {a(R)]/(242f') —Ib/(~XI) . (20)'

Using Eq. (13) to eliminate h, and Eq. (12) for fb/K

in Eq. (20) one solves for 92(R) and obtains

4rrM/H, = rp(R) = h, [cK2I —al2I+ s(a/20 'K2o) ]

{21)

where K2[, ~, a, etc. , are defined just below Eq.
(18).

In the following sections we shall investigate the
above theory first in the limit when f' « 1, in par-
ticular when H, is kept constant and the temperature
is varied. Then we shall discuss the numerical results
of this theory for the general case.

Particular attention will be paid to b, G, f; 4aM,
and H (0) for constant values of b

III. LIMIT OF f2 && 1.

We now turn our attention to the second-order
phase transition and supercooling phase boundaries
between the normal and superconducting states of
hollow cylinders for constant fluxoid quantum
numbers b.

By definition, when b is constant, the critical field
associated with a second-order phase transition is

denoted by H„(t,b) and that identified with the su-
percooling limit by H„(r,b). Both fields are obtained
in the limit that f' 0, thus AG 0. The former
corresponds to a stable minimum in the Gibbs func-
tion while the latter is an unstable maximum. The
dividing point between these fields is defined as the
Landau critical point (LCP) where the Gibbs function
has a saddle point in the limit that f' 0.

It should be emphasized that the fields as defined



TEMPERATURE DEPENDENCE OF FLUXOID QUANTIZATION IN. . . 2293

2.0

1.5

~D

1.0

with

h. = [H, /H, (0)](1—t') '

(R/)t)'= [R/)t(0) ]'(1 —t")

ps = 242 [b/K (0) ] [)t(0)/R ]'( I —t')-'

s = (R,/R)'

K =K(0)/(1 + t') =)t(r)/((t)

(22c)

(22d)

(22e)

(22f)

(22g)

0.5

0
0 0.2 OA 0.6, 0.8 1.0

FIG. 1. Shown are the phase boundaries for /'2 0,
Eq. (26'), for various fluxoid quantum numbers b. denoted
by ffs,. or 0„. Land iu critical points, denoted by L. exist
for I b I ( 4. For temperatures t ( rL the phase boundary

for b =const is the supercooling field f7„.; for t ) tL it is the
second-order phase-transition field H„. I or It&1~ 4

Eq. (26') corresponds to H, = Hs,. only. Also shown is the

superheating field fI,[, for b =0. 5, ind 6 discussed in Secs.
III G and IV. The intersection point of Eqs. (26') and (42)
(S = 0) determines the LCP. The envelope field, Eq. (27),
is also shown as well as the LCP of a slab of thickness
d/A. (0) =3, Eqs. (46) and (47). At temperatures larger than
that of the LCP the field of the slab is of second order.

, = P+2Sf'+3Uf'+ =0,
df'

with b, G being a minimum if

(23)

c/2A G =2S+6Uf'+ & 0 .(df')'
In the limit when f' 0, that js when we are con-

cerned with the second-order phase-transition field
ff„or the supercooling field H„„ it follows from
Eq. (23) that the equation

(24)

The temperature dependence of K is chosen so ~s

to be consistent with the definition of the fluxoid and
the empirical behavior of H, (t) and )t(t).

Since Eq. (18) is not yet minimized (or maxim-
ized) with respect to J; Eq. (22) is not minimized ei-
ther. The extremum of AG. in the limit of f' (( 1,
is obtained from

P =0 (2S)

A. Hso(t, b) and Hsc(t, b) for a hollow cylinder

When 0 & f (( 1, the Gibbs function, Eq. (18),
can be expanded in a series of the following form

bG=Pf +Sf +Uf + (22)

where

P = —— h,'(1+s) —4h, ps—R 2 2 (ps) ' 1ns

1 —s
2 J

here are not necessarily those of the phase boundary
between the normal and superconducting states un-
less b is adjusted in such a way that this condition is-
met. This will become apparent when discussing
Fig. 1 in detail.

is the condition which determines H„or If„.. Solv-
ing Eqs. (22a) with P =0 leads to (h, —= h„or h„.)

t ]/2

h, = ps+ (I+s) +(ps) g(s)2 + 2h.

(1+s R
' (26)

where

p(s) =1+[(I+s) lns]/[2(1 —s)] (0
for 0 ( s ( 1. Within our approximation of constant
order parameter the value of the fluxoid quantum
number b must be zero when s 0. This is the only

possible solution in this limit.
At the magnetic field A„determined by Eq. (26),

f' 0. Therefore, at this field rt'6 G/(rtf')'=2S.
Depending on whether S ) 0 or S ( 0 this field is

the stable second-order phase transition field A„or
the unstable supercooling field h„..

In terms of temperatures (t =—T/T, ) Eq. (26) be-

comes

r t 4
R 2sS = — —A0ps 3 —s + lns

&
p

4 0
1 —s

——h,'(1+s —2s )

t

)2 I+ s lns + I
1 —s

(22a)

(22b)

H,
H, (0)

4 X(0)
1+s R

f

J2b
( I + )

R I —t'

I
~(0)

'
)t(0) 1+r'

t 2
'

]/2J2b
( )

K(0)
(26')



2294 H. J. FINK AND V. GRUNFELD 22

' 1/2 ' ' 1/2
f2

1+t
H„

H, (0)
4)I.(0) 1ns

R 2(1 —s)g (s)

This equation is valid up to a [b/K(0) ] value given

(27)

by

Equation (26') is plotted in Fig. 1 for
R/X(0) =10, d/X(0) =3. K(0) = —for various flux-

oid quantum numbers b. All our equations contain
the ratio b/K(0) only, not b and K(0) separately.
Thus the curve for b = I and K(0) = —is exactly the

1

same as for the case b = 4 and K (0) = —,.
2

The envelope enclosing all the curves with various
values of b is calculated from P (h„t,b) =0 and
f)P(h„r, b)/f)b =0. After eliminating b from these
two equations we obtain the equation for the field of
the envelope H„:

B. Fluxoid quantum number at
the maximum' temperature

R —1 —s
b

g(r ) 2g(s)
(30)

where

g(r ) = g(0) [( I + r 2)/( I —r ') ] I~2

If at a constant magnetic field H, , corresponding
to that of Eq. (26"), the temperature is swept from
above T„ then when reaching the phase boundary at
t = t a transition from the normal to the supercon-
ducting state must occur. Then the-cylinder must
adopt a certain fluxoid state of quantum number b .
This b value is calculated by putting the square root
equal to zero in Eq. (26'). The result for s A 0 is

& 1/2

b

K(0)
R —(I+s)

)I. (0) 2g (s) [ I —g (s) ]
In the limit that d « R, Eq. (30) becomes

In the limit that the wall thickness, d « R, Eq. (27)
reduces to the equation for H„or H„of a film in a
parallel field (H„=H„or H„)

I ' 1/2
'

Hoe ~24 )t (0) 1 —r'

H, (0) d I + r' 120 R

(28)

Equation (27) is also shown in Fig. 1.
Furthermore, the magnetic field at the largest tem-

perature H, for a constant value of b is obtained
from Eq. (26') by equating the square root in

Eq. (26') to zero, solving for (2b)I~'/K(0) and sub-
stituting this value back into Eq. (26'). This leads to

1 'I I

Hom
4 h. (0) —I

H, (0) R (I + s)g (s)

' I/2 '
2

' 1/2
1 —tm

1+t'
(26")

The value of t in Eq. (26") is then the largest
temperature for b equal to a constant. Comparing
H, to the field H„of the envelope at the same tem-
perature we find

b. =i3-R R d 13 d
1 ——+d((r ) R 40 R

(30')

where the next-higher-order term in the bracket of
Eq. (30') is of order (d/R)4.

C. Field and temperature spacings

Field spacing ofphase boundaries at maximum

temperatures for different b values

442 ) (0)
1+s R

1 2

K(0) 1+s rrR H (0)

Consider Fig. 2 and Eq. (26'). The spacing of the
magnetic fields, defined by the maximum tempera-
ture of a phase boundary for b equal to a constant,
between two adjacent phase boundaries b and b„
with n —in =1 is

A =—
[H, (r„,b„) —H, (r, b )]

H, (0)

H. /H„= [(I —g(s) l
' ' . (29) (31)

J—)I.(0) I r
I

7 d
H, (0) d I + r„' 40 R

Equation (26'") is again the film limit.

(26ll/)

In the limit that s —I, Eq. (29) shows that
H, H„, that is, the envelope and the maximum
field for constant b become identical at the same tem-
perature and obey Eq. (28), that of a film. It is also
interesting to note that H, /H„ is fairly insensitive
to s, that is, for 0.18 & s & I we have 0.9 & H,„/H„
& 1. In the limit that d « R, Eq. (26") becomes

A is independent of b, t, and H„and is a constant
for a specimen of fixed geometry. It depends only on
R, and R. ItI, is the fluxoid quantum. The tempera-
ture at which two phase boundaries intersect is
denoted by t„. The lower branch of the b„phase
boundary between t„and t„gives rise to paramagnetic
magnetization, as we shall see below, while the upper
branch of the b phase boundary gives rise to di-
amagnetic magnetization between t and t .

B /A is the ratio of the field ranges of paramagne-
tism to the sum of paramagnetism and diamagnetism,
or in other words, B /A is the probability of finding a
paramagnetic transition when some arbitrary magnet-
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3. Temperature spacing between the envelope

and crossover temperature

Ho

H, (tq, bq)

A

"
Ho(tn, bn)

H, (t., tt )

The temperature difference (t, —t ) (see Fig. 2)
can be calculated implicitly via the temperature
dependence of the coherence lengths ((t) at these
temperatures. Substituting for t =-r, into Eq. (27)
and for t = t„ into Eq. (26') and solving the equa-
tions H, (t„,b ) = H„(t, ) = I/, (t„b„), with n —nt = I

one obtains

t„ t„ t, tm
[R/((t„)]' —[R/f(t, ) ]'= [I —g (s) ]/[2( I +s) ]

FIG. 2. Schem ~tie plot of three ph ~se boundaries,
Eq. (26'), as a function of temperature for different fluxoid
quantum numbers b and notations used with reference to
Eqs. (31) to (34) and others in the text.

ic field is held constant and the temperature is swept
from above T, . From Eq. (26') one obtains a rela-

tion for t„ in terms of b and b„, namely

H, (r„,b ) =H, (t„,b„)

When this equation is solved for t„and substituted
into

(33)

[((r, )/$(r„)1'=- I —I/[(2b + I)'g(s)] . (34)

The relations between b, t„, and t, are shown and
defined in Fig. 2. Since [((0)/$(t)]' = (1 —t')/
(I +r'), Eqs. (33) and (34) are the general solutions
for t, , t„, and thus (t, —t„). If both t, and t are suf-
ficiently close to unity, the left-hand side of Eq. (33)
reduces to ( t, —t„)[R /((0) 1'.

In the limit that e =d/R « I, Eqs. (33) and (34)
become

8 /A = W(t„,b„)/[J2(b„b)/K(0)—] [R/t, (r„)]'—[R/g(r, )]'= —,
' (1+e+ ,

' ")—, (33')

where W(t„,b„) is the square root in Eq. (26') with

t =t„, one obtains

8 /A = —[I+g(s)(b„+b )/(b„—b )] . (32)

In the limit that d « R and n —nt = 1, Eq. (32),
with the help of Eq. (30'), reduces to

28 /A = I —(2/J3) [d/((t ) ]

[e(r, )/g(t„) ]'= 1+3/[(2b + I )'e'(I + e+ —,",
,

e') ]

(34')

Therefore, when t, and t„are close to unity and
d/R « I the temperature difference between the
envelope and the intersection point of the ph ~se

boundaries with adjacent quantum numbers is a con-
stant for a cylinder given by

x [ I +—' (d/R ) ~] ——,
' (d/R ) ' (32')

r, t„= ( I +—.+ —,
' ")[g(0)/2R]' (33")

2. Field spacing between crossover temperatures t„

=A [1 —g(s)] . (32-)

Assuming that n —in = 1, it follows from Fig. 2

and Eq. (31) that A =8 +C =8„+C„for a speci-
men of fixed values R, and R. The field spacing 8
between the crossover temperatures t and t„[ is then
from Eq. (32) and A = 8„+C„:

8=8 +C„=—,A [2+g(s)(2b +1 —2b„—I)]

D. SuperAuid velocity Q (R) for f~ 0

When f' 0 the critical field is either If.„,or II,„.

while the magnetization 4m M approaches zero. It
then follows from Eq. (5) or from the fluxoid quanti-
zation relation

b@, =pJI JI H ds + X (t)(III j d I

g = A [1+—,
' e'( I + e + —,", e') ] (32"')

Like 3, 8 depends only on R, and R and is a con-
stant for a fixed geometry. Since g (s) & 0, the value
of 5 is in general larger than A, approaching the
value of A for d/R 0, given by the equation
(e = d/R)

evaluated at r = R with

(47r/c) ( j /F') = —(Q$, )/[2n g(r) X'(t) ]

[from Eq. (4)], tA,
= I and V(R) =47rM/H, (t) =0

(35)
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that (H, =—H„or H„)
4

2~2 Z(0)
H, (0) R

[/z.
b + R Q(R) I —t'

n(0) ) (0) I + t2
(36)

When Eq. (36) is equated to Eq. (26') the value of Q(R) for f' 0 is obtained. With the help of Eq. (30) the
result is

It follows from Eq. (30) or (30') that in the limit of
t 1, b =0. Therefore for b =0 it follows from
Eq. (37) that

Q(R) = [2/(I+s)]' ' (38)

I I —s ((t) I
2u (s) ((tm)

u(s) [2(1+s)]' $(t ) I —s ((t)

with u (s) —= [ —g (s) ]'t'.

(37)

I

f' 0 is a stable minimum [d25G/(df')2) 0] or an
unstable maximum [d25 G/(d f')' ( 0]. The divid-

ing point between h„and h„ is the LCP which is de-
fined by d25 G/(df')2=0, or

Substituting Eq. (38) into (36) with b =0, one ob-
tains (H, = H„or H„)

S=O (40)

]/2
4 a(0) I —t'

H, (0) ( I + s) ~t2 R I+ t2
(26llll)

Both P and S are functions of R/X(t), R, /X(t),
b/n(t), and h, (t). The magnetic field HL and the
temperature TL of the LCP are found by solving Eqs,
(25) and (40) simultaneously.

Q(R) = J3 I ——e ——e g(t)
2 40 ((t )

x I+ (I+e+—e')I

3 ' ((t)

l/2

(39)

Equations (37)—(39) show that, in general, the
.superfluid velocity at the outer surface of the super-
conducting cylinder is finite while the density of the
superfluid carriers, f', approaches zero at the super-
cooling and second-order phase-transition fields.

E. Landau critical point (LCP)

Equation (26'"') is the well-known equation of the
second-order phase transition and supercooling field
for a solid cylinder (s =0).

When the fluxoid quantum number b A 0, t ( 1.
In the limit that the wall thickness d &( R, the out-
side radius of the cylinder, Eq. (37) becomes
(f'-0; e=d/R; t ~t )

1. Fluxoid quantum number b = 0

For ps =0, Eqs. (22a) and (22b) can be readily
sol ved. One obtains

[X(t, )/R]'= —,
' [I —2s'/(I+s)]

tL = I —3 [h. (0)/R]'[( I + s)/( I + s —2s') ]

h'(t ) = 16[1—2s2/( I + s) ]/[3(1 + s) ]

(41)

2. Fiuxoid quantum number b W 0 {s4 0)

From Eqs. (40) and (22b) one obtains the follow-
ing relation:

H, /H, (0) = [h (0)/R]' [b/[ J2 (0t)4]]y (s, b/n(t))

For a solid cylinder (s =0) this reduces to the well-
known equation of the LCP for b =0, namely
R/X(tt) = J3 and HL/H, (tL) =4/J3.

The value h, of Eq. (26) is either h„or h„,
depending on whether the extremum of Eq. (22) for where the function y is

p(s) + (p'(s) +96(1+s —2s') [[K(t)/b]' —I —[s lns/(I —s) ]])' '
(I+s —2s )

and p.(s) =3[3—s +2s'lns/(I —s)]. Since S =0 and P =0 have a simultaneous solution when t = tL and H, = HL
for constant values of s = (R,/R)', b/n(0), and R/h. (0), the intersection point of Eqs. (26') and (42) in the
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H, —7 space determines the LCP.
Figure I shows the LCP's for ]b ~

& 4. For b ~4
there exists no LCP in this particular case. When
LCP's exist, they exist usually in pairs for constant b.
The field at the high-temperature range between the
two LCP's is h„while the rest of the phase boundary
is defined by h„. For b ~4 all phase boundaries are
defined by h„ in this particular example.

3. Slab limit

Consider Eq. (42). Let us define a reference field
H, = H,„which is Eq. (42) with the square root equal
to zero. H„ is temperature independent as is H, ,

Eq. (26') without the square root. Comparing these
fields one finds

H0. 3 I +s
3 + 2s'Ins (43)

H, 8 (I —s)(1+2s) I —s

or —, & H„/H, & I for 0 & s & 1. Thus in the limit

that s l(d « R), H„H, . In that limit the
square root of Eq. (42) is

r [/2

24 x K 7 ] 4 + 0 ~ ~

15
(44)

where the ellipsis indicates higher-order terms in x
and x =—(I —s)/(I +s).

We are looking for a solution of the LCP located at
7 =7 =71 in the limit that d &( R. At this tempera-
ture expression (44) must be zero or

and S are functions of the applied field ff, . We «s-
sume that the magnetization of the normal state is
zero. The value of M is then obtained from
[()(G, —G„)/BH, ]r = —M(nR'L) which leads to

r r

4rrM(t) i (I )(I,)/. , r/P, , r/S

H, (0) ' '

d/t,
'

r//t,
t

(48)

The functions P and S are given by Eqs. (22a) and
(22b), respectively. When we are near the phase
boundary for a second-order phase transition
(h„), S & 0 and P & 0 with AG ( 0 being a stable
minimum. Near the supercooling field h„„S(0
and P & 0 with AG & 0 being an unstable maximum.

Figure 3 shows the behavior of 4mM/H, (0) and /'
near the phase boundary for fluxoid quantum
number b =3 for the example shown in Fig. l. 4aM
is calculated from Eq. (48) and /' from —P/2S.
Near the maximum temperature 7 the magnetization
up to terms of order f' is zero, and becomes diarnag-
netic near the upper and paramagnetic near the lower
branch of the H, —

7 phase boundary.
This can be seen readily from Eq. (48) by neglect-

ing the term in /4. From Eq. (22a) one obtains

dP R —[/t, (1+s) —2ps]
dh, h.

i

4

Substituting into this equation for 6, = Ii, + hh, and
for h, =2ps/(I +s) [from Eq. (26)], one finds that
r/P/db, is proportional to hh, . Sweeping tempera-
tures at constant magnetic field, it follows that for

b /K(t, ) =(15)'t'(R/d)' . (45)
0.02 i

/hd(t, ) = JS (46)

Replacing b„by the dominant term of Eq. (30') one
finds

0.01——= 0.72Hp

H, (O)

a relation for the LCP of a slab. Substituting 7L for
into Eq. (26'") and making use of Eq. (46) one

finds the well-known equation for the LCP of a slab -0.01—

0.820

10m

0.821

I I

0.8S0 0.8S1

HL/H, ( tL ) = ( —"
, ) 't' (47)

-0.02
0.82 0.83 t

F. Temperature dependence of magnetization
for constant applied field

for 0&f'«1
The magnetization per unit volume (mR2L) of a

cylinder, 4aM, is calculated from Eq. (22), neglecting
terms of order, f and smaller. The value of,f' at the
extremum (db. G/d/'=0) of hG is then
/'= —P/2S & 0. Substituting / 2into hG one finds'
the value of hG at the extremum AG = —P'/4S. P

FIG. 3. Shown is the m ignetiz'ition 4mM
[/i~ =4vrM/II, (0) ) is 'i function of temper iture for
various const'int m ignetic fields for b =3, R/A. (0) =10,

I

fl/P (0) =3, ind K(0) = —c ilcul ited from Eq. (48) ind the
6

squ;ire of the order par;imeter, /, ne'ir the ph ise bound;iry
where /'2 « 1. The inset shows the;ipplied m ignetic fields
with respect to the phase boundary ind the L;ind;iu critic'il

points (L). B ind C are st ible second-order phase tr'insi-

tions and A ind 0 unst'ible supercooling fields. l or fields

II,/fI, (0) & 0.683 the v;ilues of 4n M;ire smaller th;in zero

near the phise boundary ind for lower fields 4aM & 0.



H. J. FINK AND V. GRUNFELD 22

0.025

4TfN

Hc(0)

f ' I I I » I &.I

hh, & 0 (upper branch) 4mM & 0 and for Ah, & 0
(lower branch) 4aM & 0, provided f' « I and the
f 4 and smaller terms can be neglected.

When the phase boundary is defined by

H„, ~4rrM
~

and f' increase as the temperature is de-
creased through the phase boundary while the energy
AG = —P'/4S also decreases (S & 0). In this case
the superconducting state is stable.

When the phase boundary is defined by

H„, ~4mM
~ and f2 decrease as the temperature is

decreased toward the phase boundary. In this case
d'd, G/(df')' = 2S & 0 which implies an unstable su-

perconducting state. Therefore, in this case there
must exist another superconducting state for which
f'- is not very much smaller than unity and for which
the Gibbs function corresponds to a stable (hG & 0)
or metastable (AG & 0) minimum.

This is shown in Fig. 4 as well as the behavior of f'

and 4mM for b =5 for the example sho~n in Fig. 1.
These nonlinear results will be discussed in detail in

Sec. IV. The inset shows the phase boundary cal-
culated from Eq. (26') and the contour AG =0 [Eq.
(2)1. The superheating field H, h is the field up to
which solutions of the GL equations exist. Near the
upper branch the unstable magnetization is diamag-
netic and near the lower it is paramagnetic. Near t

the slope of 4m M with t is zero. However, the order
parameter is finite near t, and solutions exist for
t & I . Above t superconducting states with energy
lower than the normal state are possible.

It thus becomes clear, when incorporating su-
perheating boundaries in Fig. 1, that the experimen-

tal phase boundary is not uniquely defined. This is
illustrated schematically in Fig. 5 which shows that
there is no unambiguous way of constructing a pl'lofl

a unique phase boundary. The particular conditions
under which an experiment is performed will deter-
mine which of the possible paths will be followed.

For points such as C lying between t,h and t,„. the
normal states are metastable. For a small specimen,
in all likelihood, the transition from the normal to
the superconducting state on lowering the tempera-
ture will take place at t„. If once in the supercon-
ducting state temperatures are again increased, either
the system goes into a superconducting state with a
different b value or into the normal state at some in-
termediate point or there is a transition to the normal
state at t,h.

In another experiment, starting from the normal
state at R and sweeping fields at constant tempera-
ture along RS a small sample would probably become
superconducting at H„. Sweeping now back towards
higher fields the superconducting-to-normal transi-
tion may take place at some intermediate point, but
for a small specimen it should in all likelihood occur
at H, h. Here also it is possible for the system to
remain superconducting by changing the value of b if
the radii R, and R, and K(0), h. (0), and t permit
such a state.

From the above it is clear that combining field and
temperature variations quite different phase boun-
daries may be observed experimentally as there is
hysteresis in the supercooling and superheating re-
gions.

The second-order phase boundary between the two
LCP's shows reversible behavior. Combinations of
both reversible and irreversible sections of the phase
boundary are also possible.

—0.025 —0.6

-0.0 50 —p4

-0.0 75 —0.2

139

0100 s I a I i I s t g I I p

0.52 0.54 0.56 D.58 0.6D 0.52 0.54 0.56 t 0.58 0.60

FIG. 4, Nonlinear solutions (to be discussed in detail in
Sec. IV) of the magnetization 4vrM and the order parameter
/' ~s ~ function of temperature for b =5 for the sample
shown in Fig. 1. The points in the inset are the locations of
the applied magnetic fields on the supercooling phase boun-
dary (/' 0) and the AG =0 curve shows ~here the Gibbs
function, Eq. (2), is zero. The points where AG =0 are also
shown on the f and 4m M curves. Note that there exist su-
perconducting states for temperatures larger than tm =1.139
whose Gibbs free energy is smaller than that of the normal
state.

SO

CP

tsc &sh

FIG. 5. Schematically illustrated is the nonuniqueness of
the phase boundary depending on the experiment per-
formed. For details see text,
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G. Superconducting states for temperatures t & tm itive for 0 & s & 1 and is defined by

When superheating is possible, there may exist
quantum numbers 6 & 6;„for which in a constant
magnetic field H, = H, superconducting states are
possible for temperatures t & t and which may have
an energy smaller than that of the normal state. In
order to calculate b;„consider Figs. 1 and 6. Figure
I shows the contours P =0 (not explicitly marked) in

the (H„t) space and one of the contours S =0
(determining the LCP for b = 3) for a specimen of
fixed values R„R, and K(0). Figure 6 shows
schematically the P =0 and S = 0 contours for
bo & b, & b, Insp. ection of Eq. (22a) shows that the
P values in the (H„r) space are always positive out-
side and always negative inside the P = 0 contour as
indicated for the bp curve in Fig. 6. Similarly, it fol-
lows from Eq. (22b) that S ) 0 inside and S & 0 out-
side the contour S =0 in the (H„r) space.

Consider the quantum number b& & b[ in Fig. 6.
For values of H, = H,„(b,) there exists, from what
has been said in Sec. III F, a solution for the order
parameter f in the vicinity of the P = 0 contour for
P & 0 and S & 0, that is for t & t q. This solution is

f'(r, h. (b, )) =—

[g(r)/((r &)]'—I

[bg/K(r) 1'[~ (s)/6] —I

where we have substituted into P and S for
h, = h, (bq) =2pqs/(I +s) and into P Eq. (30), that
is, [2g(s)/(1+s)]bq [$( &r)/R]'=- —l. w(s) is pos-

requiring that for I & ( q the value of
bq/~(r i) ) [6/w(s)]' '. The smallest limiting value
b is obtained when

[b2/K(r 2) ] = 6/N (s) (50)

with t q defined by Eq. (30) or (b, AO)

[b,/v(r ))]'[)t(r,)/R]'= —(I+s)/[2p(s)] . (51)

This case is shown schematically in Fig. 6 with 2 be-

ing replaced by 1;

b~/K(r~&) -b~/" (r~~) =—b~, „/&[(r~)~„.„]

The solutions of Eqs. (50) and (51) then lead to the
smallest quantum number b, normalized by K(0),
and the largest temperature for which superheating
for t & t at H, is no longer possible. This solution
1S

(,, ) 1+ Z(0) 12P (s)
'2

R (1+ r) w (s)
(52)

6 1 6

~(0),„[I+ (r'),. „]' w(3)
(53)

1 —s 12'~(.s) = -- ' + ', p(.s)I+ s, ( I +.~)'

Since for t ) r q the function ((t)/((r, ) ) I, we re-
quire that the denominator in Eq. (49) must also be
larger than zero for t & ( & if f' is to be positive.
This puts a restriction on the value of

b,/K(r) = [bg/K(r~, ) ] [( I + r')/( I + rnlg ) ]

where the .s-dependent function in Eq. (52) is nega-
tive for 0 & s & 1. For the example shown in Fig. 1

[b/K(0) ];„=19.59 or b;„=4.
In the limit that d « R, Eqs. (52) and (53) be-

come

(r 4) „„=I —5[) (. 0)/d]',

[b/~(0) ];„=[415/[I + (r ') .,„])(R/d)'

(52)

(53')

I I I I

4a t» tIIi

FIG. 6. Schematic relations between the P =0 and S =0
curves for various fluxoid quantum numbers for a given

specimen. 5 is positive "inside" and negative "outside" the

S = 0 curve; P is negative "inside" and positive "outside"
the P =0 curve. See text for bm;„and the arguments illus-

tr &ting the existence of superconducting states above tm& and

the nonexistence of these states above ( p.

It should be noted that Eqs. (52') and (53') are the
same as Eqs. (45) and (46), the LCP for a slab of
thickness 0 if (t ) „, „ is replaced by tL. This is not
too surprising when considering Fq. (26"') and the
curves for b] =b;„ in Fig, 6.

As we have seen here, solutions for 0 & f' « 1

are possible for r ) r q (see Fig. 6). These solutions,
calculated from f'= —P/(2S) are, however, unstable
since they correspond to a maximum in the Gibbs
function, We know, however, that the Ginzburg-
Landau equations have stable solutions for t « t &

(see Fig. 5). Since these solutions must connect con-
tinuously with the unstable solutions (for ( & t ~) as
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the temperature is increased at constant applied mag-
netic field, we must reach (for b & b;„) a superheat-
ing temperature t»2 which is larger than t 2.

Therefore, for t & t 2 there must exist other solu-
tions than those calculated from /2 = P—/25 & 0
which must be stable or metastable. Some of these
have been shown already in Fig. 4. These solutions
are obtained below by solving the nonlinear equations
numerically and are discussed there in detail.

IU. NONLINEAR SOLUTIONS OF THE GINZBURG-
LANDAU EQUATIONS

1.0

H()

H, (oj

0.5

0
0.5 0.7

T/Tc
0.8 0.9 1.0

FIG. 7. Second-order phase transitions, supercooling and
superheating phase boundaries for a hollow cylinder for
t ) 0.5. The fluxoid quantum numbers vary from zero to 5

and the cylinder has the following parameters:

R/A. (0) =10; (f/A. (0) =3; ~(0) = 6. The L~nd [u critical
1

points are indicated by L.

This section is a summary of the results of the
nonlinear solutions of the Ginzburg-Landau equa-
tions applied to a hollow cylinder with parameters
R/h. (0) =10; d/A. (0) =3; K(0) = —for various flux-

oid quantum numbers b; In particular solutions for
b =0, 3, and 5 were investigated in great detail.

Figures I and 4 indicate already some of the non-
linear results. Figure 1 shows the superheating boun-

dary over part of the possible temperature ranges for
b =0, 5, and 6. Figure 4 exhibits the magnetization
per unit volume 4a M and the order parameter near
the superheating and supercooling fields as a function
of temperature for various applied magnetic fields for
fluxoid quantum number b = 5.

Figure 7 is a compilation of the superheating and
supercooling fields for t & 0.5 for b =0 to 5 with the
above parameters. For these parameters the LCP's
occur only when b ~ 3. %hen b & 3, there exist su-

perconducting states at temperatures larger than the
maximum temperature of the supercooling field for a
fixed value of b. This implies that for these fluxoid
quantum numbers there is no second-order phase-
transition region possible as discussed in Sec. III G.
Therefore, in larger magnetic fields the magnetic
transition from the nonmagnetic normal to the super-
conducting state or vice versa is that of a jump in the
magnetization when the specimen is cooled or heated
in a constant applied magnetic field.

At lower magnetic fields, in particular near zero
magnetic field, there exist magnetic field regions,
between the LCP's where the transitions are of
second order. For example, in the vicinity of
H, /H, (0) = 0, 0.23, 0.46, and 0.69 in Fig. 7. Other-
wise, even in low magnetic fields, the magnetic tran-
sition corresponds to that of a jump in the magnetiza-
tion. This is so in this particular case because of the
choice of the parameters R, d, X(0), and K(0). As
can be seen readily from Fig. 7, the LCP's exist for
temperatures larger than the crossover temperature t„
(see Fig. 2) of the supercooling curves. It is possible,
in particular for smaller values of b, that the LCP
could be at temperatures smaller than I„, depending
on the choice of R/X(0), d/h. (0), and ~(0). This
means that the phase boundary for t & t, would be of
second order. For larger values of b, that is in larger
magnetic fields, the LCP's have the tendency to
move towards the high-temperature limit of the
second-order phase-transition curve, in general, until
they no longer exist in the high-field limit. The
LCP's are obtained from Eq. (42) and the approxi-
mate b value corresponding to the disappearance of
the LCP's is obtainable from Eq. (53). Inspection of
Eq. (53) shows that the latter b value is a function of
wall thickness d, outside radius R, h. (0), and ((0).
Thus the disappearance of the second-order phase-
transition region depends only on the geometrical ra-
tios R/h. (0), d/R, and A(0)/$(0).

The possible ambiguity of the NS phase boundary
due to the superheating, supercooling, and second-
order phase-transition boundaries has been discussed
at the end of Sec. III F in connection with Fig. 5. It
becomes clear now, by inspection of Fig. 7, that the
quasiperiodic boundary between the normal and su-
perconducting states disappears for large quantum
numbers due to superheating. This disappearance
was observed in large magnetic fields by Little and
Parks' and Groff and Parks6 on all their specimens.
Even for the smaller quantum numbers, in the pres-
ence of superheating, there is a reduction of the tem-
perature amplitude r, —r„(see Fig. 2) of the quasi-
periodic /VS boundary but with t„now being replaced
by a higher temperature (see Fig. 7).

Figures 8(a) —8(d) show the order parameter f, the
magnetization 47rM [Eq. (8) or (21)], the Gibbs
free-energy difference hG [Eqs. (2) or (18) and (19)]
and the magnetic field in the hole of the cylinder
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FIG. 8. Shown are: (a) the order parameter f; (b) the
magnetization per unit volume 4m M, (c) the Gibbs free-

energy difference between the superconducting and normal

states AG, and (d) the magnetic field in the hole of the

cylinder H(0) as a function of applied field H, for various

constant ambient temperatures. Look at (a) where the

planes of constant temperatures t =0.56, 0.58, and 0.6 are
located. The cylinder parameters are: R/X(0) = 10;

d/&(0) =3, K(0) = &, and b =5.1

H (0) = H (x, ) [Eq. (10)] as a function of applied
magnetic field H, for constant ambient temperatures
t =0.56 and 0.58 for fluxoid quantum number b =5.
The parameters are the same as in Fig. 7. Figure
8(a) shows also the f contour for I =0.6. The points
on each curve in Figs. 8(a), 8(b), and 8(d) indicate
where the Gibbs free-energy difference between the
normal and superconducting states 5G =0.

As can be seen readily from Fig. 7, there exists no
second-order phase-transition region for b = S. The
maximum temperature of the supercooling boundary

=0.5712 (see Fig. 2 for definition) occurs at an ap-
plied field H, /H, (0) =1.139. While for r ~ r there
are superconducting states possible for j' 0 (un-
stable), for r & r all the solutions correspond to
f' ~ 0, where, f is not necessarily small compared to
unity but rather comparable to it. The curves for
( =0.56 are typical solutions containing a supercool-
ing boundary while, for t =0.58, neither supercooling
nor second-order phase-transition boundaries exist.
As can be seen readily from Fig. 8(c), superconduct-

ing states for t ) r are not necessarily superheated
states in the sense that the Gibbs free energy of that
particular state is larger than that of the normal state,
but there exist rather extended temperature and field
regions over which AG & 0. The upper branches in

Figs. 8(a) and 8(d) and the solid lines in Fig 8{b)
correspond to the lower branches of hG in Fig. 8(c);
the remaining curves correspond to the upper
branches in Fig. 8(c). The lower branch of AG can
be divided into two regions, a region with stable solu-
tions for which AG & 0 and a region with metastable
solutions for which AG & 0. The upper branch of
AG is always positive and corresponds to unstable
solutions.

The magnetic field in the hole of the cylinder
H {0),Flg. 8(d), ls always larger than the applted
field f5, in this particular case except at the super-
cooling boundary where it is equal to it. The broken
straight line is the equation fV (0) = H, plotted for
comparison. Because of size effects, the magnetic
field in the hole of this cylinder is larger than H, (0).
Because H (0) & H, and Fig. 8(b) indicates that 4mM
can be either positive or negative, the magnetic field
in the wall must be smaller than H, . This was found
to be true, indeed. From Eq. (4) it follows that the
supercurrent density in the wall is proportional to
Q(r, r). With a few exceptions, such as b =0 and
certain limited magnetic field ranges, it was found
that the current density vanishes usually at some ra-

dius inside the wall. This implies that within the wall

of the cylinder, currents flow in opposite directions.
The point of current reversal is found to be a func-
tion of temperature and applied field even for wall

thicknesses small compared to h. (0). The magnetic
field inside the wall is a minimum at the point where
the current density reverses direction. The magnetic
field was calculated (not shown here) at this radius,

R„ for the case treated in Fig. 8 and found to be al-

ways less than H, . The curves for t =0.56 and 0.58
are similar to those shown in Fig. 8(d) except that
the curves are located at fields smaller than the
straight line H (R, ) = H, .

To sum up the results presented in Fig, 8, we

found that, for fluxoid quantum numbers sufficiently
large, no second-order phase-transition boundary ex-
ists (no Landau critical point). For these quantum
numbers there exist stable superconducting states at
temperatures between the maximum temperature of
the supercooling boundary t' and the maximum tem-
perature of the superheating field whose Gibbs free
energy is less than that of the normal state. The ex-
istence of such states was anticipated in Sec. III F.

Figures 9—12 show as a function of reduced tem-
perature for various constant applied magnetic fields
H, : the order parameter f; the magnetization per
unit volume 4vrM, the magnetic field in the hole of
the cylinder H (0), and the magnetic field within the
wall of the cylinder H(R, ) (minimum field) at the
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this case). For 4mM & 0, the lower branch is stable
or metastable, and for 4m M & 0 it is the upper
branch, in general, provided one takes t =0 as the
reference temperature for deciding the sign of the
magnetization. Thus, it is possible, within the
domain in which the fluxoid quantum number b is

conserved, when entering the superconducting state
from the normal state by cooling the specimen in a
constant magnetic field, that 4mM will be negative
and reversible with temperature. Then if the field is

reduced sufficiently, at lower temperatures, the speci-
men becomes paramagnetic [see also Fig. 8(b)]. For
subsequent heating of the specimen in the latter
field, the cylinder remains paramagnetic until it
enters the normal state or changes the fluxoid quan-
tum number. This behavior of the magnetization is

quite different from that of the giant vortex state as
found in Ref. 1. The giant vortex state corresponds
to the quantized fluxoid state of the surface sheath
on a solid cylinder which is much thicker than ((r).
In a sufficiently thick solid cylinder the surface
sheath has the freedom to adjust its thickness to ac-
commodate for changes in fields and temperature.
However, for cylinders which we are investigating
here for which d & 2(, the width of the supercon-
ducting region is determined by the wall thickness of
the cylinder at all fields and temperatures within the
validity of our approximations. This is the source of
the different temperature behaviors.

This difference shows up also in the Gibbs free en-
ergy AG when plotted as a function of temperature
for H, being constant (not shown). The lower
branch of AG is approximately parabolic with the
minimum located at t =0 K. The absolute minimum
of AG occurs for H, /H, (0) = 1.05 for the above
cylinder with b = 5. Magnetic fields and temperatures
where AG = 0 are indicated in Fig. 4 and Figs. 8—12.

Figure 11 shows the magnetic field in the hole of
the cylinder as a function of reduced temperature for
various applied magnetic fields H, . The upper
branches are the stable ones up to temperatures at
which AG =0. It should be noted that H (0) is rath-
er insensitive to the exact value of the applied mag-
netic field for d G & 0 when the temperature is

varied.
H (0) is to first approximation a constant at low

temperatures and its value is found to scale with b.
At the supercooling field where f' 0, the value of
H(0) H, , the applied magnetic field.

Figure 12 is a plot of the smallest value of the
magnetic field in the wall of the cylinder which oc-
curs at the point I = R, at which the current density
is zero (point of reversal of current direction). The
lower branches correspond to stable solutions of the
GL equations, and H(R, ) H, when f' 0. The
current density does not reverse direction anywhere
in the cylinder for b =0, but for b ~1 there exists
usually a reversal point regardless of wall thickness d

in relation to h. (0). One finds that H (R, ) is always

smaller than H, . Compared to H (0) at low tempera-
tures, the stable solution of H (R, ) is considerably
more sensitive to the applied magnetic field than
H (0).

V. COMPARISON WITH EXPERIMENTS

]/~

g(0) [ —g (s) ]' '—
R 1+s

]/r
1 —t

bm 1+ t'

(54)

]/g l/2
+AH,

R I+s (ss)

Since b, t, and b, H, can be readily measured,
Eqs. (54) and (55) constitute two equations with the
three unknowns $(0), R, and s. If the measured
H —T phase boundary represents truly the second-
order or supercooling phase boundary, not influenced

by superheating effects, then it is probably more reli-

able to calculate the shape factor g (s) (thus the
value of s) from the temperatures t, and t„, that is

from Eq. (34)

[—g (s) ] ' = (2b + I )'[[((r,)/((1„)1'—I }, (56)

where the relations between b and t, and t are de-

fined in Fig. 2. A similar relation, but involving Eqs.

Here we shall make a comparison between the
equations derived in Sec. III and the detailed experi-
ments of Groff and Parks6 which are an extension of
the experiments by Little and Parks' and Parks and
Little. ' Furthermore, a comparison between the non-
linear results of Sec. IV and the experiments of
Goodman et al. will be made.

The excellent experiments of Groff and Parks'
show plots of the phase boundary between the nor-
mal and superconducting states similar to that shown
in Figs. 1 and 7. Their Fig. 7 is a representative plot
of Al hollow cylinders and their Figs. 9 and 11(c) of
Sn hollow cylinders. The measured magnetic fields
[not normalized by H, (0) ] are plotted as a function
of temperature. It will be shown that from their ex-
perimental results, namely from the envelope curve,
from b, t, t„, and the field spacings of the tempera-
ture maxima, e.g. , AH, =H, (t„,b„) —H, (r, b )
(see Fig. 2); and the field spacing between the inter-
section points of the "parabolas" some of the funda-
mental constants of the superconductors and the di-

mensions of the hollow cylinder can be calculated.
These are R, r/, R, , ((0), and the product

H, (0)~(0).
It follows from Eqs. (30) and (31) that
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(54) and (33) is

g(0)
g(t, )

(57)

The experiments of Groff and Parks are mainly
second-order phase-transition boundaries as we shall
see below. Thus Eqs. (56) and (57) are applicable in

this case. If t„ is determined or changed by su-
perheating effects, Eqs. (56) and (57) are no longer
applicable nor is the field spacing between the inter-
section points at t„given by

H, ( b~, t„~ ) —H, ( b~, t» ) = 5H,~ [ I —g (s) ] (58)

In that case it is possible to obtain g (s) from the

scaling constant of the envelope field [Eqs. (27),
(31), and (54)1:

(59)

However, if ~g(s) ~
(& I, Eq. (59) is less accurate

than Eq. (56).
Figure 13(a) shows the results for Al with

AH, = 14.0 G, q = 15.04, and g (s) = —0.042 62 [cal-
culated from Eq. (56); s =0.4876] leading to $(0)
= 2210 A, R = 7950 A, d = 2400 A, H„(0)
= 215.0 G, and H( )Oh. ( )0= 1.054 && 10 ' G cm [from

@, with ((0)]. Since Eq. (26') can also be written
r ]/21

2 Ao, b+ I+s R b, ( )I+s rrR2 2 g(t)

1.07
I

T (K)
1.10 1.13

40—

20—

measured phase boundaries are mainly of second or-
der over most of the temperature ranges.

Figure 14 shows experiments by Goodman et al, "
on a hollow tin cylinder of inside radius R,
=70000 A and wall thickness d =5000 A. They"
usually observed that the trapped flux of quantum
state 6 = 1 decreased by about 20% before a jurnp to
b = 0 occurred. The specimen shown in their Fig. 9
showed a continuous decrease by about 30% when
the temperature was raised towards T, and is shown
in Fig. 14. They fit their experimental data to their
Eq. (4) which is an approximation based on Eq. (35)
with F' = 1 and assuming uniform current density in

the cylinder wall. Their fit leads to X(0) = 1200 A

which is by a factor of 2 too large than the usually ac-
cepted value for tin. Although our numerical results
show that for the shown temperature range the mag-
netic field has no minimum inside the wall for b = 1,
(at lower temperatures there is a minimum, implying
that currents flow in opposite directions), the current
density is not uniform. Furthermore, the order

it is obvious that only b, R, d, and ((0) are neces-
sary to calculate H, as a function of t; while H, (0)
and h. (0) are not. Furthermore, the above radius R
is the outside radius and is not to be confused with

the radius R used by Groff and Parks. 6 We denote
their R value by R,lf which is defined by their Eq.
(10), R,'tt = R '/[I + —(d/2R )'], .where R

= —,(R, +R), the mean radius. With the above

values of R and d one obtains R,rr=6720 A. This
compares to the values given by Groff and Parks6 as
follows: R,tt

——6650 A, d =.2500 A, H„(0) = 220 G,
and H, (0)h. (0) = 1.07 x 10 ~ Gcm (T, =1.152 K).

Similarly, Fig. 13(b) shows the calculations for Sn
with b, H, = 17.7 G, q = 21.31, and g (.s) = —0.05601
[from Eq. (56); s =0.4385] leading to ((0)
= 1210 A, R = 7190 A, d = 2430 A, H„(0)
= 387.2 G, H, (0)X(0) = 1.924 x 10 ' G cm, and

R,tt ——'5900 A. This compares to the values given by
Groff and Parks as follows: R,tt= 6000 A,
d = 2500 A, H„(0)= 390 G, and H, ( )X0( )0
= 1.945 x 10 ' G cm ( T, = 3.728 K).

In Fig. 13 are also shown the LCP's and one of the
superheating boundaries (Sn; b = I; upper branch).
Thus superheating could not have influenced these
experiments within the experimental accuracy and the
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FIG. 13. (a) C calculated results for the experiments on
aluminium by Groff and Parks (Ref. 6) relating to their Fig.
7. For details see text. (b} Calculated results for the exper-
iments on tin by Groff and Parks (Ref. 6) relating to their
Figs. 9 and 11(c). For details see text.
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VI. CONCLUSIONS
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envelope and t„ for constant H, is discussed in Sec.
III C 3.

Whether t„ is located in the second-order phase-
transition region or the supercooling region will

depend on the location of the Landau critical point
which is the dividing point between them. The latter
depends for a fixed value of b on R, d, and ~(r) [Eq.
(42) with @,=2m J2H, (0)h. (0)((0)l. If the LCP is
located at a temperature smaller than t„, then the NS
phase boundary is of second order, otherwise the
boundary for t & t[cp is in the supercooled state. In
the latter case there exist also superheating boun-
daries in field and temperature (Fig. 5) up to which
stable and metastable solutions exist besides the un-
stable ones (Figs. 4 and 7). For larger quantum
numbers the LCP moves towards H, (t ) and for still

larger, b values it ceases to exist at all (Figs. 6 and 7).
In the latter case the phase boundary for constant b is

solely a supercooling boundary for f 0. The su-
perheating boundary is then partly located at tem-
peratures above t, the maximum of the supercooling
boundary. For t & t stable and metastable states ex-
ist (Figs. 7—12). The latter solutions are probably
distantly related to the superheated surface
sheath 9 3 for 0.407 ( K & 0.595. The latter solu-
tions were derived' ' for the semi-infinite half-space
without taking fluxoid quantization into account and
exist" "for H, ( H, (t). Whether the quantized su-
perconducting surface sheath may have, under cer-
tain circumstances, superheated states possible for
H, & H„similar to our solutions (Fig gf'or .r & ( )

is unknown at present. The observed tails in the ex-
pelled flux of Ref. 1 could possibly have such an ori-

gin.
The magnetic field in the hole of the cylinder,

H (0), as a function of temperature is approximately
the same for all stable solutions for most values of
the applied magnetic field for b being constant (Fig.
I 1). H (0) scales linearly with 6 for r 0.

The quantitative agreement between Groff and
Parks's' measured M phase boundary on Sn and Al

and our calculated phase boundary [Eq. (26)] includ-

ing the Landau critical points is excellent (Fig. 13).
The agreement with the measured temperature
dependence of Goodman et al. of the trapped flux for
quantum state h = 1 and our numerical (nonlinear)
results is only qualitative (Fig. 14). A translation of
the temperature scale or a change of one of the
cylinder dimensions could lead to better agreement.
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