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Electronic-recoil spectra of p waves in an electron gas
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The p-wave electronic recoil spectra and their spectral moments are evaluated for a free-

electron gas subjected to various suddenly applied, local, spherically symmetric perturbations.

The spectra depend on the form of the perturbation, except at threshold, where they exhibit

shapes depending only on the Fermi-energy phase shifts.

I. INTROI3UCTION II. THEORY

Any sudden perturbation of an electron gas sets up
an electronic shock wave which dissipates energy by
low-energy electron-hole-pair production. Photo-
ernission of electrons from impurity or core states, '

meson capture, ' radioactive decay, ' and electronic
transitions within an atom all shock the surrounding
electron gas. The spectrum of electronic recoil ener-
gies, that is, the probability that the electron gas
recoils dissipating energy F., can be directly observed
as an asymmetric line whenever the perturbing pro-
cess would otherwise produce a discrete line in the
case of zero recoil. Photoemission experiments4'
have produced such asymmetric lines, which have

~ been studied extensively.
The theory of the electronic recoil profile is

presently developing, with early work' having been
confined to making general statements concerning
the line shape very near threshold and with more re-
cent studies having been devoted to solutions of
specific models.

In this paper, we present results of calculations of
the p-wave recoil spectra of a free-electron gas, using
the determinantal methods of Friedel, " Dow and
Flynn, ' and Swarts, Dow, and Flynn. "' We
demonstrate explicitly that Flynn's moment
theorems'4 for the recoil line shapes are satisfied; we
compare the p-wave profiles with corresponding s-

wave profiles '; and we show how the line shapes
change with different final-state interactions.

In Sec. II, we outline the theory, and in Sec. III,
we present the results of the calculations. Section IV
summarizes our conclusions, and the principal
mathematical underpinnings of the work- are con-
tained in Appendix A.

This transition is induced by the sudden change of
effective Hamiltonian from

W 2

e,„„=x ' +U(r)
2m

to
iV 2

e„,„,=x' +U(r, , )+t(r, ) .
2m

(2)

In the present paper, we take U and t to be spheri-
cally symmetric and take either Uor U+ V to be
zero. Since the initial and final Hamiltonians are
one-electron Hamiltonians, the eigenfunctions ii)
and

i f» ) are Slater determinants of one-electron
spin orbitals $(r)X and 1li(r)X, respectively. The
matrix element (I if» ) is itself a determin, ant, which
factors into smaller determinants for each angular-
momentum channel (I, m, o.). The resulting recoil
profile can be written as a multiple convolution of the
profiles for the individual channels', so we consider

Ihere only one p-wave channel (I = 1, m =0, o. = —, )
with N electrons

(Il.f») =
( 1t N i 1II 1 )

( O' I ~ 1IIN )

(dN, eN)

(4)

The recoil spectrum 1(E) is the probability that the
electron gas will make a transition from the initial
state ii ) to the»th final state

i f»), absorbing ener-

gy ~.

I(~) = $(il.f»)'g(& ~g +~)
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Expressions for the various matrix elements are
given in Appendix A.

The procedure for computing a recoil spectrum is
the same as that used for s waves'": the deter-
minants (i ~

fn ) are evaluated for a system of N p
waves and N is steadily increased until a convergent
spectrum is obtained for N —80. A sphere with
N =80 p waves per channel contains N =2.28 x 10

The m
electrons and has a diameter of 547 A

' d'in so ium.
e moments of the calculated spectra are evaluated

Mt»(E) = 1(E)(E—E;)~dE

and compared with Flynn's moment theorems'

u'»( ) =(I ~V~~i) . (5b)

~ ~

Finite moments do not exist for.either the infinite
barrier potential (for p )0) or the 5 shell (for
p &; owever, the high-energy asymptotic&1& h
behavior of l(E) can be deduced in these cases from
the N =1 line shape.
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Calculated p-wave recoil profiles for cases in which
U =0 and the final-state interaction V is either a

spherical square well, impenetrable barrier, or 8
shell are given in Figs. 1—3 for various Fermi-
energy phase shifts Si for an electron gas with

I, =3 93 &Na~ C&Na&. Corresponding recoil spectra for turn-

ing the potential off ( U A 0, U + V = 0) are also
given in Figs. 4—6. Several features of the spectra
merit comment.

The asymptotic approximation" to the line shape
generally is valid only very near the threshold
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Here Ci is related to Anderson's constant. ""
To illustrate this point, we display in Fig. 7 the

asymptotic theory together with the exact results for
b, = hi =0.20, a typical exponent. ' The dashed lines
define the region around the asymptotic theory corre-
sponding to the experimental uncertainty +0.015
quoted in some fits of the asymptotic line shape to
x-ray photoemission data. ' Clearly the theoretical
uncertainty, namely, the difference between asymp-
totic and exact theories, greatly exceeds the experi-
mental uncertainty, namely, the difference between
the asymptotic theory and data, for E —E~ & 0.5EF,
a typical energy over which analyses occur. ' A simi-
lar conclusion was obtained for the s-wav id-wave reco pro-
files; thus exponents 4 extracted by fitting data
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FIG. 1.
well final-s

Recoil profile for p waves subjected to a square-
we inal-state interaction I of increasing stren th ( f' dg speci ie

y i). The units of energy and length are the rydberg and

Bohr. radius, The well radius is a =2. Solid lines: present
work; broken lines: asymptotic theory. Note the p-wave
resonance for 8i/m =0.6, 0.75. (A p state is bound for

Si =0.80m. )
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FIG. 2. Recoil profile for p waves subjected to an im-

penetrable barrier final-state interaction t of increasing ra-
dius (specified by 5I). Solid line: present work; broken
line: asymptotic theory.

FIG. 3. p wave recoil profile for a 5 shell final-state in-

teraction &of increasing strength (specified by 6t). Solid

line: present work; broken line: asymptotic theory.
Note p-wave resonance for 5t/m =0.55, 0.70. (A p state is

bo un d for 5I =0.75 m. )



22

I.OO

0.75-

—0.50—

0.25—

O.op-I

WELL

8) = —O.I5m

l.op

0.75—

UJ—0.50-

0.25—

0.00-I

I

BARRIER
Si = 0.20m

I 2
(E -ET)/E„

3 4

223

I.OO

0.75-

-0.50-UJ

0.25—

O.OQ
-I

WELL
8 =-0.30m.

I

I 2
(E-ET)/E f

I.po

0.75—

—0.50—

0.25—

0.00
-I

I

BARR IER
SL = 0.40m

I 2
(E-E,)/F,

I.OO

0.75-

LLI—05Q-
M

0.25—

O.OO
-I I 2

(E-E )/E

I.op

0.75—

LJJ—0.50—

0.25—

0.00-I 0

I

1

I

L

I!

BARR IE R

Si =0.60~

I I

I 2
(E-E )/E„

1.00

0.75-

LLI—0.50—

0.25—

O.OQ
I 2

(E- ET)/E„

I.po

0.75—

UJ—0.50—

0.25—

0.00-I 0

I

L

L

I

I
I

BARR IF R

S, =O.BO~

I 2
(F-E )/E,

I.OO

0.75-

LJJ~p 5p

0.25-

O.pp-I 0

WELL

I 2
ET) /EF

I.QO

0.75-

—0.50-IJJ

M

0.25-

GOO
-I 0

BARRIER

SL=I.ppg

I

I

(E-ET)/E

FIG. 4. Recoil
'

profile for p waves with a square-well
initial-state interaction Uof increasing strength ( f' dspeci ie by

o i ine'. present work; broken line: asymptotic
theory.

FIG. 5. Recoil
'

profile for p waves with an impenetrable
o increasing radius speci-barrier initial-state interaction Uof in

fied by 8&). Solid line: present work. b k 1'ro en ines: asymp-
totic theory.
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FIG. 9. Recoil profiles for square-well final-state interac-
tions V. Solid line: s-wave recoil for ht =0.3n", broken
line: p-wave recoil for 8O =0.3m.

doped that the interelectron radius is comparable with
the 2p exciton radius.

For a sufficiently strong final-state interaction, a 2p
exciton is bound, and a second threshold appears in
the recoil spectrum. Hopfield' and Combescot and
Nozieres ' have discussed how the exponent for this
threshold is related to the square of the excess charge
localized in its channel, giving an exponent in the
asymptotic approximation of (St —m)'/m2 rather than
gt/m as for the first threshold. The spectra in Figs.2 2

1 —9 are plotted as functions of F. —FT. For refer-
ence, the threshold energies FT are given in Fig. 10.
As expected, the spectral moments of the recoil pro-
file satisfy Flynn's moment theorems. '4 Indeed, the
first few moments are saturated at relatively low en-
ergies, as demonstrated in Fig. 11.

FIG. 11. Spectral moments M (F.) of the p-wave recoil
profile for a square-well initial-state interaction U of radius
2, giving a Fermi-level phase shift of St =0.45m. (Units of
energy are rydbergs. ) Solid line: zeroth moment; broken
line: first moment; dotted line: second moment; dash-dot
lines: E = oo values of moments, (i

~

V&(i ).

from the asymptotic theory' profiles; hence, attempts
to accurately describe data should rely on exact line-
shape calculations rather than on the asymptotic ap-
proximation. The sensitivity of the line shapes to the
form of the final-state interaction indicates that this
interaction must be well understood before reliable
comparisons with data can be made.

The present work will probably find more applica-
tions to the theory of heavily doped semiconductors
than to the theory of metals. Friedel's sum rule
governs the phase shifts of degenerate metals

IV. SUMMARY

The present work shows that the p-wave recoil pro-
files of independent electron metals can be computed
in a straightforward way, using the determinantal
method. For physically interesting recoil energies,
the resulting recoil line shapes can differ significantly
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FIG. 10. Recoil threshold energies for final-state interac-
tions &of different types as a function of the Fermi-level
phase shift. Solid line: square well; broken line: impenetra-
ble barrier (for this case, —8~ is plotted instead of 5&); dot-
ted line: 5 shell.

and effectively limits the p-wave phase shift to small
1

values 0 & 5~ &
8

~. As a result, the p-wave contri-

bution to the total recoil profile in simple metals is
often small, having a contribution to observed line
asymmetries comparable with experimental uncertain-
ties. However, in less degenerate metals or in doped
semiconductors, the p-wave phase shift can be large,
and phenomena such as p-wave resonances and
bound states can become important. The Hamilton-
ians [Eqs. (2) and (3)] describe ef'fective-mass elec-
trons in the conduction band of a semiconducor with
m being replaced by the effective mass m'. Howev-
er, the energy scale on which the recoil phenomena
exist in semiconductors is reduced by a factor

Im q'm eo where Eo is the dielectric constant.
One way to observe the strong-scattering recoil

profile in semiconductors is to study the effects of in-
creased doping (electron-gas density) on the shapes
of photoemission spectra associated with transitions
from impurity levels. To our knowledge, such high-
resolution impurity photoemission measurements
have not yet been reported for heavily doped semi-
conductors.
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APPEN'DIX A: MATHEMATICAL DETAILS

The radial wave functions are

RI(r;k) Yi (0, $)X

condition the R ~ vanish on the surface of a sphere of
radius S

j,(ks) =o
and the sphere radius is fixed by the Fermi wave vec-
tor and the condition

S =Zt"/k, ,

where Z is the N th zero of j~.
In the perturbed state P, for I outside the range a

of the perturbation, the radial wave function is

R,~ (r, k') = B,[ cos5~(k') j~(k'r) —sin 8~( k')y~(k'r) ]

with I = 1 and cr = —,. Here X is a two-component

spinor and Yi are spherical harmonics. In the un-
perturbed state $k, we have

R~(r;k) = Cj ~(kr)

where j~ is the ordinary spherical Bessel function of
order unity and the normalization constant is

1/2

C =k J2 S —sin(2kS)
2k

The wave-vector magnitudes k are determined by the

where y~ is the spherical Neumann function, 5~(k')
is the phase shift, and k' is fixed by the condition
R,& (s,k') =o.

For r ( a, we have (i) for an infinite barrier,
RP (r, k') =0; (ii) for a 8 shell, R (r, k') =A„j~,
(k'r); and (iii) for a square well, R P (r, k')
= D„j, ~(Xr) with X=(k' + Vo)', Vo being the well

depth. The constants are A„=Rp ( ak') /j~(k' a)

and D„=Rp(a, k') j/~( Xa). The normalization con-

stant B can be evaluated by the condition

a S
R~ (r, k') r dr + RP (r, k') r dr = l~a

using the integrals

J r f~(kr)gt(qr) dr = r [qf~(kr)go(qr) —kg~(qr) fo(kr)]
k —q

2 2

r f~(qr)g~(qr) dr =r [rq ( fo(qr)go(qr) + f~(qr)g, (qr) —2go(qr) f~(qr) gj(qr) fo(qr)—]/2q

where f~,g~ denote either j ~ or y~, and fo, go denotes the corresponding jo or yo.
The phase shifts are obtained as follows: (i) for an impenetrable barrier, we have 5~(k') =arctan[j, (k'a)/

y~(k'a)]; (ii) for a 5-shell potential V = Voa5(r —a), we have

Voa k'j t'(k'a)
5~(k') =arctan

Voa kj~(k'a) y~(
k' a) —l

and (iii) for a square well V= Vpe(a —r), we have

Xjo(Xa)jt(k'a) —k'jo(k'a) j~(Xa)
5~ k' =arctan

Xjo(Xa)yt(k'a) —k'yo(k'a) j~(Xa)

The overlap matrix elements (@k, P„,) are (i) for an impenetrable barrier

pS pS
($k, P„)= CB„cos8J r j ~(kr)j ~(k'r) dr —sin8 J r j~(kr)y&(k'r) dr

where 8 stands for 5t(k'); (ii) for a 5 shell

a pS S
(Pk, P, ) =C A, J r j ~(kr) j~(k'r) dr +B cos8 r J~(kr)j ~(k'r) dr —B,sin8 J~ r j ~(kr)y, (k'r) dr

k p k J a k a

and (iii) for a square well

r a pS j S
(p, , p, ) =C D, J r2j ~(kr)j ~(Xr) dr +B„,cos8 r jt(kr)j ~(k'r) dr —B,sin8 r j ~(kr)y~(k'r) dr
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