
PHYSICAL REVIEW B VOLUME 22, NUMBER 5 1 SEPTEMBER 1980

Transport theory for kinetic emission of secondary electrons from solids
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Kinetic secondary electron emission from a solid target resulting from incidence of keV elec-
trons or keV and MeV ions is treated theoretically on the basis of ionization cascade theory.
The energy and angular distribution and the yield of secondary electrons are calculated for a

random target. These quantities are determined from the solutions to a system of Boltzmann

transport equations. Input quantities are the cross sections for collisions between the involved

particles and the surface barrier of the target. A general power cross section has been utilized in

the analytical procedure. It is shown that liberated electrons of low energy move isotropically

inside the target in the limit of high primary energy as compared to the instantaneous energy of
the liberated electrons. The connection between the spatial distribution of kinetic energy of the

liberated electrons and the secondary electron current from a solid is derived. To find the

former, existing computations for ion slowing down and experimental and theoretical ones for
electron bombardment can be utilized. The energy and angular distribution of the secondary
electrons and the secondary electron yield are both expressed as products of the deposited ener-

gy at the surface of the target and a factor which depends only on the. properties of the escaping
secondary electrons. Corrections for energy transport away from the surface by energetic recoil
electrons are partly included. Also the contribution from recoiling target atoms at heavy-ion

bombardment in the keV region is largely taken into account. The predicted energy and angular

distribution agree with absolute spectra for incident electrons, whereas the agreement with abso-
lute spectra for incident protons is less satisfactory. Extrapolation of the energy distribution

down to the vacuum level gives a spectrum which shows good agreement with experimental
data. The electron- and proton-induced yields from aluminum are evaluated on the basis of ex-
isting low-energy-electron stopping-power data. The agreement with existing experimental data

is good. Also, experimental yields from electrons, protons, and noble gas ions incident on

copper agree within the accuracy of the treatment.

I. INTRODUCTION

Irradiation of solids with charged or neutral parti-
cles is usually accompanied by emission of secondary
electrons and of sputtered atoms or molecules. ' ' In
general the emission of electrons complicates all ab-
solute beam current measurements in particle irradia-
tion experiments, especially those where the current
collected from a target is utilized for a determination
of the beam current. ' In fact, problems concerning
secondary electron emission appear in studies of radi-
ation effects in materials including plasma-surface in-

teraction, s ' electron microscopy, " and related to-

p tcs.
Kinetic emission of secondary electrons from a

solid is usually the result of a very large number of
scattering and energy-loss processes' ': incident elec-
trons will generate secondary electrons by ionization
of bound electrons or excitation of conduction elec-
trons; these liberated electrons may undergo scatter-
ing by other electrons and target nuclei. For incident
ions with energy in the ke V region or higher, a cascade
of recoiling target atoms may be generated. The pri-

mary ions and moving recoil atoms create excited
electrons, which in turn may generate excited elec-
trons. Some liberated electrons may be able to reach
the surface of the solid; thus a certain fraction will

escape and be registered as emitted secondary elec-
trons. It is well known" that these emitted electrons
originate mainly from a layer of the order of 5—20 A.

below the surface in the case of metals and somewhat
deeper in the case of semiconductors and insulators.

A qualitative picture of three cases of secondary
electron emission is shown in Fig. 1. The random
medium is bombarded by a primary electron, by a

primary atom of the same kind as the target atoms,
and finally by an arbitrary beam ion. The collisions
between the particles under consideration in the
present work will be described within the scheme of
Bohr. ' It means that the medium consists of a mix-

ture of free electrons, . i.e., electrons with velocities
comparable to or less than the velocities of the pri-

mary particles, and of nuclei with strongly bound
electrons. In the limit of very high primary velocities
the medium can be viewed as consisting of bare nu-

clei and free electrons.
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FIG. 1. Particle incidence on a random medium in three
cases. The bombardment is assumed to cause emission of at
least one secondary electron for all three particles. The den-
sity of moving particles is greatly exaggerated.

It is well known that the yield and energy spectrum
of the secondary electrons is sensitive to the purity of
the surface region of the solid. ' Unfortunately, a
considerable fraction of the existing data on secon-
dary electron emission originates from experiments
with poorly characterized surfaces. Thus, the
development of ultra-high-vacuum equipment made
possible a renewed activity in providing precise data
for secondary electron emission from solids.

Apart from the kinetic emission of secondary elec-
trons originating from the outermost bulk layers, the
interaction of incident ions with solids may also lead
to potential emission. " This is associated with the
neutralization of the impinging ions before they reach
the surface. The magnitude of this potential emis-
sion has been estimated by Kishinevsky. " Also, for
the energies and ion-target combinations where po-
tential emission may occur, the corresponding kinetic

emission will to some extent be included in the
present work. This requires some assumptions which
will be discussed.

Electron-induced secondary electron emis-
sion' ' or ion-induced secondary electron emis-
sion' " have been reviewed by several authors.
However, only a few of these have studied both types
of electron emission.

Baroody" formulated a theory for electron-induced
secondary electron emission from metals. On the
basis of a yield evaluation he pointed out that the ex-
isting data on the total secondary electron yield as a
function of the primary energy could be scaled ap-

proximately to fall on a single curve. The velocity
distribution of the emitted secondaries was also ob-
tained by Baroody. However, some points in his
work were later criticized by Hachenberg and Brauer. '

A large step forward toward a comprehensive
theory was taken by %olff, "who made a transport
treatment for electron-induced secondary electron
emission to obtain the spectrum of emitted secon-
daries, and to estimate the maximum yield. This
treatment was later extended by Stolz. ~ Amelio"
evaluated the energy distribution for the secondary
electrons. All three authors concentrated on metals.

The absolute magnitude of the electron yield for
ion energies well above the maximum of the elec-
tronic stopping power was evaluated by Sternglass. '"
For incident ions of low velocities Parilis and
Kishinevsky' "developed a theory which predicted
the yield from metals on the basis of Auger recombi-
nation processes.

It is obvious, and implicitly contained in earlier
work, that the secondary electron yield is related to
the electronic stopping po~er, ""' ' ' or more
precisely, the energy deposited into the electrons of
the target. Since it has been demonstrated that the
sputtering yield in a similar way is related to the en-
ergy deposited in motion of the target atoms, "'
there are striking similarities between fast-ion
sputtering and secondary electron emission induced
by fast particles. A more detailed discussion follows
in Sec. II.

Experimental investigations of radiation damage,
ion implantation, and sputtering have stimulated con-
siderable progress in transport theory for energetic
atomic particles. ' ' Extensive tabulations ' now
exist of the distribution of energy deposited into
damage or motion of the atoms, and the energy
which ultimately is delivered to the target electrons.

The purpose of the present work has been to
develop a theoretical treatment of the yield and ener-

gy distribution of secondary electrons from a random
target. These electrons may originate either from
keV or MeV ion and keV electron incidence. Be-
cause of the cascade nature of the processes leading
to secondary electron emission it seems appropriate
to utilize transport theoretical methods in studying



22 TRANSPORT THEORY FOR KINETIC EMISSION OF. . . 2143

this emission. Furthermore, the successful applica-
tion of transport methods for analyzing sputtering'
has encouraged the use of similar methods in work-

ing with secondary electron emission.
The connection between secondary electron emis-

sion and the distribution of energy deposited into the
electrons will be derived in the present work. The
mentioned tabulations for atomic incidence will be
largely utilized. However, the distribution of deposit-
ed energy for primary electrons as well turned out to
be required for the evaluation of the secondary yield.
The treatment is performed for liberated electrons in-
side the solid of energy sufficiently high that the de-
tailed band structure is unimportant. The obtained
secondary electron energy distribution may then be
extrapolated down to the vacuum level. In most
cases this extrapolation yields promising results; these
are presented in Secs. IX and X.

The starting point is a Boltzmann-type transport
equation. The input quantities are the cross sections
for collisions between the interacting particles, the
magnitude of the surface barrier, and possibly the
binding energy of the liberated electrons. As these
cross sections are not accurately known, extensive
use will be made of model cross sections. The aim is
to express the yields and the energy distributions by

quantities that depend only weakly on the parameters
specifying the model cross sections.

The basic equations for the distribution of liberated
electrons in phase space are set up in Sec. II. The
quantities necessary for the determination of the
number of emitted secondary electrons, are governed
by a system of equations which is treated in Secs. II
and III. The applied cross sections for collisions
between the involved particles are discussed in Sec.
IV. The case of an incident electron is treated in Sec.
V, while the relationship between the distribution of
liberated electrons and the energy distribution is dis-
cussed in Secs. VI —VIII. The formulas for the ener-

gy and angular distribution of the emitted secondary
electrons are obtained in Sec. IX, and the yield for-
mulas are given in Sec. X. Finally, the role of recoil-
ing target atoms in secondary electron emission and
the distribution of energy, deposited by recoiling tar-

get atoms, are studied in Sec. XII.
Some results from this work have been presented

recently. ' Furthermore, the influence of recoiling
target atoms has been treated in Ref; 42. In addition
to the areas described above, the latter work includes
a qualitative discussion of the relationship between
the deposited energy and the secondary electron
yield.

II. BASIC EQUATIONS

A. Theoretical starting point

This treatment is supposed to apply to both ion-
and electron-induced secondary electron emission.

The calculations assume in principle primary particles
of high nonrelativistic energies; for ions this means
energies at least in the keV region, whereas for pri-
mary electrons the energies may be somewhat lower.
The treatment is applicable so long as a considerable
fraction of the liberated low-energy electrons results
from an ionization cascade. The calculations are per-
formed for the specific case where the velocity of the
incident particle is large compared to the velocities of
the electrons which become liberated after interaction
with the primary particle, and the velocities of the
target atoms.

It is well known that the angular distribution of the
secondaries ejected from noncrystalline solids is a
cosine function both for ion ' and electron in-
cidence44 at the energies considered here. This
means that the angular distribution of the liberated
electrons inside the solid must be roughly isotropic. '
Furthermore, the ejected secondary electrons ori-
ginate mainly at or just below a surface layer. " As
sputtered particles display similar features'"' we
shall make use of analogies with the theory of
sputtering.

Let us consider a random, monatomic medium. It
is a convenient reference standard for understanding
secondary electron emission. Furthermore, we as-
sume a planar target surface. In the treatment here,
as in similar multiple-collision problems, a semi-
infinite target embedded in an infinite medium of the
same material as the target is regarded a first step.
As a second step one may introduce a real surface.

In the general treatment we do not specify whether
our target is a metal, a semiconductor, or an insula-
tor. Therefore, we just denote all excited internal
secondaries as liberated electrons without regard to
the target material, Obviously, the detailed band
structure of the target material is important for the
migration to and escape through the surface of the li-

berated low-energy electrons inside the solid. '
However, as a starting point we shall, as mentioned
in Sec. 1, consider liberated electrons of energies (of
the order 10—30 eV) somewhat above the Fermi en-

ergy or the bottom of the conduction band. The
treatment in Sec. X concentrates on metals, but may
also be extended to other materials.

The theoretical calculations do not include any ef-
fects of the charge of the beam ions. The difference
between the yield from neutral, negative, or positive
beam particles has apparently not been studied exper-
imentally for the past ten years, and this subject will

not be touched upon in the present work. Neither
will the yield from molecular ions be analyzed.

Directional effects, which may occur in crystals,
will not be treated in the present work.

Auger electrons are partly included in the treat-
ment. The energy loss to the Auger processes is in-

cluded in the stopping power; cascade electrons lib-

erated by Auger electrons are taken into account as
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well. However, the specific Auger structure of the
emitted electron spectra is not reproduced by the
treatment here.

Energy E, +dE,
Direction P+ de,

Electron of
the cascade

B. General expression of the yield

and the energy distribution

The discussion given here follows closely the one
in Ref. 33. The initiating particle starts its motion in
the plane x =0 at time t =0 with velocity v (Fig. 2).
Let

G(X, Vp, V, f)dVpdX

time=0

Energy E

Direction e

initiating
particle

time = t

Depth

be the average number of electrons moving at time t

in a layer [x,x+dx] with velocity [vp, vp+d vp].
Depending on the type of the impinging particle a
subscript may be attached to G. e, t, or b correspond
to an electron (mass m, ), an incident target atom
(atomic number Z2, atomic mass M2) or an arbitrary
beam atom (atomic number Zt, mass Mt), respec-
tively. In order to simplify the notation, these three
subscripts will be omitted in most cases.

The following evaluation is performed in three
steps as sketched in Fig. 1. A determination of G~g
requires knowledge of G~,~ and G~,~, and a determi-
nation of G~,~ requires again knowledge of G~,~. The
development in space and time of the electron cas-
cade is taken into account by G~,~, this must be
determined first. Since the contribution to the cas-
cade from recoiling target atoms may become appre-
ciable, the second step must be an investigation of a
medium where only target atoms and electrons parti-
cipate in the cascade. Thus G~,~ must be determined
as the second step. Finally, G~b~ can be determined.
This step procedure is characteristic for the mathe-
matical evaluation of transport equations governing
radiation effects.

We then obtain the number of emitted electrons J
with velocities in the interval [vp, vp+dvp] in the
backward direction through the plane at x =0, initiat-
ed by a single incident electron or atom with velocity
v. This is found by means of the function G(x,
vp, v, t) from Eq. (1)

J(vp v)dvp

goo= l&p I g' df G(0. vp. v, t) d vp . (2)

RANDOM MEDI UM

x=0
FIG. 2. Geometry for the quantity 6(x, vp, v, t)dvpdx,

Eq. (&).

Up = vp cosOp is the x component of the velocity vp.
From Eq. (2) the yield is determined by integration
over all vp which enable the electrons to eventually
pass the surface barrier.

The essential point of Eq. (2) is that a determina-
tion of the velocity distribution or of the yield does
not require knowledge of the specific time depen-
derice of G. In view of this, it is sufficient to deter-
mine the slowing-down density

F(x, vp, v) =~( G(x, vp, v, f)dtdp

A possible subscript is, of course, the same on both
sides of the equation. F(x, vp, v) lvp ld vp is thus
the total number of electrons that penetrate the plane
x with a velocity [vp, vp+dvp] during the develop-
ment of the cascade.

C. Equations for the functions G

Let N be the number density of target atoms in the
medium, v„ the x component of the velocity v, and

I, /I
v and v the velocities of the scattered and recoiling
particles, respectively, after a collision.

G~,~, G~,~, and G~q~ all satisfy a linear Boltzmann
equation in backward form:

9G 1 QG =N J da G(x vp v f) G(x vp v, f) —XG(,);(x vp v, f) G«t(x vp v, , f) . (4)x v t

This equation may be derived by a standard argumen
The cross section do- accounts for the collision probability of the primary particle with both a target nucleus

and the associated Z2 electrons,

da. = der( v, v, v, , v, )

It depends on the velocity of the primary particle before and after the collision, on the velocities v, of
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G(,)(x, v(), v, 0) = 5(x) 5(v —vp)

G(q)(x, vp, v, 0) =0

G(())(X, Vp, V, 0) =0

(6a)

and

G(x, vp, v, ~) =0, for vp AO (6b)

In order to put Eq. (4) into a more convenient

the excited electrons, and on the velocity of the
ll

recoiling target atom v, . In the following treatment
the subscripts e, t, and i are dropped in the argu-
ments of the functions G.

At t =0 and ~, we must have

form, a procedure suggested by Lindhard et al. "will

be utilized to separate collisions with target nuclei
from those with electrons. The idea is that electronic
excitation predominantly occurs at relatively large im-

pact parameters where nuclear collisions are unimpor-
tant. This separation has turned out to be very use-
ful for analyzing effects from incident ions. For in-

cident electrons such a separation means merely that
the electron is either scattered by the nucleus almost
without any energy loss, or loses energy at some elec-
tronic excitation without being deflected by the nu-

cleus. The cross section Eq. (5) is split into two

components, der, for target nucleus collisions, and
do., for electron collisions (Table I).

Hence, the integral in Eq. (4) can be separated into
two collision integrals, and the following Boltzmann
equation is obtained:

=N do, [G(x, vp, v, f) G(x, vp, v, t) G( )(x, vp, v, t)]&x 96 1 86
v 9x v Bt

ll
+N J d(r, [G(x, vp, v, t) —G(x, vp, v, t) —G(,)(x, vp, v, t))

D. Equations for the slowing-down

density F

As mentioned above we are interested only in the slowing-down density F. Before considering all the equa-

tions for F we shall point out how the equation for F~,~ simplifies.

TABLE I. The efficiency y = Tm, „/E of energy transfer in a binary collision (the struck particle is

initially at rest), power cross sections, and stopping powers.

Particle
combination

Electron
electron

Electron
target nucleus

Beam ion
electron

Beam ion

target atom

Efficiency
of energy

transfer y

Cross
section

dae

me

M2

me
4

4M1M2

(M1 + M2)

Model
cross
section

Stopping
power

NS(E)

Low-energy
stopping
power at

energy Eo

gE—m y
-1—mdT

NpE1-m -m

(& —m)

Nse e ( Ep)

gE—m T-1-md T

'y

(& -m)

CE-m T-1-md T

1 —mE1-2m'y

(1 —m)
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Let us for a moment exclusively regard F(,&(x, vp, v). The maximum energy transfer T,„ from an incident
electron of energy E to a target nucleus in rest is given in Table I. The energy transfer from a slow recoiling nu-
cleus to an electron is even smaller, and the nucleus will be unable to liberate electrons. Hence, we can neglect
the third team in the second integral in the equation for F&,&(x, v p, v ),"so the equation for F&,& becomes
decoupled.

By integrating Eq. (7) with respect to r three equations are obtained:

—8(x)8(v —vp) —. =N J d(r [F( )(v) F( )(v ) F( )(v )]~F(.)
U v Qx

+N Jtd(r, [F(,)(v) —F(,)( v )] (ga)

=N Jt do, [F(,&(v) —F(,&(v ) —F(,&(v )]+N „do,[F(,)(v) —F(,)(v ) —F«)(v )]
U x

(8b)

=N
&

do, [F(().(v) —F(()(v ) —F&,&(v )1+N Jr do, [F(b&(v. ) —F&b)(v ) —F(,&(v )]
v x

For convenience, the variables x and vp have been
omitted.

Even if do- were accurately known it would be
quite difficult to solve the three integro-differential
equations because of the large number of variables.

The solution F~,~ is found by a two-step process,
because F(,&

must first be determined from Eq. (8a)
and then be inserted in Eq. (8b). F&b& must be found
by a similar three-step process.

that

c p
= —Pl&Up,

1 2 F. = —Mgv 2

vp
p

I vpl

v =e

where M~ is the mass of the primary particle, i.e.,
m„M2, or M~.

In order to remove the dependence on e, F(x,Ep,
ep, E, e) is expanded in spherical harmonics

III. EQUATIONS IN ENERGY VARIABLES

In order to solve Eq. (8) we shall follow a pro-
cedure described by Sigmund. The velocity vari-
ables are changed to energy variables in a way such

Y(k(e) =
' 1/2 ' 1/2

2 i+ I (I —[k [)!
4~ (I + [k f)!

x P lkl(cos t)) ek~ (10)

We use the notation of Schiff, ' where PI~" ~ are generalized Legendre polynomials in the directional cosine of
e =(cos8, sin8cosa, sinesinu). Then,

oo I

F(x Ep, ep, E, e) = g X [4m(2I+I)]'~'F(k(x Ep, ep, E) Y(k(e)
I pk

where the coefficients F(k(x, Ep, ep, E) are determined by

F(k(x, Ep. e'p, E) =
)&, J F(x,Ep, ep, E, e) Y(k(e)de

4m 2/+1 (12)

F"(Ep, ep, E, e) = Jt x"F(x Ep, ep, E, e)dx

(n =0, 1,. . . )

(13)

The change to spatial moments leads, as shown
below, to a recursion formula for the moments.

The conventional procedure in the theory of slow-
ing down of ions involves the spatial moments of the
density

Moreover, one notes that the introduction of the spa-
tial moments eliminates the dependence on x.

We follow the procedure described in Refs. 37, 46,
and 48. The directional dependence of the cross sec-
tions may be expressed in a simple way by energy
quantities if the scattering angle (t

' of the primary
particle and the angle 4&" (with respect to the original
direction of the primary particle) of the recoiling par-
ticle in the laboratory system are correlated to the
primary energy, the energy E' after scattering, and
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energy F.
" of the recoiling particle. F' and F" each refer to the laboratory system.

These correlations between angles and energies exist for elastic collisions at high primary velocities, We shall,
therefore, assume that the velocity of the primary particle is so high that it strikes nuclei and electrons essentially
at rest.

Hence, one obtains a set of equations for the spherical coefficients F,„(E), from which the variables Eo and e „
have been removed for convenience for all three cases of incidence:

N'(21+I) ~ do, [F. (k(E) —P((cosg')F(k(E') —P((cos(t") Ft,((k(E")]

+ N (2I + 1) do, [F(k.(E) —P((cosg') F(k( E') —P((cos((tr") Fr(&(k( E")1

1/2

= n(l —k )' F(P:~'„(E)+ n [(I +1) —k 1' F(+t',k(E) +&,o—&(E —Eo)
8 7r

r

I'(k( eo)

(n =0, 1, ) (14)

r 1/2
I T

cos@ = I ——
E

r

Mg+ —1—
Mg

1/2
T

1 ——
F.

As mentioned in Sec. II the third term in the second
integral disappears in the equations for the moments
of F(,~, and the term containing the Kronecker syrn-

bol 8„0 will be present only for the zeroth-order mo-

ment of F(,).
In Eq. (14) the spatial moments are determined re-

currently from the lower moments on the right-hand
side of the equation. Let us finally express the an-

gles (tr' and (tr" in the laboratory system in terms of
the primary energy E and the energy transfer T.

For the scattering angle @' in the laboratory system
of a collision between the primary particle (mass M&)
and a target particle (mass Ms) at rest we apply the
expression from binary elastic collisions in classical
mechanics

A. Energy-transfer cross sections and

the related stopping powers

~here R is the distance of separation, a simple po~er
cross section

do-, =CE™T' dT (18)

has been derived. ' T is the kinetic energy of the
recoiling target atom, and C a constant which

depends on the charges and masses of the particles as
well as on the exponent m.

%'e shall in the following treatment often use the
corresponding (nuclear) stopping power:

Before considering the general case let us regard a

collision between an incident beam ion and a target
atom at rest. From the power-law potentia1'

ir (R) R 1/m

and for the angle rt(" of the recoiling particle
=NS((E) = N

dx (f

fO f
d(7f T

0
(19)

' I/2

cos(tr" =
Tmax

r r 1/2
T

yE

where y is indicated in Table I.

(16)
The atomic stopping cross section then becomes

1-m

g (E) g El —2m

1 —m
(20)

IV. COLLISION CROSS SECTIONS
AND STOPPING PO%ERS

In order to treat the possible collisions we shall

make extensive use of model cross sections (general
power cross sections). These are introduced for
analytical convenience; whenever possible the final
results are expressed by quantities available from ex-
periments or from theoretical evaluations other than
this one. Usually it is not possible to eliminate the
complete dependence on the exponents from the fi-

nal results. However, it turns out that this depen-
dence usually is comparatively weak.

Similar power cross sections will now be utilized

for all collisions between the considered particles.
These cross sections and their corresponding stopping

powers are listed in Table!. !n order to distinguish
between the exponents from the different cross sec-
tions it may become necessary to use subscripts on
the exponents. The cross section for an electron-
electron interaction is an extension of Eq. (18), as nr'

may differ from m.

B. Connection between screening
and power cross sections

Over appreciable regions of the separation distance

the screened potential may usually be approximated
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by a power law steeper than R '. The cross section
Eq. (18) will become more and more forward peaked
with increasing values of the exponent m in the ap-
proximation for the screened potential Eq. (17)." m

increases with rising energy up to m = 1 at which the
cross section becomes identical with a Rutherford
cross section.

C. Feasibility of the model cross sections

The power cross section for beam-Ion —target-atom

collisions and for beam-Ion —electron collisions and the
corresponding stopping powers NS, (E) and NS, (E)
are available from existing theories over wide ranges
of energy or known from experimental data. There-
fore, the power cross sections for der, and for da,
will be used only for analytical convenience. The
power cross section for der, with fixed values of m

1 1 1
equal to 0.05, 4, 3, or —has already been utilized

widely in the literature ', the appropriate interval
for the m values becomes here [0,1]. Corresponding-
ly, the electronic stopping power for an incident ion
varies with decreasing energy from a stopping power
inversely proportional to the squared velocity to one
proportional to the velocity. This leads to values of
the exponent m in the interval [ 4, 1].

Power cross sections similar to Eq. (18) for the
electron-electron collisions and the electron-nucleus col-
lisions have been used by Kanaya and Okayarna, "
who evaluated the electron range and other related
penetration quantities. In order to obtain satisfactory
agreement with experimental results they used fixed
exponents m = m' = 6. In a subsequent article' the

electron range and a relative secondary electron yield
were calculated for some discrete values of m in the
interval [ ~, 6

]. The present model cross section da,1 5

in Table I is slightly more flexible in that the ex-
ponents m and m' are both free parameters. Howev-
er, since the value of m' turns out to be uncritical,
the choice m'= m is used in all comparisons with ex-
isting stopping powers for electrons. In the evalua-
tion of the slowing-down density F~,) the more gen-
eral expression in Table I is applied,

values of m in the interval [—1, 1] cover the range
of stopping powers from one proportional to F.' down
to F. '. The existing calculations of the stopping
power show actually such a range of energy depen-
dence, although the stopping powers below their
maximum of around 100 eV are rather uncertain.
1t turns out that extracted values of m (with m = m')
from the theoretical calculations or from experimen-
tal secondary electron energy spectra, discussed in
Sec. IX, even lie below —1 at very low energies, i.e. ,
a few eV above the vacuum level.

A generalized power cross section, which to some
extent includes exchange corrections, is introduced in

Ref. 45, and the corresponding stopping power is
evaluated.

D. Theoretical stopping powers
for beam atoms

The results for the nuclear agd electronic stopping
power for an incident beam atom from the work of
Lindhard et al. ' will briefly be mentioned.

The nuclear stopping power for all beam-target
combinations can reasonably be described' by a
universal dimensionaless function, s„(e), defined by
the equation

s„(.) = NS, (E)
N4me aZ1ZpM1

(21)

where the reduced dimes)onless ciergy parameter e

is determined by the relation'.

aM2~=E
Z)Z2e (M)+M2)

(22)

The screening radius a is expressed by means of
the Bohr radius ao as

a =0.8853ao(Zp +Z22 ') (23)

If one requires —20% accuracy in the nuclear stop-
ping the power cross section Eq. (18) may be used3'
with

for e &0.2,
m='

2
foro.os&6&2.0 .

!

(24)

According to Lindhard et al. "'"the electronic
stopping power for an ion can be approximated by
the dimensionless function

s, ( e) = kr. e'~' (25)

for F. & Z1 'A125 keV; here A1 is the mass number
of the beam ion, and kL is a well-defined constant
depending on Z1 and Z2, and of the order of 0.1 to
0.2 except for Z1 « Z2, where kl can become larger
than 1. This stopping corresponds to the velocity-.
proportional electronic stopping power, which may be
written with an associated constant k:

NS, (E) = NkEv (26)

V. EVALUATION OF THE ZEROTH-ORDER
MOMENT OF THE DENSITY F(~)

In this section let us exclusively treat the density
F~,), initiated by an incident electron. The subscript
e and the variables Eo and e(] will be mostly neglected
here.
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The equations that determine the coefficients for
the zeroth-order moment F are investigated here.
For the mathematical solution of Eq. (14) it is impor-
tant that energy conservation leads to the following
threshold condition:

It has been demonstrated in similar integral equa-
tions ' with a binding energy Vthat the leading
term for E &) Ep && t'in the solution is identical to
the leading term for E &) Ep in the solution of the
corresponding equation with V =0. We then set

F(x,Ep, ep, E, e) =0 for E & Ep, (27) E'=E —T and E"=T (29)

F(k(Ep, ep, E) =0 for E & Ep (28)

and this must also be valid for all coefficients in the
spherical expansion and obtain from Eq. (14) with n =0 the equations

which determine the coefficients of the zeroth-order
moment:

N (2 I + 1 ) ~ do, [ F(k ( E) —P((co sf ) F(k ( E —T ) —P(( cos(t( ) F(k ( T) l

( 1l2
1 2I+1+ N(2I +1) ) do, [Fk(E) P((co—s(t'()F(k(E —T) 1

= —&(E —Eo)
v 4m

(

Y(k(ep) . (30)

The integral equations (30) are more complex than
those describing sputtering and problems concerning
recoiling atoms, ' ' and which could all be rear-
ranged in such a way that they contained only one
explicit collision integral. This is usually not the case
in the present equations.

Setting I =0 and utilizing Po(cosd() =1, we may
evaluate the coefficient Fpp(E) from Eq. (30):

N „d(r, [Foo ( E) —Fpp ( E —T) —Foo ( T) ]

+N d~, [F,', (E) F,', (E —T)]—
=—&(E —Ep) Ypp(ep) . (31)1 1

lJ (4~)'»

Because of the low energy transfer from the imp-
inging electron to the scattering nucleus we may use
a first-order expansion in T in the second integral as
described elsewhere" ":

N
g

d(r [F (Eop) Fpp (E T) —Fpp ( T) ]

+NS, (E) d F,', (E)
dE

5(E Ep) Ypp ( ep)

U (47r)' ' (32)

In order to evaluate Fpp we even may neglect the
second term on the left-hand side, because the nu-
clear stopping power NS, (E) is orders of magnitude
smaller than the electronic stopping power NS, (E)
which implicitly enters into the first integral. '

Let us now insert the power cross section for do-,
(Table I) in Eq. (32) and introduce a logarithmic
variable u = lnE/Ep. We make use of the technique
described in Refs. 58 and 55 and utilize condition
(28) to obtain the exact Laplace transform of

Fpop(Epe") with respect to u:

goo

Fpp(s) = du e ' Foo(Eoe )dp
(

r(s +I)r(I -m)
r(s —m)

Em+m —1 Y ( )

((oNC (4m) (» (33)

An exact inversion from the Laplace space of-0
Fpp (s) is not known. An asymptotic expansion for
E &) Ep of the form'

(

F,', (E) =X~, e~ =X~,
J ~J Ep

~J J

(34)

A,
Fop(s) = X (3S)

This means that the exponents s, of the expansion
Eq. (34) are the poles of Fpp(s) and the coefficients
A, . are the residues. The highest pole is s~ =1, and

~J

from the behavior of the I function the next highest
pole is seen to be negative. Neglecting all terms ori-

-Op
ginating from negative poles, we can invert Fpp (s) to

Em+m —1 E Y+' ( )' .,Nc E, (4~)'» (36)

for E)&Ep,
where

(i((x) =—lnI'(x)d
dx

(37)

can be found with real exponents s, in descending or-
der; Laplace transform of Eq. (34) yields
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and

r. = m

y(1) —y(1 —m)
(38)

Using the stopping power (Table I), we rewrite Eq.
(36)

Fp E (EQO) yoo ( eo)
F(e)oo E =1m

NS (E ) (4 ),(, (39)

for E&)EO .

Here we inserted the stopping power NS, , (Ep) of
the liberated electron at the instantaneous energy Eo
to remove most of the explicit m dependence. Apart
from I, which is a slowly varying function of m for
m ~1, Eq. (39) contains no quantities indicative of a

power cross section.
It is central to the calculation that m and C are

determined from the low-energy stopping power
NS, ,(Ep) because of the arguments from sputter-
ing.

The terms F~,~y, for l «1 will be neglected in the
zeroth-order moment of F(,~. Generally the scatter-
ing nuclei will cause this isotropic approximation to be
much better than the corresponding approximation in
sputtering. This may be explained as follows' . For all
the coefficients F(,~~k we may arrive at expressions
analogous to those obtained for self-sputtering, " if
we consider electron impact on a pure electron medi-
um, i.e., a medium without scattering nuclei. The
coefficients F~k for I ~ 1 have already been neglected
in sputtering. Consequently the terms Ft,~~k(l ~ I)
for a real medium can be disregarded with even
much less error relative to the isotropic approxima-
tion.

In Ref. 45 the coefficients F(,~~k have been deter-
mined for a specific example of da-, by a procedure
similar to that used on Eq. (31). It appears that they
indeed are small compared with Ft,&pp (E).

%e obtain, then, for the zeroth-order moment in
the isotropic approximation

I' (E/Eo)
Ft,& (Ep, eo, E, e) = = xE .

4vr upNS„Ep
(40)

VI. CONNECTION BETWEEN F(,) AND THE
SPATIAL ENERGY DISTRIBUTION D(,)

A. Spatial energy distribution

D(,)(x,E, e)

The spatial distribution of energy, given to the tar-
get electrons has been determined experimentally,

In this approximation for the zeroth-order moment
we note that X depends only on the properties of the
liberated electrons, and not on any quantities pertain-
ing to the primary electron.

theoretically, or by means of Monte Carlo calcula-
tions by a number of authors,

Comprehensive measurements of the distribution
in air by means of luminescence radiation were per-
formed in pioneering work by Grun for primary
electron energies from 5 to 54 keV. This experimen-
tal distribution is essentially determined from the lo-
cation of ionized nitrogen molecules. In later experi-
ments with nitrogen ' Grun's procedure has been
extended down to primary energies of 300 eV.

Everhart and Hoff measured the depth distribu-
tion of the charge-carrier pair generation in a system
of aluminum, silicon dioxide, and silicon bombarded
by 6—20-keV electrons. Their results agreed well
with Griin's data and with the calculated distribution
by Spencer described below.

Theoretical evaluations were performed by Spenc-
er, ' who calculated the energy-loss distribution for
primary energies larger than 25 keV in various ma-
terials. Evaluations have recently been made for
low primary energies in water. In this distribution
the contribution from recoiling ionized electrons has
been entirely neglected, but since the energy distribu-
tion of the ionized electrons is strongly peaked at low
energies for primary energies in the Rutherford re-
gion, this energy-loss distribution is expected to pro-
vide useful estimates for the energy distribution in
the energy range considered by Spencer and some-
what below these energies. At 32 keV his distribu-
tion appeared to agree well with that of Grun found
experimentally.

Several Monte Carlo calculations have been per-
formed in various media. Berger et al, ' followed
keV electrons, including the secondaries, down to
200 eV in air and computed the distribution on the
basis of Bethe's stopping-power expression. Their
distribution agreed well with the results of Grun and
Spencer's calculations for 32-keV electrons in air. On
the other hand, Grosswendt and Waibel computed
the distribution in air on the basis of knowledge of
the location of the excitations and ionizations and ob-
tained reasonable agreement with experimental
results. Shimizu et al. and Matsukawa et al, per-
formed calculations for energy-loss distributions for
10- and 30-keV electrons incident on several metals
and carbon, and obtained agreement with the distri-
bution of Everhart and Hoff as well as Spencer.
Paretzke" obtained good agreement with the distribu-
tion found by Grun for 5- and 10-keV electrons on
water.

Four examples of the energy distribution in air are
shown in Fig. 3. This figure illustrates a well-
docurnented feature ' ' that the distribution, in
units of the stopping power NS, (E) and the range of
the primary electron, is relatively insensitive to
changes in the primary energy. The energy distribu-
tion is approximated rather well by a step function
with a discontinuity of magnitude NS, (E) in the
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motion deposit energy only in the region x ~ 0 of the
- infinite medium. This discontinuity was clearly ob-

served by Griin and by Cohn and Caledonia, "
although the real experimental values around the
plane x =0 show a steep increase for increasing x
rather than a discontinuity at the surface.

Figure 3 demonstrates as well that the upper value
of the step function at x =0 given in units of NS, (E)
is almost constant. The value is indicated in the fig-
ure by P„„,(where the subscript means uncorrected
for energy transport by recoiling electrons at the sur-
face, cf. Sec. X C). Griin60 found experimentally that

P„„,varied less than 10% in air for primary electron
energies in the 5- to 54-keV range. Also Barrett and
Hays6' found a small variation of )8„„,in their data
for nitrogen of 1 to 3 keV, Spencer's calculations
support these results for a number of materials and
primary energies from 25 keV and upwards. Apart
from the results of Barrett and Hays P„„,in these ex-
amples refers to a medium in which the distribution
also has been determined for negative depths behind
the electron source at x =0.

A corresponding slow variation of P„„,for a semi-
infinite air medium has been demonstrated by Berger
er al 'P„„,d.ecreased by 10% with increasing pri-

mary electron energy from 2 to 20 keV.

B. Basic equations for the energy distribution

FIG. 3. Energy distribution D~,~(x, E, e ) for an infinite

air medium resulting from keV electrons which initiate their
motion at x =0 and with a direction e„along the x axis.
The distribution is plotted in units of the stopping power
NS, (E) for the primary electron as a function of the depth
in units of the mean range fo, Ref. 67. (—), experimental
curve, Ref. 60; (———), theoretical curve, Ref. 64; (0) and

('7), Monte Carlo calculations (model B), Ref. 67. P«, in-

dicates the upper value of the distribution at the step x =0.

plane, x =0, where the primaries initiate their mo-
tion. ' The origin of this discontinuity is the fol-
lowing: primary particles in the beginning of their

Do(E, e) = D (x, E, e )dx = E
~ —oo

(41)

since the energy from a primary electron nearly ex-
clusively ends up in electronic excitation according to
the discussion in Sec. II. Following the same pro-
cedure as used in Sec. II and III, we obtain an equa-
tion for the coefficients D(,)I(E):

The energy distribution D(,)(x,E, e) from an in-

cident electron with energy F. and direction e satisfies
a Boltzmann equation similar to the one given in Ref.
42. The distribution D~,~ is normalized by

N (2I +1) J do., [DI"(E) —Pi(cosd2') Dp(E') —PI(cosp") DI"(E")}

+ N(2I +1) Ji drr, [DI"(E)—PI(cosg')DP(E') l

& (I2 Ir2) ll2Dn 1(E) + &
—[(I + 1)2 k2}1/2Dn-1 (E) (n =1, 2 . ) . (42)

In this section we shall mainly neglect the subscript e, The coefficients for the energy distribution D are obvi-

ously simpler than those for F, as D contains only one directional variable e As a consequence, the directional
expansion is characterized by a single subscript I.

An analogous equation for energy deposition by atomic particles is well known and extensively discussed in
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Ref. 37. The arguments leading to Eq. (42) are entirely
analogous to those for atomic particles.

C. Factorization of the slowing-down density

It seems straightforward, therefore, to apply this
energy distribution to the slowing-down density F by
means of the factorization in Eq. (46). This connec-
tion has not been utilized previously in secondary
electron emission studies.

According to the final result in Sec. V, the zeroth-
order moment of the slowing-down density F is pro-
portional to the primary energy E by the quantity

I (1/Eo)
&ONS, (Eo)47r

(43)

As the zeroth-order moment of the energy distribu-
tion D is the primary energy E, Eq. (41), a compari-
son between D and F/X presents itself. Let us for a

moment ignore the threshold conditions (27) and
(28) and consider the coefficients of the directional
expansion.

The coefficients to the zeroth-order moment of the
distribution 0 are determined" by

VII. ENERGY DEPOSITION BY ATOMIC PARTICLES

In this section we shall treat only the spatial distri-
bution of energy deposition by atomic particles. Only
the equations for the beam quantities, subscript b,
will be given. The equations for the corresponding
target quantities are obtained by replacement of the
subscripts b by t.

Lindhard et al. "showed that the amount of energy
which ultimately is lost to the electrons r((k)(E), and
the energy delivered to the nuclei v(k)(E), are both
described by integral equations. The energy v(b)
obeys the equation

D(a(E) = E5p( (44) da. ( [v(k) (E) —v(k) ( E —T) —v(,) ( T) ]

whereas the corresponding coefficients for F/X in the
isotropic approximation read

+S,(E) '" =0, (47)
dE

Flk ( E) /)r E80(80k (45) and is determined from the initial condition

Once all the coefficients Fik with I «1 have been set
equal to zero, Eq. (14) infers that only the coeffi-
cients Fik of the higher-order moments with k =0
will differ from zero. Then the subscript k can be
omitted from the coefficients F(k(E)/X.

Inserting F("(E)/X for n ~ 1 in Eq. (14), one ob-
tains a system of equations which is completely ident-
ical to the system Eq. (42) that determines the coeffi-
cients D("(E). Since the coefficients for all moments
of F/X and D are equal, F can thus be factored as

v(b)(E)-~1 forE 0
E

(48)

n(b)(E) = E v(b)(E)— (49)

The two quantities v(b) and q(b) are the zeroth-order
moments of the spatial energy distributions. In par-
ticular

Some approximations similar to those in Sec. V
have already entered Eq. (47). The energy q(k)(E) is

found from

F(x,Ep, eo, E, e ) = XD (x,E, e ) (46) 0
'9(b) = D(b) ~ (50)

for E ))Eo. In fact, this factorization is analogous
to the one performed in sputtering. '

D. Application of energy distribution
to slowing-down density

The energy distribution D in Eqs. (42) and (46) is
a spatial distribution of kinetic energy of the low-
energy electrons. According to Ref. 37 the spatial
distribution of ionization will be proportional to this
dist'ribution. Obviously, the experimental distribution
and the distribution from Grosswendt and Waibel
then represent an energy distribution of this kind.
Also, the energy-loss distribution can be utilized as a
reasonable approximation to the distribution of kinet-
ic energy so long as the primary energy is well above
the eV region.

The distributions of energy deposited in atomic mo-
tion or ionization have been extensively computed by
Brice and Winterbon, respectively, for high and
low beam energies. The former distribution will usu-
ally be called damage distribution here. As described
in Sec. VIII, the knowledge of these distributions will

be utilized whenever possible.

VIII. DISTRIBUTIONS F(,) AND F(b)

This section deals with the distributions F(,) and

F(b) initiated by a target atom or beam atom, respec-
tively. In this section the intention is to show that a
factorization corresponding to Eq. (46) is also possi-
ble for these distributions, and then investigate the
role of the recoiling electrons for these distributions.
%e keep the notation of the preceding section and
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write only the equations determining the beam quan-
tities.

A. Solution for the zeroth-order
moment F~b~ (E)

From Eq. (14) we obtain the equation determining
the coefficient FL)pp. In both integrals we neglect
any binding energy for the recoils. As in the treat-
ment of F(,) 00 in Sec. V we again perform a first-
order expansion in T in the first integral, which con-
cerns the atom-electron collisions. This is justified
because of the low-energy transfer T from the atom
to the recoiling electron. We therefore obtain for the
first two terms in the integral:

d~e [ F(b)00 (E) —F(b)00 (E —T) ]

dF (b)00 5 ( E)
dE

(51)

=NS, (E) x—
0

dF(b)00

dE
)

with the threshold condition for all n, I, k, similar to
Eq. (2g)

F(b)lk(EO e0 E) 0 'for YE + Ep (53)

Combining Eqs. (47) and (49) one finds that Eq.
(52) is identical to the equation which determines the
energy q(b)(E) ultimately lost to the electrons, if

p
F(b)oo = Xq~g (54)

The results of Sec. V indicated that we could
neglect all terms with I «1 in F~,~. This means that
the equations for F(b)(k (I ~ 1) are satisfied by a zero
solution F~I,~Ik =0. We obtain therefore

F('b) (E) = xr)(b)(E) (55)

Equation (55) means that the velocity distribution of
the recoiling electrons is isotropic. This distribution
is the result of many generations of recoiling elec-
trons for E P) Ep.

B. Connection between F~b~(E} and D~~~(E)

Let us now continue to generalize the fa'ctorization
Eq. (55) from the zeroth-order moments to the prop-
er distribution. One notices from Eqs. (54) and (55)

Using the result from Sec. V [Eqs. (39) and (40)],
we obtain an equation for F~y)pp.

lO

N d(r, [F(b)pp(E) —F(b)pp(E —T) —F(,)pp(T)]

that only coefficients F(gIk with I. =0 will, according
to Eq. (14), be different from zero. Hence the sub-
script k becomes redundant and will, therefore, be
neglected at this point.

If the ansatz

F(b)((E) = XD(b)((E) (56)

is inserted for all n and I in Eq. (14), the coefficients
D(»((E) will be governed by the same system of
equations. These equations are identical to those
equations that may be derived directly for the spatial
moments of. the distribution O~b~ of energy that is ul-

timately delivered to the target electrons. The system
of equations is, of course, analogous to the system
Eq. (42). The basic equation for this energy distribu-
tion is explicitly given in Ref. 42, and the arguments
leading to this equation are the same as those for the
previously mentioned cases."' The rest is com-
pletely analogous to the discussion of the distribution
initiated by a primary electron in Sec. VI. We con-
clude, therefore, that

F(b)(x, Ep. ep, E, e) =xD(»(x, E, e)

for E &) Ep

(57)

C. Influence of the recoiling electrons
on the energy distribution

The use of th'e tabulations of Brice' and Winter-
bon' is feasible only if their omission of- the contri-
bution from the recoiling electrons influences the en-
ergy distribution weakly. First, the significance of
the recoiling electrons for the energy distribution D~b~

is discussed qualitatively; following this, an example
is presented.

Obviously, the recoiling electrons of low energy are
able to migrate over only small depths compared with
the range of the primary beam atom because of
scattering on both electrons and nuclei. These elec-
trons will, therefore, not change the energy deposi-
tion profile.

In an elastic (classical) beam atom-electron colli-
sion the most energetic recoil electron after the colli-
sion will reach approximately t~ice the velocity of the
incident atom. As the stopping power for an electron
is comparable in magnitude with that of an atom of
the same velocity, the range of the ion will exceed
the range along the path of the recoil electron with
orders of magnitude. Furthermore, the scattering
probability for an electron is much larger than the
corresponding scattering probability for an atom with
the same velocity, and that will diminish even more
the possible migration depth for the recoiling elec-
trons. The recoil spectrum is usually peaked at the
low energies, and the energy deposited directly into
low-energy electron excitations is thus larger than or
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comparable to the energy deposited by fast recoil
electrons.

These considerations, which do not include elec-
tron promotion, mean that the contribution from
these fast recoiling electrons only will appear as
corrections over a small length scale (of the order of
the electron range) compared with the total range of
the ion. On the other hand, the range of the most
energetic recoil electrons may become more than one
order of magnitude larger than the escape depth for
the secondary electrons. However, it thus seems rea-
sonable to neglect the recoil electrons in D~g so long
as we consider overall features of the profile and not
the detailed behavior of D~I,~ near the surface. This
is analogous to the similar considerations on the dis-
tribution of energy deposited in atomic motion. "

In the zeroth-order moment of energy distribution

it is, however, not possible to neglect the contribu-
tion from the recoiling electrons, If it were, the term
corresponding to NS, (E)X in Eq. (52) would be miss-

ing in the equation for D(b&0(E) In. this case the
factorization Eq. (55) would be invalid.

D. Estimate of the quantitative influence
of the recoil electrons

Let us now more quantitatively consider the contri-
butions from recoiling electrons. %e can infer from
Eq. (14) that if the recoiling electrons may be
neglected for n =1 in the equations for F~~~I, we
would expect the contributions from these electrons
to also play a minor role in higher moments (n ) I).
For (n, l) = (I, I) we obtain from Eq. (14) the equa-
tion that determines F('b&) (E):

3N da, [F(',)., (E) —COS(t)'F('b)( (E —T)]+3N d(r, [F('b)) (E) —COS(t)'F(b)) (E T) O & «)) (

=Xr)(b)(E)+3N JI d(r, cos(t)"FI,)) (T) . (58)

The contribution of the recoiling electrons are
represented by the integral on the right-hand side.

Let us consider the simple case (Ref. 45) of an
energy-independent ratio between the electronic stop-
ping power and the nuclear stopping power for an
electron. The solution to Eq. (14) for F,', &, (E) is

then

F(.)) (E) =x~(.)(
E2m

NC
(59)

[where the threshold condition (27) has been neglect-
ed]. C and m originate from the power cross section
(Table I) of an electron-electron collision. A (',), is a

constant, which is evaluated by the procedure
described in Ref. 37. An upper limit for A(, )[ corre-
sponding to a medium without nuclei is found in this
reference. For practical reasons the quantity
A (,)) /( I —m) is evaluated. This quantity varies from
around 0.2 to 0.1 for m varying in the interval [ 2, I].
As the exponent m in Eq. (59) must account for the
range of the electron, this interval is realistic for elec-
tron energies above 100 eV.

The integral for the recoil contribution is now
evaluated by means of the power cross section for a
collision between a beam atom and a target electron
with a constant Cq and an exponent mb.

3N J do., cos4&"FI,)( (T ) =3XNA( ))
T~,„NC

(1 mb) NS, (E)—
=3X ' —, rE

(1 m) ( —+2m —mb)NS, (yF)

In Eq. (60) the electronic stopping power NS, (E) for
an incident beam atom and the electronic stopping
power NS, (yE) of the most energetic recoil electron
have been inserted. As was noted in Sec. VIII C
these stopping powers are comparable in magnitude.
The fraction (I —mb)/( —, +2m —mb) will, for feasi-

ble values of mb corresponding to the interval [—„,I],
vary from —, to 0 and the upper limit for

1

3 (', &) /(I —m ) will vary as described above. We,
therefore, conclude that the integral will be at least

two orders of magnitude less than the product r3XE,
which is already very small relative to XE because of
the low value of r.

The competing term q on the right-hand side of
Eq. (58) will behave as

xq(b&(E) =xE . (61)

This is asymptotic for large E since Lindhard et al. "
showed that the asymptotic limit for g(b&(E) is E By.
interpolating Winterbon's tabulations' we find for
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b ~100: rt(b&(E) & 0.8E (ranging in mass ratio

Mt/M( from —„ to 25 for even the lowest realistic

electronic stopping powers). In view of this we can
conclude that the contribution from the recoiling
electrons on the first spatial moment is negligible
compared with the term (61) for energies at which
the assumption of a correlation between energy
transfer and scattering angle is valid.

surface barrier. Even in the case of a single crystal of
tungsten, for which the free electron model usually is
insufficient, the band structure mostly results in a

fine structure that is small compared to the back-
ground. ' The particular density of states characteriz-
ing the medium enters the stopping power NS„(EO)
implicitly.

IX. ENERGY AND ANGULAR DISTRIBUTION
OF SECONDARY ELECTRONS
A. Derivation of the distribution

For an incident electron with energy E the total
amount of energy deposited in ionization is

(62)

(63)

J D(,((x,E, e)dx=E

and for an incident beam atom (or a target atom)
with energy E,

moo

D(»(x, E, e)dx =ri(b&(E)
oo

B. Inclusion of a surface barrier

So far the evaluation has been performed for an in-

finite medium. A real target, on the other hand,
possesses a surface energy barrier and no stationary
target nuclei or electrons will, of course, be present
in the negative half space. The significance of even-
tual multiple crossing in an infinite medium will be
discussed later in this section.

The standard model for the surface barrier is the
work function model, '"where energy E~ and the
direction e( = (cos8(, sinH( cosn(, sin8( sina() of the
electron after passage through the surface barrier
(Fig. 4) is connected to Eo and eo via'b

D (x,E, e ) dx is the energy deposited in the depth in-

terval [x,x +dx] for all types of primary particles.
The number of emitted electrons J with velocities in
the interval [ vpt vp+ d vo] in the backward direction
through the plane at x =0, initiated by a particle with

velocity v at x =0, is found according to the treat-
ment in Sec, II:

Ei cos H&
= Ep cos Hp Up

Et sin H~ = Epsin Hp
2 ' 2

At = 0!p

Substitution of

(66a)

(66b)

(66c)

J(vo, v)dvo= Iuo„IF(x, vo, v)dvo (64)
Et

Icos80id QodEO =
Up+ E

(67)

Utilizing the result from Secs. V and VIII we may
obtain the number J of electrons arriving at the plane
x =0 in a backward direction from the value of the
energy distributions, corresponding to Eqs. (62) or
(63) at x =0:

J(Ep, eo, E, e)dEodeo

in Eq. (65) yields the number of emitted electrons

SURFACE BARRIER

Surface

D(O, E, e)icoseoi dEp dep

NS„(E(() Eo 4rr

Vacuum Medium

Equation (65) states that the number of secondary
electrons arriving at x =0 with energy Ep in the
direction ep is proportional to the surface value of the

energy distribution. The angular distribution is a

cosine function because an isotropic approximation
has been used for the zeroth-order moments. In
fact, expression (65) is completely analogous to the
corresponding sputtering formula.

Until now the energy Ep has been assumed high
relative to the Fermi energy or the lowest level of the
conduction band. An extrapolation of the expression
(65) down to energies around the vacuum level
seems now tempting. The band structure of the ma-

terial may often be neglected since one deals with

cascade electrons of energy larger than an eventual

Energy E~

Energy E,

FIG. 4. Electron passing the surface barrier. For a planar

barrier, described by Eq. (66), the energy component paral-

lel to the surface remains unchanged.
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through the surface, now expressed by the solid angle
elements Ao and O~ and the variables E~ and e ~, as

J(Et, et, E, e)dEtdOt

D (O, E, e ) Et dEt lcoset I
d II t

NS, ,,(Et+ Uo)(Et+ Uo)'4~

TABLE II. I ~ =In/[@(1) —III(1 —rn)], Eq. (38), as a

function of «I. Interpolations can be performed below»~ =0.6
with an accuracy of 0.01.

The total energy distribution is now obtained by
means of an integration over d 0 ~

I D(O, E, e)EtdEtJ Et, E, e dEt =
4NS, ,(E] + Uo) (Et + Up)

This important result will now be discussed. %'e

note immediately that Eqs. (68) and (69) account
reasonably well for the behavior of known electron
spectra. The spectrum will decrease to 0 as E~ de-
creases to 0, and possesses a maximum, the position
of which depends on the stopping power NS„(Et
+ Uo). For electron energies E~ larger than the ener-

gy of the stopping power maximum the spectrum will

decrease toward 0. The properties of the incident
particle enter only into the surface value D(O, E, e)
of the energy distribution. For each type of primary
particle one merely inserts the proper distribution for
that particle.

The two spectra Eqs. (68) and (69) depend on the
detailed behavior of the electronic stopping power
NS, ,(E~ + Ua) for electrons in the energy region
around Eo= Up+ Et. The stopping power may again
be utilized in the form (Table I) (here we set l11 = p1):

—3.0
—2.8
—2.6
—2.4
—2.2
—2.0
—1,8
—1.6
—1.4
—1.2

1.6364
1.5775
1.5179
1.4574
1.3959
1.3333
1.2696
1.2046
1.1381
1.0700

—10
—0.8
—0.6
—0.4
—0.2

0.0
0.2
0.4
0.6
0.7
0.8
0.9
1.0

1.0000
0.9279
0,8532
0.7755
0.6940
0.6079.
0,5157
0.4152
0.3024
0,2393
0.1698
0.0914
0.0000

merically, and (AE) ~p is given in units of Uo in Fig.
5 as a function of m in the exponent.

In order to verify the evaluated spectra and the
characteristic quantities such as the position of the
maximum and (hE) t~2 one requires the electron
stopping power NS, ,(Et + Uo) and m in the exponent
of the corresponding approximation (70). For these
energies ( & 20 eV), which characterize most of the
emitted secondary electrons, only few calculations ex-
ist. The low-energy stopping power of metals has been

(E + U )1-2m
NS, ,(Et+ Uo) =NC

(I —m)

I t 1 I I 1 I
)

1 r t I I I 1 I ~

f
I & & I t & I I

1
13

(a E I ) yp

so that m and thereby the slowly varying function I
of m can be determined. In Table II, I is calculated
for values of m in the interval [—3, I].

For metal targets the surface barrier is determined
by the work function P and the Fermi energy EF

0

U
O
0) 2

Up=EF+@ . (71)

Both quantities may be found in standard tables. "'
For insulating materials the surface barrier corre-
sponds to the electron affinity. The position of the
maximum in the energy distribution Eq. (69) may be
found. Assuming that the stopping power Eq. (70) is
valid with the same exponent on both sides of the
maximum, we find that the spectrum possesses its
maximum at

I t I I I I I I I I I t t I I I I I I I I t I I I I I I I

Et = Uo/(2 2m)- (72)

The full width at half maximum (AE) t~2 of the en-
ergy distribution may be found from the same as-
sumption. The corresponding equation is solved nu-

FIG. 5, Full width at half maximum (AF. )t~2 of the
secondary electron spectra plotted as a function of nI in the
electronic stopping power Eq. (70). (4E) t~2 is in units of
the magnitude Uo of the surface barrier.
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FIG. 6. Low-energy stopping power NS«(Fp) for elec-
trons of energy Ep ( relative to the bottom of the conduc-
tion band) in aluminum from Ref. 80. The power approxi-
mations in Table IV are shown as well. FF =Fermi energy.

calculated by Tung et ai. ' on the basis of a free
electron model. Peterson et al. ' have calculated the
low-energy stopping power for electrons in some
gases, but their evaluation is, of course, extended
down only to the threshold for electronic ionization.
One may then evaluate the distribution in relative
units, while an absolute determination requires
knowledge of the surface value D(O, E, e) of the en-

ergy distribution. Some absolute comparisons will be
given below.

The low-energy stopping power NS, ,(EO) of alumi-
num as a function of the energy Ep measured from
the bottom of the conduction band is shown in Fig.
6. One notes that the stopping power for the lowest
10 eV above Up may be well approximated by a

power function proportional to Fp corresponding to
m = —2.5. Also the experimentally extracted values
of m, indicated below, yield examples of values of rn

below —1.
In the following a certain procedure will also be

used for comparison with experimental data. The
low-energy stopping power can be extracted from ex-
perimental spectra if Eqs. (68) and (69) are assumed
valid for low E~ up to a point around 10 eV above
the vacuum level. Since the surface value D(O, E, e)
must remain unchanged, it is possible to determine
the relative magnitude of NS, ,(E~+ Uo) as well asI in Eq. (70).

Finally it must be stated that the energy and angu-
lar distributions Eqs. (65) and (68) and the total en-
ergy distribution Eq. (69) all originate from an
asymptotic expansion in E/Eo, and that they, there-

fore, cannot be expected to be accurate for ratios of
E/Eo which are too low.

C. Comparison with relative experimental data

Usually the secondary electron spectra, which may
be found in the literature, are measured in relative
units. With these we can test the agreement in

shape; an absolute verification, however, is not possi-
ble.

For many years it has been accepted" that the po-
sition of the maximum of the secondary electron
spectrum depends primarily on the surface barrier of
the solid. Measurements of Wehner, in particular,
show that the maximum varies only a few tenths of
one eV around the maximum at 2 eV over a factor of
nearly 10 in the primary energy for noble gas ions
bombarding molybdenum. Experiments on electron-
induced spectra above 0.5 keV indicate ' ' that the
shape, the most probable energy, and the half width
of the spectrp are nearly independent of the primary
energy in the energy range considered. Also,
Musket" observed almost no difference below 50 eV
between the energy spectra from incidence of 3-keV
electrons on niobium and from incidence of 400-keV
protons. These examples are in complete agreement
with the predictions of Eqs. (68) and (69) which,
apart from the surface value D(O, E, e), are indepen-
dent of the primary energy F. and of the kind of pri-

mary particle.
Moreover, it was pointed out by Schaefer and

Holz on the basis of experimental data that an in-

crease of either the work function or the Fermi ener-

gy leads to an increase in the most probable energy
a»d an increase of the half width. This connection is

obviously demonstrated by Eq. (72) and Fig. 5, which

states that the position of both the maximum and the
half width are proportional to Up. One notes that the
total magnitude Up of the barrier rather than the Fer-
mi energy or the work function is substantial in this
respect.

The low-energy stopping power may, furthermore,
be determined in relative units by Eq. (69) from ex-
perimental spectra, and following this, in is found.
This has been done in Table III for five combinations
of primary particle and target at widely different pri-
mary energies. " ' ' ' In all cases the surface bar-
rier has been determined from other data. """One
notes the agreement for the position of the max-
imum [Eq. (72)] and for the full width at half max-
imum (half width) based on the extracted m (Fig. 5)
and the corresponding experimental quantities in

nearly a11 cases. -

The energy distribution Eq. (69) of the secondary
electrons induced by primary keV electrons on alumi-

num has been calculated by means of the power ap-

proximation (Table IV) to the low-energy stopping



2158 J. SCHOU 22

TABLE III. Comparison between the experimentally determined position of the maximum and

the half width, and the corresponding calculated quantities from recent data for polycrystalline met-

als.

Authors
and

particle
combination

Extracted Position Half width

of max. (eV) (4E)~~2 (eV)
Expt. Calc. Expt. Calc.

Primary

energy
(keV)

Up=
Ep-+ $
(eV)

. Koshikawa
and Shimizu (Ref. 85)
e Cu

—1.8 1.3 2.3 5.4 5.7 1.0 11.65 =
7.0 + 4,65

Louchet
et al. (Ref. 87)
Ar+ Cu

—1.35 2 —3 2.5 7 7.3 60 11.65

Musket (Ref. 31)
H+ Nb

—0.6 3 2.6 8 8.9 400 4.0 + 4.3
= 8.3

Wehner (Ref. 82)
He+ Mo

1.9 2.0 5.4 6.2 15 4.0 + 4.6
=8.6

Everhart
et al. (Rer. 83)
e Al

—2.7 1.5 2.1 8.9 5.8 15.6 =
11.6 + 4.0

power. One notes the agreement between the
theoretical distribution and the experimental data of
Everhart et al. and Bindi et al. in Fig. 7. Also a
spectrum recorded on a (421) surface of a single crys-
tal has been included.

Combecher et al. measured the energy and angular
distribution from a carbon foil of thickness around
3.7 pg/cm2 for perpendicular incidence of 1-keV elec-
trons. In Ref. 41 two existing calculations of the
low-energy stopping power NS, ,(Eo) were used.

D. Comparison with absolute experimental data

A fair agreement has been obtained between the
experimental data of Combecher et al. and the
theoretical energy and angular distribution Eq. (68).4t

TABLE IV, Power approximations [NC/(1 —m) ]Ep
Eq. (70), to the electronic stopping power NS«(Ep) in

aluminum on the basis of the calculations of Tung et al.
(Rer. 80).

NC

N
~ ~
C

~ 0.5

I I I I [ I I I I

e-Al

~ IL'I:.
L

I ———Theory—~ ~—EXpt B

et al. (

Expt Roptin (0.8keV)—~ —Expt Everhort et dl. (l keV)
Energy interval

Ep.'[15.6, 25.6
E: [0.0, 10.0]
Ep.'[25.6, 46.3]
E[. [10.0, 30.7]
Ep.'[46.3, 65.6]
E). [30.7, 50.0]

[(eV)2N A ~ ]

2.75x10 9

8.56 x 10-'

4.26

—2.5

—1.59

0.50

I I I 1 I I I I I I I

5 1

ENERGY E& (ev)

FIG. 7. Energy spectrum (dg/dEt} of the secondary elec-
trons for perpendicular incidence of 0.8-, 1-, and 2-keV
electrons on aluminum. Experimental results. ' ( — — ),
Ref. 83; ( ), Ref. 84; ( " ), Ref. 89; (———),
theoretical curve for J(E~,E, e„), Eq. (69). A surface bar-

rier model Eq. (66) with Up=15.6 eV has been used.
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FIG. 8. Energy and angular spectrum (d 5/d O~dE~) for
normal incidence of 1-ke& electrons on a carbon foil at the
deflection angles 0~ =.110' and 130'. ( ), smoothed ex-
perimental results (foil 2), Ref. 90; (——), theoretical
curves, Eq. (68), with a surface barrier model Eq. (66) with

E+ =17.3 eV and p = 5.0 eV, with p = 4, Eq. (79), and with
3

low-energy stopping power NS«(Fp) from Ref. 81.

10

1 MeY H'-C
e =125'

1

I I I I I I I I X I I I I

50 100 200 500
ELECTRON ENERGY E„(eV)

FIG. 9. Energy and angular spectrum (d 5/d O~dE~) for
normal incidence of 1-MeV protons on a carbon foil at a de-
flection angle 0& =125'. ( ), experimental results, Ref.

1

92. (———), theoretical curve, Eq. (68), with p= —,Eq.

(79), and with surface barrier and low-energy stopping
power as in Fig. 8.

However, since the stopping power' based on the
free-electron model ' corresponding to a Fermi ener-

gy of 17.3 eV yielded a theoretical curve of more
than a factor of 2 below the experimental results, use
here will be made of the stopping power of Peterson
and Green ' only. Their stopping power of nitrogen
has been applied directly, because a comparison with

the corresponding low-energy stopping power of oxy-
gen indicates that it is rather insensitive to small
changes in Z2 at these energies. In Fig. 8 the calcula-
tion based on the theoretical expression, Eq. (68),
has been compared to the experimental results at de-
flection angles 8~ =110' and 130'. One notes that
the absolute agreement is satisfactory, and that the
theoretical curves show a similar trend with respect to
dependence on H~ and E~ as do the experimental
data. According to the discussion in Sec. XC the
surface value of the deposited energy in Eq. (68) is

estimated to the stopping power for the primary
NS, (E) multiplied with a factor P = 4. P accounts

for the amount of the dissipated energy that is avail-
able for secondary electron emission at the surface.

Recently Toburen ' performed absolute measure-
ments on carbon foil of thickness 20 pg/cm' for per-
pendicular incidence of 1-McV protons at several de-
flection angles. The theoretical energy distribution at

8~ =125' lies, unfortunately, at least a factor of 5

below the experimental curve (Fig. 9), but the
dependence on E~ is relatively well predicted by

theory (apart from the Auger peak around F~ ——270
eV, which is disregarded). Here the low-energy stop-

ping power of nitrogen ' and a surface value equal to

NS, (E) (cf. Sec. X C) was used, while the proton

stopping power was taken from Ref. 93.
The comparative analyses have been performed for

electron energies larger than 30—40 eV, since ener-
gies in this range are less sensitive to surface contam-
ination which otherwise may change the spectrum
considerably. On the other hand, the energy and an-

gular distribution Eq. (68) is, as mentioned above,
most accurate for large ratios of F/Eo In both cases.
the thickness of the foil is comparable to the range of
the primaries or of the most energetic recoil elec-
trons, so that the cascade can develop almost as in a

semi-infinite solid. Finally, the atomic density N
does not influence the spectrum Eq. (68), as the den-

sity in the denominator cancels the density in the
surface value of the deposited energy. In view of the
relatively uncertain low-energy stopping po~er the
absolute agreement with the data of Combecher et at.
is acceptable, whereas the agreement with the proton
data is less satisfactory. '
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E. Corrections due to binding energy
at ionization

In this treatment we have until now neglected the
electron's binding energy at its liberation. This may
be used as an approximation for metals, where we
often expect the excitation of conduction electrons to
be important. For bound electrons in insulators the
energy loss at the ionization may be considerably
larger than the surface barrier energy Uo. Thus by
including binding energy V at the ionization the ener-

gy spectrum should be modified. For convenience
we consider the binding energy as being independent
of the emitted angle. In Eq. (14) we set

E'=E —T, E"=T —V (73)

The spectrum may now be evaluated by a pro-
cedure developed by Sigmund and described by An-
dersen and Sigmund, and one obtains for the ener-

gy and angular distribution Eq. (65)

J(Ep, ep, E, e)dEpd Qp

I' D (0,E, e )dEp d &p

NS e(Ep) [Ep+ (2 rlf ) V] 4w

F. Energy spectra for transmitted beams

Let us suppose the target has a finite thickness d.
In the infinite medium we may then consider the
secondary current at the entrance plane x =0 and the
forward secondary current through the plane x = d.
Similar to transmission sputtering we find the
number of electrons per incident particle passing the
plane x =d in forward direction:

J(Ep, ep, E, e)dEpdOp

I „D(d,E, e) dEp d Qp

NS, ,(Ep) Ep 4m

One notices that the energy distributions Eqs. (65)
and (75), apart from the absolute magnitude are
identical.

(75)

Independent of the precise value of the exponent m„

one notices that the correction relative to Eq. (65) in

Eq. (74) becomes more important with decreasing
energy Eo. The inclusion of a surface barrier with
the conditions (66) and the binding energy in the dis- '

tributions Eqs. (68) and (69) means that one of the
factors (Ep+ Up) in the denominator is replaced by
[E)+Up+(2 —m) V].

Equation (74) leads to an important result with re-
gard to the origin of secondary electrons. The contri-
bution from the different shells of the target atoms to
both the spectrum and total yield decreases with ris-
ing binding energy. Thus in metals the liberated
electrons originate mostly from the conduction band.

In the forward direction around 0~ = 50', Toburen
recorded the electron energy spectra at the same con-
ditions as for backward emission. The spectrum in
the forward direction from E~ = 50 eV up to 250 eV
is actually a factor of 2.3 larger than the spectrum in
the backward direction around 8~ =125', but has al-
most the same shape in this energy interval. This
means that the ratio of the surface values D(d, E,
e„)/D( 0, Ee ) is approximately 2.1 (e„ is the unit
vector along the x axis). Since there is no significant
multiple scattering for 1-MeV protons through a 20
p,g/cm' carbon foil, and since the stopping power for
the proton is almost unchanged through the foil, the
increase of the surface value in the forward direction
must be caused by fast recoil electrons. This will be
further discussed in Secs. X and XI.

G. Corrections for multiple crossings of the surface

Until now the evaluation of the distributions Eqs.
(65), (68), and (69) has been performed in an infin-
ite medium with the eventual inclusion of a surface
barrier. Corrections caused by the possible scattering
forth and back through the surface of the solid in the
theoretical evaluation will not be applied quantitatively.

Multiple crossings in the infinite medium may oc-
cur for the secondary electrons, the primary particles,
or the target atoms which are possibly set in motion.
These corrections become important with increasing
angles with respect to the surface normal at the cross-
ings. A correction for (low-energy) secondary parti-
cles has been derived in Ref. 73 including a correc-
tion for multiple crossings by primary particles within
the isotropic approximation.

In the present work these corrections will be disre-
garded. For the most part we shall consider perpen-
dicular incidence, where the correction for multiple
crossings of the primaries is minor. Furthermore,
the contribution from recoiling target atoms is impor-
tant only for heavy-particle incidence at some particu-
lar energy regions (cf. Sec. XII). The angular distri-
bution of these particles is peaked in a rather forward
direction. Finally, one notes that the energy distribu-
tion Eq. (69) i's peaked at a few eV above the vacu-
um level E~ =0. Hence, the majority of the emitted
(secondary) electrons will be slowed down by elec-
tronic stopping to a level below the surface barrier
after two surface crossings.

X. YIELD OF SECONDARY ELECTRONS

A. Yield formula

The total yield may be evaluated by means of the
results of the previous section. We consider both the
case of incident electrons and atomic ions. Let us in-
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troduce a material parameter

I i cos8oi)dE d 0A=
ro~u)coseo& NS„(Eo)E04rr

(76)

5=D(O, E, e)A (77)

The properties of the primary particle enter only
through the surface value D(O, E, e) of the deposited
energy. Equation (77) holds only for energies E high
enough so that the angular distribution of the ejected
secondaries is a cosine distribution.

For electron incidence the concept true secondary
electrons is used for the emitted electrons up to 50
eV. The precise position of the upper limit is quite
arbitrary, and in the following we shall use some en-
ergy E„as the upper limit. If the stopping power Eq.
(70) remains valid with the same value of the ex-
ponent in the interval [O, E„] and if the surface bar-
rier Eq. (66) is applied, we obtain for the material
parameter,

ImA=—
8(1 —m ) (I —2m) NS, ,( U )

r

2 ( I —m ) ( I —2rrr ) (78)
(E /U +I)1—2m (E /U +1)2—2m

Here a planar surface barrier U(cos80), depending on
the directional cosine of the emerging electron, was
assumed. The total yield 5 is now determined by the
basic relation,

B. Connection between the electronic stopping
power and the surface value of D

It appears desirable to find the connection between
the electronic stopping power NS, (E) for the primary
particle and the surface value of the deposited ener-
gy. By a dimensional arguement we can express

D(O, E, e) =PNS, (E) (79)

2.0—

l

o(b)(o E.&x j

NS, (E)

based on Brice's tabulations

with the dimensionless function P(E, e). This defi-
nition becomes particularly useful. when recoiling tar-
get atoms do not play an essential role in the genera-
tion of secondary-electrons. The opposite situation is
studied in Sec. XII and in Ref. 42. Thus P is utilized
mainly for light primary particles, electrons or pro-
tons, or for heavier particles in the energy region
where nuclear stopping is of minor importance com-
pared with electronic stopping. Generally P needs to
be evaluated by means of transport theory, and this
is done in Sec. X C below.

It turns out in the following that P is a very slowly

varying function of the primary energy, but strongly
dependent on the type of particle and the angle of in-
cidence. The analog to P in sputtering theory is the
factor a, ' which will be denoted here by o.o. For
light beam particles on heavy targets backscattered
primaries may also deposit energy in the surface on

for E ))E„

For E„/Uo )) I and m =0 the total yield 8 will be
given in a form analogous to the sputtering yield for-
mula. '2 Naturally, in Eq. (78) we deal with the sur-

face value of the distribution of energy delivered to
the electrons, D(O, E. e), rather than the distribution
of energy deposited in atomic motion, which enters
in sputtering. Moreover, for sputtering the relevant
energy loss property in the denominator is the nu-
clear stopping power NS„( Uo) of the emerging target
atoms, and Up is the sublimation energy rather than
the magnitude of the surface barrier. One notes that
the yield is determined by three quantities, the ener-

gy deposited in the surface, the surface barrier energy

Uo, and the electronic stopping power NS, ,( Uo) of
the electrons at the energy Up. The value of m is
governed by the exponent in the electronic stopping
power in the energy region above Ep= Up.

m. 1.5—

He~Au

Ni
Au Be

'1.0—He~Be

Au~Au

~AU

2 0 50 100 200
ENERGY PER MASS UNIT (ke%mu)

FIG. 10. Factor P = D~&~(O, E, e„) /NS, (E), Eq. (79), for

six different beam-target combinations. P is plotted as a

function of the energy per mass unit, and calculated on the
basis of Brice's tabulations (Ref. 38). ( ), P for the re-
duced energy e, Eq. (22), e ~10; (———), P for e ~10.
The electronic stopping po~er &S,(E) for a beam ion is tak-

en from the same reference. The correction for energy
transport by recoil electrons is not included. The limit P =1
is also shown.
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their way out, thereby giving rise to larger values of
P. For primary electrons it has already been pointed
out in Sec. VIA that P„„,indeed is almost insensitive
to variations of the primary energy F..

For incident ions the factor P can be evaluated
from Brice's tabulations. ls P has been depicted as a

function of the energy per mass unit for six represen-
tative beam ion-target combinations in Fig. 10. For
values of the reduced energy e [Eq. (22)] larger than
10 the factor P changes obviously less than 10% in

the depicted energy region from 20 keV/amu and
beyond.

With the notation Eq. (79) the yield may be ex-
pressed as

8 =PNS, (E)A (80)

Apart from the slow variation of P with the energy, 8

is proportional to the electronic stopping power.
This approximate proportionality (without inclusion
of the factor P) has experimentally been recognized

by numerous authors already. """ '

C. Surface corrections to P

In the discussion of P, the influence of recoiling
electrons has been mostly neglected. The energetic
recoiling electrons may transport energy over dis-
tances comparable to their range. However, this en-
ergy transport does not affect the profile of the depo-
sited energy in the interior of the medium. The en-
ergy that is carried away initially from a certain depth
by fast recoiling electrons is obviously replaced by the
energy delivered by recoiling electrons originating
from other depths according to the discussion in Secs.
VIII C and VIII D. Corrections will therefore be
necessary only at the surface, i.e., the plane where
the primary particles start to dissipate energy or
where the outgoing particles finish their energy dissi-
pation.

It is clear from the general shape of the distribu-
tion D&,) (Fig. 3) that on the average a recoiling elec-
tron deposits more energy in its forward (initial)
direction, from the point where it was liberated, than
in its backward direction. A schematic example of a

distribution D~b~, which has been corrected for ener-
gy transport by recoiling electrons, is shown in Fig.
11. The primary ion penetrates a medium of thick-
ness d essentially undeflected and with only a small
relative energy loss. On the other hand d is much
larger than the range of the most energetic recoiling
electrons. One notes that the deposited energy at
x =0 is considerably less than the stopping power,
since most of the energetic recoiling electrons have a
direction into the medium. This results in an energy
transport towards larger depths. At the exit x =d the
value of the deposited energy almost reaches the
value of the stopping power, because only the minor
contribution from recoiling electrons from depths
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FKJ. 11. Energy distribution D~b~(x, E, e„) for a foil of
thickness d. The energy transport by recoiling electrons is

included. The primary ion is assumed to penetrate the foil
perpendicular to the surface without scattering or energy
loss, whereas d is assumed large relative to the range of the
most energetic recoiling electrons.

larger than d vanishes. These corrections occur for
all primary particles; the smearing out of the profile
around x =0 at electron bombardment has been
demonstrated experimentally by Grun and Cohn
and Caledonia. '

P can be directly determined by a procedure
described in Ref. 33. For perpendicular incidence
( e = e„) of a beam ion, one finds, as indicated in
Ref. 45 by means of a power cross section with an
exponent m for a beam atom-electron collision, that

1 2m —5
po

———+ (1 —m)
2 2(3 —2m) (2 —m)

Pk (yE) ~(5 —2m —2p)
(3 —2m —2p) (2 —m —p)

where

k~E ~= — dxD(, ) (—x, E. e„)
I+ OO

(81)

(82)

is a power approximation to the fraction of energy
that is reflected (in an infinite medium) at perpendic-
ular electron incidence. y = 4m, /M). For Rutherford
scattering Pq= —, , which is entirely analogous to the

corresponding value in sputtering. " One notes that

Po is, indeed, a slowly varying function of the energy,
because m, as discussed in Sec. IV, varies slowly with

the energy. The inclusion of energy transport does
not change the fact, then, that for primary ions with
e ~ 10 as shown above, P is rather insensitive to
variations in the primary energy.

The fraction of reflected energy can be found from
extrapolations from Spencer, Grun, or Cohn and
Caledonia. ' It is also possible to use experimental
values'00 (from semi-infinite media), because Po is
only moderately sensitive to changes in kPE P, e.g. ,
due to differences between the value for a semi-
infinite and an infinite medium. Then the power ap-
proximation to the fraction of reflected energy may
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0.6q(E) for E =0.2 keV, (83a)

kpE ~=
(0.31+0.0025Z2) q(E) for E =1 keV

(83b)

be determined from the expression of Bronshtein and
Stozharov' at two values of the primary electron en-
ergy E:

The agreement between the two values of P is satis-
factory. It is, therefore, possible to utilize P =Pa, so
long as the real cross sections from the primary colli-
sion processes do not deviate too much from the corre-
sponding power cross sections.

D. Evaluation of the secondary electron
yield from aluminum

The number rt(E) of reflected electrons with energy
larger than 50 eV per incident electron can be taken
from recent measurements. Also Spencer's tabula-
tion may yield a value of k~E, since k~E gen-
erally varies slowly with the energy.

The factor P obviously depends on the angle of in-

cidence 0. The corresponding factor o.D has been
evaluated as a function of the angle of incidence in

sputtering theory, ~' and it shows a variation some-
what stronger than a I/cos8 so long as the exponent
m in the cross section is below 1.

The corresponding surface value for an emergent
particle, e.g. , at transmission or reflection, is found
by multiplying the stopping power NS, (E) with
(1 —Po) where Po is determined from the case where
the same kind of particle enters the layer in the oppo-
site direction. Generally P, Eq. (80), should be
evaluated on the basis of the complete energy and
angular distribution of the reflected primaries and of
the recoiling target particles.

For electron incidence the corrected surface value
can be found by a crude estimate. Let us assume
that all reflected electrons pass out through the sur-
face layer perpendicular to the surface and still pos-
sess the primary energy E. If the uncorrected value

P„„,is available, e.g. , from Spencer's tabulations, 6

we obtain by means of the directly obtained Po Eq.
(81) for the total P:

(84)

here Pa is taken to be approximately —,, since the pri-

mary electron energies are in the keV region. By
means of Eq. (84) one finds from an average over
the existing data for P„„,60 6'6' that P = —„ for the

data of Combecher et a/. , Fig. 8.
The accuracy of the approximations leading to Eq.

. (81) may be tested to the extent that double differen-
tial cross sections for electron ejection at primary col-
lision processes exist. From data for 1 MeV proton
incidence on several gaseous hydrocarbons' ' one
finds by numerical integration that P =0.245 for 1-
MeV protons on carbon. The formula (81) yields a

corresponding value P =P0=0.21 from m =0.85 as
determined from the stopping-power tabulations. '
In both cases an approximation (82) with k~ =0.075
(E in keV) and p =0.324, obtained by extrapolation
with respect to Z2 of data for air, " has been used.

The material parameter A Eq. (78) may be evaluat-
ed by means of the calculated stopping power
NS„(EO) of aluminum. 8 By means of three power
approximations, given in Table IV, the material

0
parameter is determined to A =0.29 A/eV for elec-
tron energies up to E„=50eV. Here the surface bar-
rier had the value U0=15.6 eV.

For electron-induced yields Spencer's tabulations
lead to P„„,=2, corresponding to a value P =1 in Eq.
(80) according to Eq. (84). Utilizing the stopping
power NS, (E) from Tung et al. '0 one obtains striking
absolute agreement ' with experimental data at pri-

mary energies from 1 to 4 keV.
For proton-induced yields at primary energies around

the maximum for the electronic stopping power (40
to 70 keV) one estimates with m =

2
and k~E r

=0.15 the corresponding value P =Po =0.27 from Eq.
(81). The energy fraction k~E ~ has been determined
from secondary electron emission data. ' ' By means
of Eq. (80) this leads to a secondary electron yield
5 =0.077 NS, ( E) (with NS in eV/A) around the
stopping-power maximum. This expression gives a
fair agreement ' with experimental data, "' when
the stopping-power tabulations are used.

The calculations of the low-energy stopping power
has recently been refined by Ashley et al. ,

"who
demonstrated that various improvements may lead to
a change in the magnitude up to a factor of 1.3. The
agreement with experimental data for the theoretical
inverse mean free path within the electron gas model
is, however, satisfactory down to the lowest experi-
mental energies around E~ =5 eV.

The stopping power utilized here does not include
a correction for exchange. Tung et al. ' have intro-
duced a semiempirical correction for exchange in

their stopping power, and this stopping power leads
to an increase of 30% in the material parameter by

using the modified power cross section in Ref. 45.
These exchange corrections are, however, rather un-
certain for energies Eo around Uo.

The contribution from plasmons is partly included.
The energy loss at plasmon generation enters into the
surface value of the deposited energy (by entering
the stopping power for the primary). On the other
hand the particular features pertaining to excited
plasmons are disregarded to the extent that the
number of liberated electrons generated by an excited
plasmon deviates from the corresponding number
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generated by an energetic electron. Of course,
changes in the model cross section (Table I) and in
the collision parameters (Sec. III) from an electron-
electron collision to an electron-plasmon (or
plasmon-electron) collision in the analytical pro-
cedure are neglected as well. However, according to
Lindhard's equipartition rule' the plasmon contribu-
tion to the stopping power is always less than the
contribution of single particle excitation. Conse-
quently the contribution from plasmon decay to the
total yield should also be less than the contribution
from excitation of free electrons. In view of this the
present treatment seems adequate. One should note
that it has occasionally been asserted that the
plasmon contribution is a dominant factor in secon-
dary electron emission. ' "

E. Comparisons with experimental data

As low-energy stopping powers NS, ,(EO) are
somewhat uncertain, a test of the theoretical predic-
tions can be performed as follows. 'from the
knowledge of the values of the secondary electron
yield, the electronic stopping power and eventually,
the factor P, an experimental material parameter
8,„„/D(O,E, e) can be extracted according to Eq.
(80). For different primary particles on the same tar-

get material, one expects comparable extracted ma-
terial parameters. 4~ For a direct test of the theoretical
predictions secondary electron emission data for dif-
ferent incident particles on the same target at similar
experimental conditions should be available. Also
the corresponding stopping power NS, (E) should be
known sufficiently accurately for those cases. Unfor-
tunately, such measurements are rare.

Let us compare the experimental data on copper
with the theoretical predictions. Unfortunately, elec-
tron bombardment and proton bombardment of
copper have not been studied under the same experi-
mental conditions. Koshikawa and Shimizua' mea-
sured the secondary electron emission coefficient for
electron incidence at primary energies up to 10 keV.
From Spencer's tabulations and Eq. (84) the esti-
mate is P =1.5. One then obtains an extracted ma-

0
terial parameter around 0.083 A/eV by means of
Bethe's stopping-power expression. For proton in-

cidence at 400 keV (m = 3) one finds with P =Pe
=0.31 from the data of Holmen et aI."a material
parameter of 0.28 A/eV. Near the stopping max-
imum (m = 2) one obtains with P =0.27 a material

parameter of 0.30 A/eV. For incidence of 100-keV
helium ions (m = 4), one finds a material parameter

of 0.23 /I, /eV. Here the stopping power expression
of Lindhard and Scharff' has been utilized. For
larger helium ion energies the material parameter de-
creases somewhat. The parameters for copper are
listed in Table V.

The agreement between the material parameters
from electron and proton incidence is not satisfacto-
ry, but the agreement between the parameters from
helium ion and proton bombardment is as expected.
It is noteworthy, however, that the data for electron
incidence of Koshikawa and Shimizu are approxi-
rnately 30% lower than the somewhat older data of
Bronshtein and Fraiman. '

F. Comparison with existing theories

Before comparing the present results with Stern-
glass's theory' and that of Parilis and Kishinevsky, '

TABLE V. Extracted experimental material parameters 5/D(O, E, e„), cf. Eq. 77, for several

.beam particles on a copper target. For ion incidence I E P =0.15 has been utilized (Ref, 103).
The yield from incident inert gas ions has not been corrected for potential emission.

Author
Beam

particle

Primary

energy
(keV)

Extracted experimental
material parameter:

s/D(O, E, e„)
(A/eV)

Koshikawa
and Shimizu (Ref. 85)

Bronshtein
and Fraiman (Ref. 109)

Holmen
et at. (Ref. 98)

H+
He+
Kr+
Xe+

10

400
100
204
219

0.083

0.15

0.31
0.23
0.13
0.09
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we shall summarize the existing semiempirical
theories. Generally" the yield is written in the
form'.

s=„n(x E)f(x)dx,~p (85)

where n (x,E)dx represents the average number of
secondaries produced per incident electron in a layer
of thickness dx and depth x. The probability for a
secondary to migrate and escape from the surface is
represented by f(x) Norma. lly, "4'7 it is assumed
that n(x, E) is proportional to the electronic stopping
power NS, (E). Furthermore, one can assume that
the electrons originate mainly from an escape zone of
depth A. near the surface. Thus one obtains the fol-
lowing approximate expression:

8 = —J1 NS, (E'(x))f(x)dx,
0

(86)

~here ~p is the average energy required to produce a
secondary electron, and E'(x) is the average energy
of the primaries as a function of depth. Through a
thin escape zone the stopping power may be regarded
as a constant of value NS, (E), and

1 ""
8 = NS, ( E) —

J f(x) dx
&0

(87)

5= —[1+f,(E)]NS,(E) k, L, —
6p

t

(88)

is obtained.
The escape integral is often written in a more corn-

plicated way but uncertain points remain such as the
value of the constant of proportionality ep and the
omission of any scattering of the primaries. In the
case of electron bombardment a clear distinction
between the reflected primaries and the (true) secon-
daries is not always emphasized in- serniempirical
treatments. Furthermore, n (x,E) is proportional
only to NS, (E'(x)) with the same constant of propor-
tionality, so long as the energetic recoil electrons that
transport energy away from the surface (as pointed
out in Sec. X C) are neglected. The semiempirical
treatment has often been utilized, since it demon-
strated the observed proportionality between yield
and stopping power.

The semiempirical yield Eq. (87) is, to some ex-
tent, similar to the yield formulas (77) and (80).
The material parameter in the latter formulas may be
calculated from the knowledge of the low-energy-
electron stopping po~er, while the semiempirical ma-
terial parameter, indicated by the parentheses, is
evaluated from data of ionization in gases, or from
the knowledge of properties in solid state physics. A

critical discussion of some theories for ion-induced
emission has recently been given in Ref. 110.

In the theory of Sternglass' the yield is written

8= No. "(E)Xw(r) (89)

in the present notation. Here' the effective ionization
cross section cr'(E) was evaluated from the excita-
tion cross section by Firsov. "' w(r) is probability of
extracting an electron as the result of an Auger pro-
cess, including the probability of passing the surface
barrier, and ~ is the energy of the band in which the
corresponding hole is located.

The energy dependence of the yield is explained by
the energy dependence of the effective cross section
a'(E), which for primary energies around 0.1 —0.2
keV/amu, is proportional to the energy, and for ener-
gies somewhat larger is proportional to the velocity.
w(r) was based on an expression from potential em-
ission and on Auger emission data from molybdenum
and tungsten. The agreement with data for these two
metals was good, but, unfortunately, the basic input
quantities, the escape depth A. , the band depth v, and
an ionization potential in cr (E), are not usually
directly available.

The theory by Parilis and Kishinevsky concerns low

primary energies, which are expected to be covered
only partly by the present treatment. On the other
hand their theory does not include contributions
from recoiling target atoms, and this is a substantial
deficiency in their theory, which was later rectified. '"

in the present notation. The factor
2
[1+f,(E)] cor-

responds to P in the Rutherford region (m =1) with
an additional correction f, (E) for the contribution of
reflected energetic recoil electrons to the surface
value of the deposited energy. The energy ~p re-
quired to liberate an electron was taken from known
values of the average energy for an ionization in a

gas. The constant k, was determined as the product
. of the transmission probability through the surface

and a constant characterized by the initial velocity
distribution of the liberated electrons. Finally, L,
was a characteristic diffusion length with respect to
inelastic collisions for these electrons. Sternglass
chose fixed values, &0 =25 eV and k, =0.5, for all

metals, whereas L, was determined on the basis of a
geometric area of the outermost filled shells.

The energy dependence and the absolute magni-
tude of the yield were in good agreement with the ex-
isting data. These data are, however, around a factor
of 2 larger than recent data in which surface condi-
tions were controlled. " Moreover, Sternglass did
not include in his theory any correction for scattered
primaries or recoiling target atoms.

On the basis of Auger recombination Parilis and
Kishinevsky' ' formulated a theory covering the en-
ergies in the lower part of the energy region, where
the electronic stopping power is proportional to the
velocity. Only metal targets are considered, and the
yield is written as
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XI. CORRECTIONS AT TRANSMISSION B. Separation of the distribution D(b)

Let us regard in more detail the surface correction
caused by the interruption of the energy dissipation
(cf. Sec. XC). The ratio between the surface values
for primary ions which penetrate a foil of thickness d
without scattering and energy loss (Fig. 11), is deter-
mined by

D(b)(d, E, e)
D(b)(O, E, e )

(90)

This simple relation does not hold under conditions
where the primaries are scattered considerably, e.g. ,
electrons passing a foil so thick that a cascade largely

may develop.
Equation (90) yields for 1-MeV protons on carbon

with the value P =0.245 from Sec. IX C a ratio of 3.1

compared with the ratio 2.1 deduced from the experi-
mental data in Sec. IXF.

XII. CONTRIBUTION TO THE YIELD
FROM RECOILING ATOMS

A. Influence of recoiling target atoms

In Sec. X the yield dependence on energy for light
ions was discussed, and it was pointed out that the
yield was nearly proportional to F. ' below the max-
imum for the electronic stopping power according to
Eq. (80). A different behavior has, however, been
observed experimentally for bombarding heavy
ions, ' and it was pointed out " that recoiling tar-

get atoms might contribute substantially to the secon-
dary electron yield at heavy ion incidence.

Obviously, the recoiling target atoms are important
if a considerable fraction of the primary energy is
delivered to the electrons by these target atoms. Of
course, the nuclear stopping power must be so large
that an appreciable number of fast recoils are set in

motion. For a fixed target and a fixed primary velo-
city the largest recoil velocities are obtained for small
mass ratios M2/M). Furthermore, the electronic
stopping power is proportional to the velocity by a
factor which increases with decreasing mass ratio.
Hence, the contribution from recoiling atoms is most
significant for small mass ratios M2/M&. It turns out
that the energy distribution D(b) can be divided con-
veniently into two separate distributions, of which the
first, D(p), represents the energy lost directly to the
target electrons by the primaries including recoil elec-
trons. The second, D(,), represents the energy depo-
sited by recoiling target atoms with eventual recoil
electrons. The feasibility of this separation is con-
vincingly demonstrated by recent measurements of
the yield dependence on the angle of incidence. "
The treatment given here extends the derivation by
Holmen et al.

The energy distribution D(b), described in Secs. VII
and VIII, may be expressed as

D(b&(x, E, e) =D(»(x, E, e) +D(,&(x,E, e) (91)

This relationship is, of course, also valid for the
corresponding zeroth-order moments Q(b) Yf(p) and

R(r).
The distributions D(p) and D(,) each obey the

transport equations given in Ref. 42. Also the
zeroth-order moments are determined in this refer-
ence.

%e consider now the elastic collision region, deter-
mined by the reduced energy b [Eq. (22)], in such a

way that e & 1. Here the electronic stopping power
NS, (E) usually is small compared to the nuclear
stopping power NS, (E), unless Z) & —,o Z2. Thus,

1

the electronic stopping powers in the denominator of
q(p) and q(,) can be ignored.

Thus, it is straightforward to evaluate the integrals
for the zeroth-order moments in this energy region.
Utilizing the power cross section Eq. (18) and the
stopping power for a beam ion-target atom interaction
with constants C, y, and m and the electronic stop-
ping power Eq. (26), one obtains

NS, (E)

( , +2m )—NS((E)
(92a)

and

(E) (1 —m), ""
dT

r&(()(T
'(&(r) = y

'm

x —I . (92b)
T

A more precise determination of q(,)(E) requires
knowledge of the behavior of the energy q(,~(E).
This energy function is generally well approximated
by

q(()(E) =k„E

which leads to a simplification of Eq. (92b):

n(,)(E) = y ~(()(yE)
(1 —m)

(93)

(94)

The power approximation (93) is actually rather .

accurate for values of the reduced energy e in the in-
terval [0.2,2], and 0) varies even less than 10% for all
values of the electronic stopping-power constant kL

[Eq. (2S)], which are feasible for any target-target
combination.

One notices that the amount of energy delivered to
the electrons by recoiling target atoms is not directly
proportional to q(,)(E), but to the scaled energy
q(()(yE) This is not surpr. ising as yE is the max-
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imum energy transfer in a beam ion-target atom colli-
sion.

The equations for D(I~ and D(,~ can now be solved
by means of the same procedure as was utilized in
Secs. II and III. Thus, the spatial moments of the
two distributions may be determined from a recursive
formula analogous to Eqs. (14) or (42). This is pos-
sible once the zeroth-order moments of the distribu-
tions have been found.
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The important length unit in the energy (and
range) distributions for atomic incidence for reduced
energies below a- 1 is E' /NC. For example, the
path length R(E), obtained by integration of the re-
ciprocal power approximation to the nuclear stopping
power NS, (E), is expressed:

I

R(E)-"- ' --)"
2m NC

(95)

This length unit E2 /NC is obviously useful only so
long as the electronic stopping power can be neglect-
ed. If this can be done, the transport equations for
D(p) and D(,~ are, apart from the normalization,
analogous to the equations treated in Ref. 37. D(~~
and D(,~ are both given, then, by the following rela-
tion:

FIG. 12. Factor s„(~)H(,~(ye)/ye, Eq. (98), and the re-

duced electronic stopping powers s, (e), Eq. (25), are depict-
ed as functions of the reduced energy e, Eq. (22), for three
values of the constant kL. ( ). kL =0.20

( ), kL=0.15; (———), kL =0.10. The re-
duced nuclear stopping power s„(~), Eq. (21), is also includ-

ed, ( ).

mation (93) to the energy function g(,)(E). From
Eq. (61) one concludes that for large E the energy
dependent factor NS, (E)~(,)(yE)/(yE) will approach
the nuclear stopping power NS, (E).

The dimensionless factor s„(e)n«)(ye)/(ye) is de-

fined from the expression:

g(,)(yE) NZ) Z24me aM(
NStE 'E —

M M
(

D(r)(x, E, e)=g(»(E) 2 f~
NC xNC (96) n(()(ye)

(98)

„n()(yE) xNCx f, (97b)

where ao again is determined from a power approxi-

(The equation for D(„) is obtained by replacing the
subscript p with r. ) The dimensionless functions f~
and f, can be constructed from the spatial moments
of the distributions. Moreover, once all lengths are
expressed in the length unit noted above, f~ and f,
become independent of the primary energy (for the
same exponent m). These functions depend only on
the mass ratio M2/M) and m.

Equation (96) for D(» is now changed by means of
Eq. (92a) to

(

2
+2m

The relation corresponding to Eq. (97a) for the
recoil-induced distribution D(,~ is obtained by means
of Eq. (92b)

1 —m2
D(,)(x,E, e) = y 'NS, (E)

rum —m

This factor is depicted in Fig. 12 as a function of the
reduced energy ~ for three representative cases of kl.
for-a target atom-target atom collision and with y = l.
One notes that a large electronic stopping power for
recoils also means large values of the dimensionless
factor, given by Eq. (98); but the variation from the
middle one (kL =O.15) does not exceed a factor of
1.5. The shapes of the three curves are similar, and

they all reach the maximum value around e =1.
Also, the respectively reduced electronic stopping
powers are indicated, and they turn out to become
larger than the factor at around e= l. For values of
y less than 1 the dimensionless factor decreases to a
somewhat lower value, because g«~(e) decreases as
the reduced energy ~ decreases.

D. Spatial moments of D(~~ and D(,~

The mean values of the distributions D(~~ and D(,~

are found by the procedure in Ref. 3'7. Neglecting
the electronic stopping power in the denominator of
the first-order moment one obtains for the mean
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value (x)~ of the primary distribution Dtr I

+2m
(x)p

——3A ('»t, cosH (99)

The energy-independent coefficient 3 ~p~~ is evaluated
in Ref. 45. This coefficient depends only on the
mass ratio M2/Mt and on m.

For the recoil-induced distribution we replace the
subscript p with r in Eq. (99). The coefficient A t,it is
evaluated in Ref. 45. It is shown that this coefficient
is energy independent provided that

r)I,I(E)/rlt, &(E) =constant (100)

2.0
I &

I
& I I I

THE PRIMARY DISTRIBUTION

, DI, )(x, E, e„j

This relation is fulfilled so long as the same exponent
tu in Eq. (93) is applicable for r)I,I(E) and for
rI«I(yE); it turns out that even for values of y some-
what less than 1, Eq. (100) is valid with acceptable
accuracy. The same method yields higher spatial mo-
ments expressed by energy independent constants Ai"

and powers of the length unit E' /NC
The ratio (x)~/R is shown in Fig. 13 as a function

1 1of the mass ratio M2/Mt for m = —, and —, . For a

fixed exponent m, the ratio (x)~/R is a relatively
slowly varying function of Mt/Mt and one notices

that the ratio is almost unchanged for M2/Mt & 1.
Also the ratio crt/(x)~ —where rrt, =(((x
—(x)~)')~) t/' is the standard deviation over the dis-
tribution D(» —is slowly varying for M2/Mt & 2.
Furthermore, the skewness

((x —(x)~)')~p p

Op

is shown in Fig. 13. For large M2/Mt the scattering
obviously leads to a decrease in (x )~/R and an in-
crease in o.~/(x )~.

In Fig. 14 the characteristic quantities of the
recoil-induced distribution have been depicted as a
function of M2/Mt. The ratio (x)„/R decreases for
increasing mass ratio over more than one order of
magnitude in M2/M, . The source of the decrease is
again the scattering of the primaries. Also o.,'/(x), '
increases for increasing mass ratio for the same rea-
son.

In Fig. 15 the characteristic recoil-induced quanti-
ties have been compared to the corresponding dam-
age distribution quantities for the two exponents

1 1
m = —, and —, . One notices that the quantities of the

two distributions are almost equal, which means that
the distributions have nearly the same shape. Of
course, the normalization is different.

The characteristic quantities for the total distribu-
tion Dfb) have been calculated with m = —, from the

corresponding quantities for Dt» and Dt„& (Table

I
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I
& I & I
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m =1/2--——m=1/3
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MASS RATIO MP/M1

FIG. 13. Characteristic quantities from the primary distri-
bution D(p)(x, E, e„) at perpendicular incidence depicted as a

function of the mass ratio M2/M~ for two different ex-
1

ponents m in the power cross section. ( . ), m = 2,
1

(———), m =
3

. (x)z is the average depth for primary

ionization, Eq. (99); R = path length, Eq. (95);
rr~ =(((x —(x)~) )~)t/2; 1 t ~, the skewness, Eq. (101).
The term representing electronic stopping power has been
neglected in the total stopping power fEq. (15a), Ref. 42].

oo-
)p 1

I I I I I I I

~o'
MASS RATIO M~iM1

FIG. 14. Characteristic quantities from the recoil-induced
distribution Dt,&(x, E, e„) at perpendicular incidence. (x)„
is the average depth for ionization by recoiling target atoms.
Otherwise, notation and comments are as in Fig. 13.
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TABLE VI. Comparison between quantities characteristic for the distribution D~b~(x, E, e„) cal-
culated by the procedure indicated in Secs. XII B—XII D and by Winterbon in Refs. 39 and 115.
The results from the present work have been obtained with use of Eqs. (91), (92a), (94), with

co =1.2, Eq. (93), and with ni = —;the electronic stopping power has been neglected except in Eq. (92a).

Ion-target
combination Kr Cu Xe Cu

Primary

energy
(keV)

204 219'

Reduced
energy e

q(b) (E)/E This work

Ref. 39

0.6

0.451
0.396

0.3

0.374
0.366

(X)b/R This work

Ref. 39
0.577
0.508

0.659
0.543

~b2/(X ) b2 This work

Ref. 39
0.448
0.420

0.459
0.417

This work

Ref. 39
0.818
0.668

1.03
0.740

I I I
J

I I I I

(x),

I I I
I

I I I I

m =1/2

VI). The results obtained in this way for the cases
mentioned above agree better than 20% in most cases
with Winterbon's calculations' '" in which electronic
stopping is included in all moments of D~b~. The
skewness deviates somewhat more; however, one
notes from Fig. 14 that the skewness of D~, ~ depends
significantly on the exponent m (and thereby on the
energy F).

E. Construction of the distributions

0.8 D(„)(fx, E, e„j

(x&, I &x&D

1Q
"

I I I I I I I I I

10'
MASS RAT10 M2/M)

1Q"

FIG. 15. Ratio of the quantities of the recoil-induced dis-
tribution D~,~(x,E, e„) to the corresponding quantities of
the damage distribution D~D~(x, E, e„). For notation and
comments, see Fig, 14 ~

As discussed in Refs. 37 and 48 it is difficult in
general to construct a good approximation to a distri-
bution from a finite number of moments. A reason-
able approximation requires an appropriate assump-
tion of the behavior of the real distribution.

As the spatial energy deposition by the primaries or
by the recoiling target atoms must differ according to
the nature of the processes induced by the two kinds
of particles, the primary distribution D~~~ and the
recoil-induced distribution D~,) must be constructed
on the basis of widely different assumptions. The
energy transport by recoiling electrons will, as a first
step, be ignored in the constructions; the influence of
this transport will be discussed in the following sec-
tion.

Although general construction methods for the to-
tal distribution D~b~ are available, ' usually a
large number of moments are needed for a reliable
reconstruction of the distribution. The separation of
D~b~ into the two distributions, in which each can be
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approximated in a feasible way, will be utilized here,
as only a few moments will be included.

The distribution D(p) is determined by the scatter-
ing of the primaries and their electronic stopping
power. It is demonstrated below that (x)~/R in the
limit M2/M~ =0 has the value

UJ

u 2.0
C)

D(b)

~(p)

20/ keV Kr Cu
rn =1/2

(M /M =0)
R 8m+1

(102)

M&/Mt =0 represents the limiting case of a very
heavy primary particle that penetrates a target con-
sisting of light atoms; the primary is undeflected over
its whole path length. Because (x)~/R deviates less
than only 20% from this limit for mass ratios
M2/M~ « I in the energy regions characterized by the

1 1
exponents m = —, and —, , an energy-loss distribution

in the limit M2/Mt =0 seems suitable for a construc-
tion of the distribution D(p).

Obviously, the energy 5E, deposited to the elec-
trons in a layer 5x by a primary with the instantane-
ous energy E'(x) is determined by the electronic
stopping power Eq. (26):

SE = Nk [E'(x) ] ' Sx (103)

In the reduced energy region e & 1 under considera-
tion, the energy dependence on depth for an unde-
flected (heavy) primary is

r ' 1/2m

E'(x) =E I -—"
R

(104)

This relationship holds, of course, only when the
electronic stopping power can be ignored in the total
stopping power. Hence, the primary distribution in
the limit M2/M~ =0 for a particle moving perpendicu-
lar to the plane x =0 becomes

NS, (E)(1 —x/R)'/ for 0 «x «R
D(p) yx, F., e„j=

0 for x &0 or x ~R

(105)

This expression will be used, then, for the construc-
tion of the primary distribution for all mass ratios
less than one. One notes that the distribution Eq.
(105) possesses at x =0 a discontinuity, because en-

ergy transport by recoil electrons has been ignored
and also because no backscattering of the primaries
takes place in the limit M2/Mt = 0.

The moments of the distribution Eq. (105) [and
(x)~/R in Eq. (102)] are easily evaluated. These mo-
ments can also be evaluated by means of the pro-
cedure described in Ref. 45. Because of the statistical
nature of the recoil generation, the distribution D(,)
is similar to a Gaussian in the energy region ~ & I
considered, ' and the distribution may, therefore be
approximated by Edgeworth's expansion with a few
moments. 33 36 3' ' Here the skewness Eq. (101) is

Z.'

1.0
'I (U

LLj

OC

0.0

DEPTH X UNITS OF E /NC

included, but not terms originating from moments
higher than n =3.

In Figs. 16 and 17 the primary distribution D(p),
the recoil-induced distribution D(,), and the total dis-
tribution D(b) = D(p) +D(,) are shown for incident
krypton and xenon ions on copper perpendicular to
the surface with the energy in the range of 200 keV.

—,3.0

C3

(I) 2.0
D(b)

(p)

(r)D

219 keV Xe' Cu
m =1/2

I,
"1.0

LLl

OC

0.0

DEPTH X [UNITS OF E /NC]

FIG. 17. Distributions D(~)(x, E, e„), D(p)(x, E, e„), and

D(,)(x,E, e„) for normal incidence of 219-keV xenon ions
on copper. For comments, see Fig. 16.

FIG. 16. Total distribution D(b)(x, E, e„), ( ); the pri-

mary distribution D(p)(x, E, e ), (———); and the recoil-
induced distribution D(,)(x,E, e„), ( ), for normal
incidence of 204-keV krypton ions on copper. The distribu-
tions are depicted [in units of the stopping power M, (E) ]
as a function of the depth x (in units of E /NC). An ex-

1

ponent m =
2

in the power cross section has been used.

D(p) is constructed by means of Eq. (105), D(,) by means of
an Edgeworth expansion, Ref. 33, and D(b) by means of
D(b) = D(p) + D(,). The exponent cu = 1.2, Eq. (93).
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For a fixed exponent m the shape is energy indepen-
dent as mentioned, but the zeroth-order moments

q~~) and q(,) depend on the energy. In both cases the
energy deposited by the recoils exceeds the energy
that is lost directly from the primaries to the elec-
trons. However, the recoil-induced energy is deposit-
ed at considerably larger depths, which leads to a
smaller surface value for Df„i than for D~~i in this
approximation (without recoiling electrons).

2.0
I I

[
I I I I

m=1/2---- m = 't/3

i I I ]
I I & I

F. Yield evaluation

According to the separation of the distribution
DM, &, the basic yield equation (77) is rewritten in the
form

0.5—

8= [D&,)(O,E, e) +D&„&(O,E, e)]A, (106)

where A is the material parameter Eq. (78), and
where the surface value of the total distribution is di-
vided into its two parts. The surface value of the pri-

mary distribution is equal to the stopping power
NS, (E) (in the absence of any energy transport by
the recoil electrons).

The surface value of the recoil-induced distribution
may be expressed by means of the dimensionless
function P„(E,e):

'9(i) 'YE

(1 —m)
/3. = D

pp((o —m)
(108)

The function I8, depends relatively strongly on the
direction e and on the mass ratio M2/Mt, and weakly
on the primary energy E. The energy transport by
recoiling electrons is neglected here as well. By
means of the power cross section and the Edgeworth
expansion, P„ is found in Ref. 42.

As m depends only weakly on the primary energy,
p, varies slowly as a function of the primary energy
in the region e 1. p„ is depicted as a function of
the mass ratio for two exponents in Fig. 18. One
notes that P, for M2/Mt ~ 0.5 does not exhibit a

large variation from m = —, to —,; this again corre-

sponds to a slow energy variation. Furthermore, P,
is almost constant for M~/Ml «1.

In Sec. XII D it was found that the damage distri-
bution and the recoil-induced distribution are similar
in shape. Thus P, is nearly proportional to the factor
nD, which has been calculated for power cross sec-
tions in the elastic collision region by Sigmund" or
by %interbon, ' the last named including the elec-
tronic stopping power. The factor nD has been incor-
porated into Fig. 18. The similarity of the two distri-
butions leads by means of the power cross section to
the following approximate relationship

10

I I I ] I I I I

10
MASS RATIO M~/9)

FIG. 18. Factor P, , Eq. (107), for perpendicular incidence
depicted as a function of the mass ratio M2/Mt for two ex-
ponents m of the power cross section. No correction for en-

ergy transport by recoil electrons has been performed. The
exponent co=1.2, Eq. (93). f,'(0) in Eq. (107) has been
determined by an Edgeworth expansion, Refs. 33 and 45.
The corresponding factor nD of the damage distribution

D(~i(x, F., e ) has been included for comparison.

this holds better than 12% for mass ratios in the in-

terval [ —,p, 10].
The contribution from recoiling electrons has been

neglected so far. The correction Eq. (81) for energy
transport away from the plane x =0 is comparatively
inaccurate in the energy region below the electronic
stopping-power maximum, because the correlation
between energy transfer and scattering angle is not
strictly valid here. The corresponding factor P
depends on double differential cross sections for elec-
tron ejection (which are usually unknown for the mo-
ment) from the primary collision processes. As Pp
depends only weakly on the exponent m for copper, it
is tempting to extract with P =Pp an experimental
material parameter for krypton and xenon ions in-
cident on copper by means of Eq. (106); this is simi-
lar to the procedure used in Sec. XE. The surface
value of the primary distribution is, then, 0.23 NS,
(E). Since the angular distribution of the sputtered
particles is forward peaked, the surface value of the
recoil-induced distribution is reduced by a factor
1 —Pp=0. 77 as a first approximation. The material
parameters obtained are listed in Table V. The
corrections for energy transport means that the pro-
files near the surface in Figs. 16 and 17 are modified.
The contributions from recoiling target atoms for
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krypton and xenon ions are then, respectively, 0.73
and 1.28 of the contributions directly from the pri-
maries.

In view of the unknown collision spectra the agree-
ment with the proton data and the helium data,

0
which lead to material parameters around 0.26 A/eV,
is satisfactory. In Ref. 42 the parameters, obtained
by using the stopping power for the surface value of
D~~~ and the full surface value of D~,~, have been
compared; also the parameters, determined in this

- way, agree in an acceptable manner.

XIII. SUMMARY

A. Results for the secondary electron yield

The secondary electron yield is predicted by Eq.
(77) for all kinds of incident particles. For primary
electrons of nonrelativistic energies above 0.5 —1 keV
impinging on a solid, the surface value D ~&(O, E, e)
of the deposited energy can be expressed by means
of the factor P and the electronic stopping power
NS, (E). Thus, Eq. (80) can be applied, and P deter-
mined from Eq. (84) as well as the data of the refer-
ences mentioned in Sec. VI A.

For incident ions of energies larger than
2 M~v~

(around 25 keV/amu), Eq. (80) can be utilized. The
factor P may, in the case of almost no backscattering
of the primaries, be set equal to Pp Eq. (81), which is

determined from an appropriate value of the fraction
of reflected energy k~E ~ for perpendicular electron
incidence. If the factor Pp is slowly varying as a func-
tion of the exponent m in the power cross section (or
in the corresponding stopping power) for a beam
atom-target electron interaction, formula (80) can be
extended to somewhat lower primary energies.

For ion target combi-nations with M2/M~ & I with re-
duced energies e, Eq. (22), below 10 the yield formu-
la (106) is useful. For reduced energies e & 1, one
may as a first step set the surface value D~t(0, Ee„)
of the primary distribution equal to the electronic
stopping power NS, (E). P„Eq. (107), may be deter-
mined from Fig. 18 or from Eq. (108) and tabula-
tions of no. If Pp, Eq. (81), again is a slowly vary-
ing function of the exponent m, the surface value
D ~(&e, 0Ee„) may be set equal to PpNS, (E), and the
factor P, may be reduced with an approximate factor
(I —Pp).

The material parameter A in the yield formula (78)
can be evaluated if the low-energy electronic stopping
power NS, ,(Ep) is available. Otherwise, one may
evaluate an extracted experimental parameter from
the yield from different beam particles, by dividing
with D(O, E, e ).

B. Results for the distributions of the secondaries

The energy and angular distribution or the total ener-

gy distribution of the secondary electrons emitted in a

backward direction may be evaluated by means of
Eqs. (65), (68), or (69). The simple formula (65)
without a surface barrier can be used only at high
secondary electron energies Eo)& Uo, where Uo is
the magnitude of the barrier. The deposited energy
at the surface must be determined as described
above.

Distributions of secondary electrons induced by

transmitted beams may be evaluated from Eqs. (75)
and (90). The most probable energy and the half width

(/sE), t, of the energy spectrum are determined by
Eq. (72) and from Fig. 5, if m in the low-energy stop-
ping power expression (70) is known. If this stop-
ping power is unknown, the exponent m can be ex-
tracted from the experimental spectrum by means of
either Eq. (68) or Eq. (69), and the most probable
energy and the half width may then be determined
for comparison with the experimental spectrum.

C. Feasible comparisons between
theory and experiment

Although the treatment has been derived for a
semi-infinite medium, the results are applicable to
thick foils as well, so long as the cascade of recoiling
target particles can develop without interruptions by
the surfaces. This means for electron and ion bom-
bardment that the foil thickness d should be much
larger than the range of the most energetic recoil
electrons.

The primary energy E should be so large compared
with the instantaneous energy Eo of the liberated
electrons that the isotropic approximation (40) holds
in a satisfactory way. For electron bombardment the
most important correction term to the leading term

( —E/Ep) is proportional to (E/Ep) ', with s~ & —, .4'

For ion bombardment the correction term is of the
same order. ~' This means that a comparison between
experimental and theoretical spectra is justifiable at
most up to an energy Eo at which the two terms are
comparable. In the yield evaluation the correction
terms play a minor role because the electron spec-
trum peaks at low energy.

Even a small amount of surface impurities will

change the surface barrier and the stopping power
NS (Ep) for the low-energy electrons.

With regard to the angle of incidence H one obtains
for light ions the yield at normal incidence by multi-
plying with cosH up to angles around H =50'." For
electrons"6 and heavy ions" the behavior is more
complex.

Some discrepancies between theory and experiment
will be expected for lo~-energy ions in the region with
velocity-proportional stopping power, since a power
cross section with the struck electron initially at rest
has been utilized in the present work.
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