
PHYSICAL REVIEW B VOLUME 22, NUMBER 1 1 JULY 1980

Exact evaluation of the second-order exchange energy
of a two-dimensional electron fluid
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A new rigorous method is presented for the evaluation of the second-order exchange energy
of a two-dimensional electron fluid. The resulting energy 0.228'7 Ry is significant in the corre-
lation energy, in contrast to the three-dimensional case. The present method is applicable to
three dimensions.

I. INTRODUCTION

The evaluation of the correlation energy of an elec-
tron gas in three dimensions (3D) has been attempt-
ed by many investigators since the famous work of
Gell-Mann and Brueckner. ' For instance, the terms
of order r, have been treated by DuBois, Carr, and
Maradudin and by Kojima and Isihara. ' The second-
order exchange energy has been evaluated by On-

sager, M it tag, and Stephen' rigorously. Such a pre-
cise evaluation is important because the second-order
exchange energy contributes to the correlation energy
which is small.

It is the purpose of the present paper to investigate
the case of a two-dimensional electron gas. We have
found an entirely new and promising method for the
rigorous evaluation of this quantity. The ring and
other diagrams have been treated by Isihara and Toy-
oda. ' They also treated the second-order exchange
energy by a Monte Carlo method.

We have noticed that two-dimensional electron
fluids in metal-oxide-semiconductor (MOS) inter-
faces were attracting much attention recently for their
wide density variations and. prominent many-body ef-
fects. ' As shown by Isihara and Toyoda4 the ring di-

agram contribution to the correlation energy of the
two-dimensional electron fluids does not have a loga-
rithmic term without a factor r„ i.e. , lnr„as in the
three-dimensional case. Therefore, a careful evalua-
tion of the second-order exchange contribution is of

particular interest for the two-dimensional case, since
it is important in the small-i, limit.

In comparison with the three-dimensional case, the
evaluation of the exchange integrals is harder for the
two-dimensional case mainly because of the angle in-
tegrals. Nevertheless, in what follows in the present
paper we shall report a simple but powerful method
for the exact evaluation. Although it is beyond the
scope of the present paper to consider some other
cases, we believe that essentially the same method is
applicable to the three-dimensional case and also to
higher-order exchange integrals.

The second-order exchange graphs are classified
into two groups, regular and anomalous. The latter
has been rigorously treated by Isihara and Toyoda.
Therefore, we shall work only on the regular ex-
change graphs. The theory of Onsager, Mittag, and
Stephen was also on these graphs.

II. THEORY

ln

where p = I/kT, u(q) is the Coulomb potential, A is

the surface area, and [with f (p) for the Fermi distri-
bution]

The contribution from the regular second-order ex-
change graphs to the logarithm of the grand partition
function is given by

, J u(q)A(q)dq, , (I)PA
2m'

j( )=Jt)t'd dk, f( )f(k)[I f( + )][I—f'(k+ —)] (2)

The main source of difficulty in evaluating the four-dimensional integral in Eq. (2) is that four Fermi circles
define the integration domain. In order to overcome this difficulty, let us try to separate the integrand into two
parts, each depending only on one of the variables p and k. As shown in Appendix A, we first note

( )
I X)I')f — (- -) f'(p +q) —f(p),f(k+ q) —f(k)

2Pj,2vrij/P+(q2+2p ~ q), 2rrij/P+(q +2k q)
(3)

In Eq. (3), k and p are still coupled through the potential u(p —k). A complete separation can be made bring-

22 214 C 1980 The American Physical Society



22 EXACT EVALUATION OF THE SECOND-ORDER EXCHANGE. . . 215

ing back this potential into coordinate space:

u(p —k) = @(r)e' " ' ' d rJ
Combining Eqs. (3) and (4) we find

A(q) = X„dr P(r) Xt(q, r ) kt(q, —r )

where

( -) ' f(p+q) —,f(p)
2mij /j3+ q~+ 2 p q

(5)

(6)

In Eq. (6) we notice that apart from a factor I/(2m), kt(q, r ) are essentially the position dependent quantum
eigenvalues first introduced by Isihara in the study of the pair distribution function of the electron system.

Note in Eq. (5) that the form is general and does not depend on dimensionality. In the zero temperature limit,
we can use a continuous variable

v=2m j/P .

In the limit, the Fermi circle is sharp. For simplicity, let us choose pF =1. Since

A. „(q, —r ) = e' ' ' A„(q,r).
the product lt„(q, r ) X„( q, —r ) is invariant under the change v —v. We can then consider only the case
v & 0 and introduce a factor of 2.

Hence, we introduce a Laplace integral for positive v'.

1

vi +q +2p q

Furthermore, we note

i e —"'exp[it(q'+2p q)] dtJ0 (9)

X„(q, r) = d pe'' '[ f( p +'q ) f(p)] e "'e—xp[it(q~+2p q)] dt (10)

Performing the p integration we get

X„(q, r) =-4me "'" '
JO

„,Ji(l r +2qt I)
e "'=- —sin[ z q (r +2qt)] dt

ir +2qti

where J~ is the Bessel function.
Introducing Eq. (11) into Eq. (5) and performing the v integration we find

4(2 ) z
' ' dtdx dr Jt I

r +2qtl
i+x - r ~r +2q

Jt(l —r +2qxl)
x — sin

~ q —r +2qx
f

—r +2qxf
The next step is to perform the q integration as required in Eq. (1). We first change the variables in Eq. (12)
such that

t t/q, x x/q

to find

4(2n) q i dr t' dxdt J&(lr +2ut() Jt(( —r +2ux))
A q e sin

&
uq ~

p r +2ut j sin Tuq ~ (—r +2ux j'+" /r+2uti [
—r+2uxi

where u is a unit vector. Multiplying this expression by u(q) and integrating over q, we arrive at

(12)

(13)

3 4 & dr t' t' dxdt Ji(lr +»tl)»(l —r +»tI) 2(t+x)
I u q A q dq=2 2w 3e4 ln(t+x) )r +2ut] (

—r +2ut[ u [2r +u(t —x)] (14)
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where we have used an integral

sinaxsinbx
d

(
I

a+bj dx = —, ln-
x ' a —b

(I S)

Equation (14) can be simplified if we change variables such that

r ((+x) r +(i(x —()

%e obtain

dxlt " d' rI = j u(q)A(q)dq =2(2m)'e'J ("+') (((+x) r +(((x —()
~

J[( x+()ir +ui] J[( x+()ir —ui]
X ln

fr +(if (r —u[
(16)

A decoupling of the integration variables in this expression can be achieved if we change the variables as fol-
lows:

x = —,
' (I +()y, ( = —,

' (I —()y

where

(17)

0&y &~, —I&(&I, dxd(= —yd$dy (18)

%e obtain

) I
~"

dy J((ylr+al»i(ylr -al)
I =(2')3e4~ d r „— ln

Ir + (~I r '& " Ir + ~I

%'e can make use of the formulas
1

~" dy a/b, 0&a &b
J~

J, (ay) J, (by—) = —'

b(
t

~r+u~+I+r u
=1n" ' fr+(((f, [r —((f —I+ r (i,

Equation (19) becomes
1 t

2(2 )3 4 I' dxdy 1 +x[(1+x) +y']'
(x+ 1)'+y' x —I+ [(I—x)'+y']'('

~'

where we have used r =(x,y) and u =(1,0).
The double integral of Eq. (22) is difficult to obtain. In order to simplify it, we use

x 1
y -(1+x)y, z =

x+1
as new variables. e then find

1

I = —2(2n)'e'J '
ln

' F(z)-~1 —z 1 —z
(

where
(

F(z) =
I ln

I +(I +y')' dy

.z +(z +y )' I +y
(

In Appendix 8, the following properties are found

(19)

(20)

(21)

(23)

(24)

(25)

F( z) = —F(z) +2F(0)— F(0) = 2 G =- 1.831 931 188 (26)
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where 6 is Catalan's constant. Using these results we arrive at
1

I = —2(2m)'e~
z

ln +2F(0)c
1 —z 1+z

i

where

(27)

t

dz
l

1 —z

1+z 1+z',
i

12

In Eq. (27) we integrate by parts to obtain

I = —2(2m) e ——~ ln F'(z)dz+2F(0)c3 4 1 "' 1 +z
2~o 1 —z

where

F( ) I I+(I z

2(1 2) l/z I (I 2) li2

The numerical value of the integral in Eq. (29) is given in Appendix C. We have found

(29)

(30)

dz
i

1+z
i

1+(1—z )'
o ( -")' ' —. I -( -")'"

=I —(I ——') I/23+(I ——+ —) I/33 —(1 —-+———)I/4 + =0.942 37218, (31)

Therefore

I = —2(2n)3e (2y —
3

n'G)

Our final result is
2 4

ln = —p [8n( —m G —2y)]
pFe A

32m4

2e4A
(28.366 361)

32m4

(32)

(33)

This represents the rigorous second-order regular ex-
change contribution to the grand partition function.

This result should be compared with the Monte
Carlo result of Isihara and Toyoda. The numerical
factor obtained by them was 27.3 +1.3. Therefore,
their result agrees with the above rigorous result.

The second-order exchange energy is then given by

a=28.36631/4m'=0. 2287 Ry .

(31) can be represented by known functions. Similar

integrals appear in the three-dimensional case treated

by Onsager et al. 3

For the present model, the. first-order exchange en-

ergy varies as 1.2/r, Ry. T—herefore, the r, of order
3 or 4, the second-order exchange energy becomes
comparable. On the other hand, the second-order
ring contribution is characterized by a factor
1.93/8e' -=0.0244 [Eq. (2.21) of Isihara and Toyoda,
Ref. 4] in contrast to a factor 28.366/32m~ =0.0091
of Eq. (33). Therefore, again the second-order ex-
change contribution is not negligible. For the three-
dimensional case, Onsager et at. found that the
second-order exchange energy is 0.048 36. The two-

dimensional energy 0.2287 which we have found is

considerably larger, indicating larger correlations in

two dimensions.

This contrasts to the Monte Carlo value of 0.220. ACKNOWLEDGMENTS

III. CONCLUDING REMARKS

%e have evaluated exactly the second-order ex-
change energy for the electrons in two dimensions.
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Coulombic, and therefore the system is quasi-two di-
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the interaction potential. ' At the expense of using
the idealized model, we have succeeded to obtain the
rigorous result. We remark that the integral in Eq.
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APPENDIX A

Let us start with the real quantity

f(p+q) —,f(p) f(k+q) —,f(k)
2mij /P+ (q +2p q), 27rij /P+ (qz—+2k' q)

(Al)
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Decomposing the denominator of the above quantity in partial fractions, we find

X
f(k+q) —,f(k) f(p+q) —f(p)

2[q + q (p + k) ] 2rrij /P+ (q +2p q)
(A2)

where ( ) denotes the contribution obtained by exchanging p with q and vice versa in the first term of the
above equation.

By means of the formula

cothx = X (rrij +x)

the discrete sum in Eq. (A2) can be found as

= —,'Pcoth[ —,'P(q'+2p q)]
2mij /p+ (q'+2p q)

Putting Eq. (A4) back in Eq. (A2) and making use of the identity

(A3)

(A4)

[f ( p + q ) f( p ) ] coth—[—j3 (q 2 + 2 p q ) ] = —[ f ( p ) [1 f ( p + q—) ] +f( p + q ) [1 f( p ) ]]— (As)

we find

f(p+q) —,f(p) f(k+q) —f(k)
2rrij/P+(q~+2p q) 2rrij/P+—(q +2k q)

=—,P ' ' [f(p)ll —,f(p+q)l+f(p+q)[1 —,f(p)]i+( )
2[q'+q (p+k)]

By considering the contribution ( ) explicitly and adding it to the first term in the right-hand side of the
above equation, we get

,f(p+q) —f(p) f(k+q) —f(k)
/3 27rij /P+ (q'+2p q) 2rrij /P + (q'—+2k q )

(A6)

f(k) f(p) [1 ,f(k +q)][1—f(p—+q)] f(k + q) f(p +q—) [1 —f(k)][1—,f(p)]
2[q'+q (p+k)]

(A7)

Finally, multiplying both members of the above equation by u (p + k + q) and integrating with respect to k and

p, noticing that

f(k+ ) f( + )[1—f(k)][1—,f( )], f( )f(k)
q'+q (p+k) ' ' ' q'+q(p k)

'

under the change of variables
x[1 —f(k+q)][1 —f(p+q)] (Ag)

p- —(p+q), k —(k+q) (A9)

we arrive at

1

)
- (- — ),f(p+q) —,f(p),f(k+q) —f(k)

2/3 2rrij/P+(q +2p q) 2rri~ /P+(q +2k —q)'

=)I d dk f(k)f( ) [1 —f(k+ )][1 f( + )1—,
2[q'+q. (p + k)]

(A10)

The slightly modified version of Eq. (A10) given in Eq. (3) is easily obtained by the change of variable
k —(k + q ) in the left-hand side of the above identity.
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APPENDIX B

1 t /

1+(1+y')' '
~( 2 2)~/2

~
dy " dy z+(y'+z )'/' (1+y')'/2+1

4 0 y2 1 +y2 I/O 1 +y2 1 + (1 +y2)l/2 y

F(—+z ) + 2 F(0)

F'(z) =- dy

1+z sinhy

1

1 1+(1—z )'
2(1 —z')' '

1 —(1 —z')' '

APPENDIX C

dz
l

1+z
l

1+(1—z )'
' "' (1 —z')'" 1 —z 1 —(1 —z')' '

Making the change of variable

x —1

x+1
we find

(C 1)

(C2)

d
y=2 „2(lnx)2ln

0 1+x 1 —x
(C3)

Since
/

1 1+x
ln =2X[1+(——1)x +(———+l)x + ]

1 2 1 1 4

1+x2 1 —x 3 5 3
(C4)

and

we find

2

(2n +2)3

y = 1 ——(1 ——) +—(1 ——+ —) ——(1 ——+ ———) + =0.942 372 181 1 1 1 1 1 1 1 1

23 3 33 3 5 43 3 5 7

'M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364
(1957).

2D. F. DuBois, Ann. Phys. (NY) 7, 174 (1959); W. Carr
and A. Maradudin, Phys. Rev. 133,'A371 (1974); D. Y.
Kojima and A. Isihara, Z. Phys. 25, 167 (1976); A. Isihara
and D. Y. Kojima, ibid. 21, 33 (1975).

3L. Onsager, L. Mittag, and M. Stephen, Ann. Phys. (NY)
18, 71 (1966).

4A. Isihara and T. Toyoda, Ann. Phys. (NY) 106, 394

(1977); 114, 497 (1978); A. K. Rajagopal and John C.
Kimball, Phys. Rev, B 15, 2819 (1977).

See for instance, in FIecIrorric Proper ries of' Two-Dirrrerrsiorral

Sv.s(errrs. edited by G. Dorda and Phillip J. Stiles (North-
Holland, Amsterdam, 1978).

A. Isihara, Phys. Rev. 172, 166 (1968),
7F. Stern, Phys. Rev. Lett. 30, 278 (1973); A. V. Chaplik,

Zh. Eksp. Teor. Fiz. 60, 1845 (1971) [Sov. Phys. JETP
33, 997 (1971)].


