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A new self-consistent scheme including long-range and short-range order parameters is

derived from extending the idea of the single-site coherent-potential approximation in order to

investigate the electronic structure of CsCl-type order-disorder alloys. The theory is based on

two models; one is a usual tight-binding model with only the first-nearest-neighbor hopping in-

tegral (model I), and the other is the one in which the hopping integrals between the second
and higher neighbors are approximately taken into account (model II). Numerical results are

obtained with the help of a continued-fraction technique. To demonstrate the feasibility of the

present method, the change in the density-of-states (DOS) curves as a function of the degree of
order is shown and discussed. It is interesting to note that their general shapes for both models

are quite different, i.e., model I gives a symmetric DOS curves, while model II gives an asym-

metric one. We conclude that the inclusion of the second-neighbor hopping integral is especially

important in CsCI-type alloys.

I. INTRODUCTION

A large number of extensions and applications
have been made on the coherent-potential approxi-
mation (CPA)' in the last decade. Some of them
were concerned with what we call cluster effects. The
original CPA was constructed for completely disor-
dered systems within the framework of the single-site
approximation. Therefore, it cannot take into ac-
count the fluctuations in the atomic distribution, nor
investigate the effects in the presence of atomic
correlation or partial order of configurations. In
one-dimensional systems, Tsukada' proposed the cel-
lular CPA which applied the CPA formalism not to a
single site but to a cluster, or a cell of sites. The nu-
merical results were found to agree with the comput-
er simulations by Dean' for all concentrations, How-
ever, its extension to three-dimensional systems is
not straightforward because of the difficulty of calcu-
lation and besides the lack of a general prescription to
divide the whole system into repeating equivalent
cells which should have the full symmetry required
by the lattice structure. Brouers et al. considered a
compact cluster formed by a central atom surrounded
by its Z nearest neighbors embedded in an effective
medium and derived an approximate self-consistent
scheme (referred to as cluster CPA hereafter). In
this method, the effective medium is so determined
that the scattering from the cluster is zero on the as-
sumption that the effects of local environment
depend only on the number of each type of nearest-
neighbor atoms and not on their configuration. The
validity of this assumption was investigated in the

simple cubic (sc) lattice by Miwa. It should be not-
ed that this scheme is not the same as the cellular
CPA, because it does not depend on whether the sys-
tem can be divided into these clusters or not. This
fact makes it difficult to estimate the validity of the
approximation, but enables us to apply the cluster
CPA to a variety of systems. Expecially, it has been
applied successfully to the investigation of the effects
of local environment on the magnetic and electronic
properties of alloys.

The self-consistent condition proposed by Brouers
et aI. could be regarded as the extension of the
central-site approximation of Butler's paper' to
three-dimensional systems. Nickel and Butler point-
ed out that the Green's function in the central-site
approximation was not an analytic function of the en-
ergy parameter z in a strong-scattering regime. ' In
addition, a recent paper has reported that the
boundary-site approximation, which is identical to the
cellular CPA in one dimension, also fails to give ana-
lytic results for three-dimensional systems in the
strong-scattering regime. These difficulties tend to
appear generally when the cluster effects are eminent.
However, it is known that, in 50-50'/o binary alloys,
the cluster effects are small and even the single-site
CPA accounts quite well for the overall band
shape. ' " As we are to deal with such systems, this
nonanalyticity problem is not so serious.

Another category of the extension related to the
cluster effects is to incorporate the atomic correlation
into the theory. This extension is required from two
points of view. First, real alloys would always have,
more or less, some sort of local order, i.e., a tenden-
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cy to segregate or to make a compound. Thus, we

have to investigate the effects of local order on physi-
cal quantities when we try to make an explicit com-
parison with experiments. Second, in order to con-
struct a band theory for order-disorder phase transfor-
mations, it is the first step to make a band model,
available for every degree of order. Theoretical pro-
gress in this direction can be summarized as follows:
We define certain parameters {n; } (i = I, 2, . . . , n)
which measure multisite correlations, e.g. , long-range
order (LRO), short-range order (SRO), three-body
correlations, etc. These parameters {a;I, called or-
der parameters, specify the atomic configurations to
choose as a member of ensemble when we carry out
the configurational ensemble average. For example,
in a finite system consisting of N&A and %~8 atoms,
there are (N~ + Na)!/(N„! N&! ) possible configura-
tions and in the case of perfect disorder, we must re-
gard all of them as members of the ensemble. Each
of these possible configurations has some value for
the set of. parameters {a, } and they can be classified
according to their values of {a; }. Provided that the
parameters are properly chosen, the systems with the
same value of {n; } should give the same electronic
contribution to the free energy of the electronic-ion
system. In other words, the probability of every con-
figuration classified into the same class should be
equal. This condition enables us to carry out the
configurational and the thermodynamical averages in-

dependently. Then, our problem can be separated
into two parts; (i) we investigate the averaged elec-
tronic properties such as the total energy in the class
of configurations labeled by {a; } and (ii) the equili-
brium value of {a; } is determined as a function of
temperature by minimizing the free energy which
contains the configurational entropy associated with
the class.

Thus far, the improvements along this line have al-

ways been concerned with either LRO or SRO. Foo
and Amar" employed a modification of the single-
site CPA and calculated the electronic DOS in one-
dimensional systems with LRO [referred to as
CPA(g) hereafter; g is the LRO parameter defined
laterl. Plischke and Mattis'3 compared the moments
of this CPA(g) DOS with the exact ones found that
for any value of the potential and q, CPA(g) repro-
duced at least the first eight moments correctly. On
the other hand, for SRO, it is necessary to make use
of the cluster theories because of its pair-site nature.
There have been a number of SRO theories, ' "one
of which is the modification of the cluster CPA' re-
ferred to as CCPA(o) (a is the SRO parameter de-
fined later). However, it has been pointed out that
convergence difficulties occur for large absolute
values of the SRO parameter because the description
of partially ordered states by a unique effective medi-
um is less justified when the degree of order in-
creases. Therefore, we cannot use the CCPA(o. ) for

a band theory of order-disorder transformations. For
a better description of partially ordered states, we
would need to incorporate both LRO and SRO to-
gether and moreover other multisite correlations, if
possible.

Now, the foregoing remarks lead us to an idea of
combining the CCPA(a) with the CPA(q) to obtain
an approximate self-consistent scheme which includes
both a and g as given parameters. [We call this
CCPA(g, o.).] Our method can be applied to every
type of order-disorder alloy at least in principle, but,
in this paper, we shall confine ourselves to CsCl-type
order-disorder alloys for simplicity. The explicit form
of our self-consistent scheme is derived in Sec. II.
Using this method, we are able to investigate, for ex-
arnple, the effects of local environment on the elec-
tronic structure of alloys exhibiting both LRO and
SRO. Some illustrative examples of numerical results
are shown and discussed in Sec. III. Section IV con-
tains concluding remarks.

II. THEORY

We consider a transition-metal alloy A 0 580 5 whose
crystalline structure is bcc in the disordered state and
CsC1-type in the ordered state. As a simple model
for d bands of this alloy, the usual tight-binding
Hamiltonian is used. This model has essential
features required for a self-consistent treatment of
charge transfers and intersite and intrasite electron-
electron Coulomb interactions which are believed to
be important factors for order-disorder phase
transformations. The one-electron Hamiltonian is
then given by

& = X I I ) ~; &I I
+ X I

I') &g &J I

where the state {i ) is the Wannier state centered at
the site i and e; is a random-site energy which can
take two values, ~~ and a~, depending on whether
the site i is occupied by an A or a 8 atom, respective-
ly. The site energy e; would be generally dependent
on the local environment around the site i and,
moreover, would vary with ordering. In this paper,
ho~ever, these corrections are ignored. h„" is a hop-
ping integral between the site i and the site j assumed
to be independent of the chemical nature of atoms.
The effect of random A,J called off-diagona1 random-
ness can be easily handled under Shiba's condi-
tion" ' although it is a quite arbitrary and restrictive
condition. For simplicity, we neglect the degeneracy
of the d states, which is not essential for our present
purpose.

To incorporate the LRO correlation, the bcc lattice
is divided into two equivalent sc sublattices labeled by
a and P according to the definition of LRO. In gen-
eral, LRO parameter g is defined (also for non-
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stoichiometric compounds) by

Ng + Ng" —Ng~ —Ng

N
(2

0

where N~, for example, reresents the number of A

atoms within the n sublattice and N0 is the total
number of atoms. %e regard the bcc lattice as the sc
lattice with two atoms in a unit cell, so that the Wan-
nier states can be rewritten as I n (z) and I

n p), using
the cell index n which runs over the sc lattice points
instead of the site index i. Then, the Hamiltonian
(1) becomes

H = X I n (z ) e„&n n I + X I
n a )h„&(n (z I

r(k) = $ h„oaexp[i k (r„—roa)] (7b)

It is worthwhile noting that when the summation is
taken only over the nearest neighbors, S(k) and
I'(k) have the same form as the sc and the bcc
dispersion relations of nearest-neighbor tight-binding
metals, respectively.

To simplify the numerical computation, S(k) will
be assumed to be the following forms: (model I)

nearest neighbors, i.e. , n and p sites in a unit cell.
S( k) and I'(k) are given by

S(k) = X h„o exp[i k (r„—ro )l, (7a)
n(WO)

+ g I
n p) ~.p & n pl + X I

n p». p,.p& ~ pl
fl Wm

+ $(ln~) h..,.p&~ pl+ ln p) h.p, &m~1)
n, m

S(k) =0
(model II)

. s(k) =-,' i [Ir(k) }'-zh(],

(8a)

(gb)

It is convenient to perform the calculation in the
Bloch representation, using a basis
&kl =(&k~1, &kpl);

t 1/2

I k(z) = — Xexp(i k r „)I
n n)

N

t 1/2

lkP) = — /exp(i k r „)InP)
N

(Sa)

where N denotes the number of unit cells or the
number of sites within each sublattice here and r „ is
a sc lattice vector corresponding to the cell n. Due to
our regarding the bcc lattice as the sc lattice with two
atoms in a unit cell, k is a wave vector inside the
first Brillouin zone not of the bcc but of the sc lattice
structure. Then, the averaged Green's function, is a
2 x 2 matrix quantity in the k representation, can be
written in the form

G(k, z) = &klG(z) I")

z —X —S(k) —exp(i k a) I'(k)
—exp( —i k a) I'(k) z —X((—S(k)

In the framework of the CPA(ri), averaged proper-
ties of this alloy are described by an effective Hamil-
tonian H, ff with uniform, energy-dependent and
complex site energies, X,(z) and Xit(z), which have
to be determined self-consistently. As we are con-
cerned with one-particle properties, it is necessary to
calculate the configurational average of the Green's
function, which is written

G = &(z —H) '), =(z —H, (()
'

+ —,
'

Zht' X exp(ik r()
I E$5

(10)

Therefore, if we set the value of A. to be equal to
h2/h(, Eq. (10) gives the approximate sc dispersion
relation which is equivalent to the special case such
that

where Z is the lattice coordination number, and equal
to 8 here. The index l of h1 indicates the hopping
integral between the first nearest neighbors and A. is a
parameter properly chosen. Model I corresponds to
the usual nearest-neighbor tight-binding model which
has been studied by many other authors. However,
it has been pointed out that the magnitude of h2 is
the same order as that of A1 in the bcc structure
although it is negligible in the fcc and hcp struc-
tures. ' This is due to the shorter distance of the
next-nearest neighbors. Our new approximation (8b)
is derived from the geometric feature of the CsC1-
type lattice structure in order to take into account the
higher-order hopping integrals. %e can avoid k
dependence of the theory using this approximation.
Keeping only the nearest-neighbor terms in I'(k),
1.e.,

I (k) =ht g exp(ik rz)
j 6S1

(where the summation extends over the first shell of
sites denoted by S~), we can express S(k) from Eq.
(8b) as

S(k) = Xhtz g exp(ik r&)
j &S2

+ —,kht' X exp(ik rk)
k ES3

—= G[S(k), r(k), z] (6)
1 1

h2. A3.'As=i:
2

'.
4

where a is an arbitrary lattice vector between the first
This ratio cannot be changed as far as our approxima-
tion is used.
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drpgp(pr) G(rp, z) (12)

For the purpose of applying the CPA(21) to the
present model, we must calculate the site-diagonal
elements of the Green's funtion G (z) and Gr2r2(z).
On a basis (ni =((n pri, (nPi), the cell-diagonal ele-
ment of the Green's function can be calculated in
terms of Eqs. (6), (Sa), and (Sb)

G..(z) G.,(z)
(niG(z)in) =—

G ( ) G ( )
r

X G[I'(k),z]N—
k

f44'oo

d p) S[pp —I'(k) ] G(pp, z)
N & —oo

k

where

gp(~) = —ps[~ —r(k)] .N-
k

(13)

Note that we may consider this gp(rp) the density of
states of a nearest-neighbor tight-binding bcc metal,
though the sum over k's is reduced to the inside of
the sc Brillouin zone. Here, G[r(k), z] depends on
k through both I'(k) and ex p(ik a). Taking an
average of the latter over all nearest-neighbor lattice
vectors a, we can also replace it by I (k). This and
the assumptions (8) assure k independence of the
self-energies. Thus, the last line of Eq. (12) is valid
for G(pr, z) caiculated as

1G(~,z) =
( )

z —
Xr2

——Z( pr —ZI21 )2 2
4

z —X ——,k(rp2 —Zh i' )
(14)

where

D (rp, z) = [z —X ——4Z(rp' —Zh |' ) ] [z —
X22

——,X( pr' —Zh 1') ] —pr' .

G (z)=

G222r(z) =

r r $(2
z —Xp

Fp(E)
4 r

1(2z —X
F,(E),

z —Xp

(16a)

(16b)

G p(z) =1 —E Fp(E) (i6c)

For model I, X is taken to be zero. Explicit express-
sions for the components of Eq. (12) are obtained by
evaluating the Hilbert transform of gp(o&) and we

have (in energy units such that iZhli = I), for model

I,

with

and

E=l(z —X )( —X )]'"

F (E)= 1 1

& —„E-r(k)
gp(rp)

dc'
E —o)

(18)

Here, Fp(E) is the Hilbert transform of gp(rd). Simi-

larly, for model II, we obtain

16 , F(E) Fp(E4.)
'

G (z) = (z —X +p — 'xE ) ——(z —X +p, ——gE2)
) 2(E2 E2) P 4 p 4 +

4 2

Fp( E ) — Fp( E+)
G (z) = (z —X +p, ——ltE') —(z —X.+p, ——' lr.E')

Z2(E2 E' ) — 4 E- a 4

(19a)

(19b)

G p(z) =
2 2 2

[E+' Fp(E+) —E Fp(E ) ]
16

E+2 —E
(19c)

with
r 1/2

E+ = —(z —X +p)+(z —X +p)+ —+ (X —X2r) + [(z X +p)+(z Xp+P)]+2 2 4, 8 16 (20)
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and

p, = —A. /li =
4 4z (21)

Then, the effective site energies, X and. Xp, are
determined from a system of two coupled equations"
within the single-site approximation;

X.= X.- ( p, - X.) ( p, - X.) G..( X., X,,z ), (22a)

Xp= Xp (pg Xp) (pp Xp) Gpp(X, Xp,z), (22b)

G, Gpp, and G phave already been given in

(16a —c) for model I and (19a —c) for model II.
The subscripts n and P are used as site indices in-
stead of nn and nP when we take the summation
hereafter. The second term of Eqs. (25a) and (25b)
the sum of T-matrix elements, is difficult to solve ex-
actly, so that we decompose the T matrix into contri-
butions over shell sites and replace them by their
average value in the multiple-scattering equations '
(see Ref. 4) to obtain

where X (Xp) is the average of site energies within
the a(P) sublattice and given by

Z (tp/( I + I'pt p) )
PP' I —Zr, (t,/(I + r, t, ) )

p, p'Es
(26a)

X, = —,(I + g) e~ + —,(I —q) ep (23a)

Xp ———,
' (1 —v)) e„+—,

' (I +q) ep (23b)

(n)

Gi (n)
A

I —(e; —X )At"~

and
(n)

.
( ) App

(.)I —(e; —Xp) App

(24a)

(24b)

for the respective kinds of clusters. We will modify
the notations of Ref. 4 and rewrite the equations
there to a convenient form for the present paper." (n) ~

A is the Green's function describing the scattering
from the shell. Hence,

Let us now extend the single-site CPA(q) to in-

clude the effect of correlated scattering from a cluster
caused by fluctuations and ordering. We will consid-
er two kinds of clusters formed by a central atom and
its first shell of atoms according as the central atom
is at an n or a P site. When the central atom is at an
o.(P) site, its nearest neighbors are all seated at P(a)
sites in the CsC1-type lattice. The scattering from
such a cluster is essentially described by a (Z + I)
x (Z + I) T matrix and an effective medium in each
sublattice is to be regarded as a (Z + I) x (Z + I)
matrix quantity. However, we replace the effective
media by scalar effective site energies, X (z) and
Xp(z), multiplied by the (2+I) x (Z + I) unit ma-
trix according to the cluster CPA. Moreover, the
scattering from a cluster is assumed to be character-
ized by the type of the central atom, i and the number
of A atoms in the shell (n) approximately. These ap-
proximations simplify our numerical computation.

The system with an i (n) cluster embedded in ef-
fective media is described by the cluster Green's
function. Its site-diagonal elements (at the central
site) are given by

and
Z(t /(I+I' t ) )

I —ZI (t /(I+I t ))
(26b)

where

1 —(e„—Xv) G„
(27)

and

1r, = G (y = a or p)Z —1
y( & y')

I
y, y Es)

(28)

Expressions of I' (z) and I'p(z) are obtained from
the diagonal matrix elements of the following 2 x 2
matrix quantity I:
I —= X (n~G(z)~m)

Z 1 n(cm)
n, mfS&

, 1 1—QG[I'(k), z] exp[i k (r„—r )]
n(Wm)
n, m 6S&

Jt d [ go(~)(~ —Z ) ] G (coz) . (29)

Inserting Eqs. (6), (8a), and (8b) into Eq. (29), we
can calculate by analogy with Eq. (12) and obtain, for
model I,

r & 1tt'2

Z z —Xpr.(z)=, [E'F,(E) E Z 'F,(E)], — —-
a

(30a)

and

A'"' = G + G'p
pp Esi

App =Gpp+G p
1

a, a 6S&

(25a)

(25b)

z .-X
I p(z) = [E'Fo(E) —E —Z 'Fo(E) ]Z —1 z —Xp

(30b)

and for model II
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~() Z 16
Z-I )'(E,'-E')

(

x (z —Xp+ p, — )E—) E Fp(E )—F,(E ) i Fp(E+)—(z —X))+p, ——h.E+.) EiFp(E+)—
ZE 4 ZE+

I'))(z) = Z 16
Z -I )((E' E')-

x (z —X +p, —4)(E') E Fp(E )—Fp(E )

ZE
—1 —(z —X + p,

——h.E+') E+Fp(Ei)—a 4
i

Fp(E+) —1
ZE+

(31a)

(31b)

Note that if X and X& are replaced by a single X in
model I, its equations are reduced to those of Ref. 4.
It should be emphasized that our theory depends
only on the knowledge of Fp(E) in spite of taking
into account the second- and higher-neighbor hop-
ping integrals in model II.

The self-energies characterized by scalar quantities,
X and X&, are now determined by a couple of self-
consistent conditions:

G ( ) Xpi()G'()( )
I, n

G (z) gpi(n)Gi(n) ( )
Ii n

(32a)

(32b)

P'(") (PII")) is the probability of finding a cluster i (n)
whose central atom is at an n(P) site. It is related to
the LRO parameter q and the SRO parameter a-

through

ciple. A negative value of cr indicates a tendency to
segregate. In the case of pure LRO, in other words,
when the distributions in the two sublattices are un-
correlated with each other, the relation between q
and o- becomes

(35)

The deviation from this relation shows that short-
range atomic correlation, clustering or ordering, is
present.

Given a value of z, Eqs. (32a) and (32b) must be
iterated until they converge to final values. As a
starting value of iteration, it is convenient to use the
result of CPA(q).

III. RESULTS AND DISCUSSION

pA (n) pB(Z-n)
P

(1 —o )"(1+2v]+n) z "

2 (1+7))

We will calculate the electronic density of states per
atom given by

g (E) = 1m [ G (z) + G()a(z) ] &~ () (36)1

pB(n) pA (z-n)
P

(33a)

(1 —2g+ o )"(1 —(r) z "
"2 2z(1 )z

(33b)

We have already defined the LRO parameter q by
Eq. (2) and here define the SRO parameter o. by

Ngs —(Ngg+Ni)s).
1—ZNp2

(34)

where NAB, NAA, and WBB denote the number of
A —8, A —A, and 8 —8 bonds, respectively. How-
ever, we cannot determine the relation between q
and «r uniquely. q can range between zero in the
disordered state and 1 in the ordered state. When q
is 1, cr is fixed at 1; otherwise, at a given value of q,
cr can take a value ranging from 2q —1 to 1, in prin-

1
EA = 6B 2

~ (37)

and to scale in energy units such that ~Zhi~ =1. As
previously noted, the knowledge of Fp(z) or gp(E)
(because Fp is obtained through the Hilbert
transform of gp) is adequate for numerical evalua-
tion. In this paper, we have performed the calcula-
tion of Fp(z) in two ways; one is an accurate but
tedious calculation with the help of a continued-
fraction technique and the other is an approximate
calculation by substituting

F (z) =2[z —(z —I)'I ] (3g)

for several typical values of parameters. In this
theory, model alloys are completely specified by only
four dimensionless parameters r), o, 8(= e~ —es),
and ) or the ratio of the second to the first hopping
integral hq/h). It is convenient to choose the zero of
energy in such a way that
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From this choice of h~, equations in Sec. II are slight-
ly modified. It should be noted that in model II,
Fa(z) and gp(E) do not correspond to the unper-
turbed Green's function and the unperturbed density
of states, respectively. In fact, the unperturbed den-
sity of states can be obtained from the theory with
5 =0 and we show it in Fig. 1. Its energy range is
easily evaluated to be

[-141121 14lhzl+ I] for hz/h& ~
4

and

(40a)

[-1411zl —1, 21&21+1/(641I 21)] for hz/h, ~
4

(40b)

20
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FIG. 1. Unperturbed density of states for model II as cal-
culated by means of a continued-fraction expansion (solid
line) and the semicircular DOS (broken line). The ratio of
the second- to the first-neighbor hopping integral h2/h~ is

assumed to be 0.5 .

Here the latter corresponds to the case that all the
continued-fraction coefficients are equal and gives a
semicircular band. This will be useful to calculate a
cohesive energy which is relatively insensitive to a
band shape, especially when we take into account
charge transfer self-consistently.

To use the semicircular band, the hopping integral
h ~ must be chosen so that the second moment of
DOS agrees with that of the tight-binding model, i.e.,

(39)

Now, we will present the numerical results and
give brief discussion about them from three different
points of view; long-range ordering, short-range or-
dering, and the band bottom.

A. Long-range ordering

Our results for pure long-range ordering, obtained
from the relation (35), are very close to those of the
single-site CPA(rl) especially in the weak-scattering
regime (5 & 2). This is due to the absence of short-
range atomic correlation and the small cluster effects
caused by fluctuations. In order to illustrate the ef-
fects of local environement, it is convenient to show
the local density of states for each atom. The local
density of states for an i atom in the y sublattice sur-
rounded by nA atoms and (Z —n) B atoms g~" (E)
is given by

g'„'"'(E) = ——Im[G,","'( )], p, o (41)

in the present theory.
In Fig, 2, we quote the results for model I with the

semicircular unperturbed density of states as simple
examples mainly to facilitate their interpretation. It is
clearly seen in Fig. 2(f) that the change in the total
DOS curve (see, for instance, Fig. 1 of Ref. 14) is

explained by g& and besides g" ' which is sym-
metric with gp

' about E =0, because B(8) and
A (0) clusters become more probable than the others
as the degree of order increases. The sharp peaks of
g

' [Fig. 2(e)] and gf l curves correspond to the
resonant level of an isolated B atom. They are not
much affected by ordering and that of g& grows to
be the lower. main band in the perfectly-ordered state.
When there is a slight deviation from perfect order,
two impurity states appear between two main bands.
From Fig. 2(a), the upper impurity state can be un-

derstood as arising from the impurity B atom in the o,

sublattice. That is, this state turns out to be the anti-
bonding state of the central B atom and the spherical-
ly symmetric shell of B atoms. Similarly, the lower
impurity state corresponds to the antibonding state of
an A-atom cluster.

As seen in Fig. 3, asymmetric total DOS curves can
be successfully obtained for model II. The general
look of their change differs much from that of model
I. Direct comparison between models I and II is il-

lustrated in Fig. 4. In fact, it can be pointed out the
fact that an impurity state appears not only between
but above the main bands. The two between the
main bands correspond respectively to the antibond-
ing states of an A-atom cluster and a B-atom cluster
like model I. In addition, the one above the main
bands corresponds to the bonding state of an 3-atom
cluster, which merges into the upper main band in
model I. At the onset of ordering, a sharp peak aris-
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222120 MASAO NAKAO AND MASAO DOYAMA

20

15-

).0-

LRO
~q= 0.6 I

3 = o.35

ing from the resonant level of an isolated 3 atom ap-
pears first and then gradually grows to be the upper
main band. A peak for an isolated 8 atom appears
soon after that and gives the upper limit of the lower
main band. The behavior described above is easily
interpreted in terms of local DOS's and this is a re-
markable advantage of our theory.

0.5-
B. Short-range ordering

I-

hl
Cl

-1 0 0 t.o

ENERGY

FIG. 4. Comparison between model I (h2=I (h =0) and model

II (hpjht =j =0.1 02 03 0.4 and 0.5) in the case of long-

( =0 6 cr =0.36). The total DOS is calcu-range ordering q = . , cr =
lated for 8 = . wit e=0.35

'
h th help of a continued-fraction tech-

nique.

Here again we should emphasize the fact that

order. In a partially long-range-ordered state, t e
presence o s or-f h t-range atomic correlation is indicat-
ed by the deviation of o- from q'. Therefore, it may
be reasonable to regard short-range order as correc-
tion of long-range order.

As it is well known in the classical Bethe theory,
after the long-range order has disappeared, the
short-range order still remains. Let us investigate
such a case in addition to the case that the system
has a slight tendency to segregate. The results are
shown &n &g.Fi . 5 for the values of o- ranging from
—0.3 to 0.3, keeping q=0 fixed. For larger absolute

'
1values of a., convergence difficulty occurs main y

about the upper peak.
This indicates that the description by a site-

diagonal choherent potential is less justified as the
degree o s or -raf h t- nge atomic correlation increases.
Furthermore, it is believed to be unreasonable to re-

gard such a system as microscopically homogeneous
and replace it with uniform effective media. In the
case o or erring,

'

a per U, peak arising from an isolated atom

(b)
g(E)
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/ =0.5) in the case of short-range ordering and
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gnd dusterin (q =0).FIG. 5. Plot of the total densi ynsit of states for model II(h2 hj = . in e
=0.5} nd (b) a continued-fraction expansion (5=0.of (a) the semicircular band 5 = . anCaculations are made by means o,a e se
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FIG. 7. Band bottoms of Fig. 3(a). The band edge
moves towards higher-energy side approximately in propor-
tional to q2.
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FIG. 6. Comparison between model I (h2=0) and model
II (h2/h& =0.1, 0.2, 0.3, 0.4, and 0.5) in the case of short-
range ordering (g =0, o. =0.3). The total DOS is calculated
for 5=0.35 with the help of a continued-fraction technique.

also appears, but it is slightly broadened and shifted
compared with that of Fig. 3. In the case of cluster-
ing, the probability of finding A- and 8-atom clusters
increases and the corresponding peaks of antibonding
state become larger. In the result, the total DOS
curve seems to approach the arithmetical'average of
both constituent pure DOS curves with clustering,
Comparison between models I and II is shown in

Fig. 6.

shift of the band edge if proportional to q' in Fig. 7
and to a in Fig. 8. This is of great interest in con-
nection with the relation (35), because it suggests
that the behavior of the band bottom is approximate-
ly determined by the value of the SRO parameter.

The lowest energy of the band bottom is con-
sidered to be determined by the localized levels in
the largest regions of 8-atom clusters. The probabili-
ty of finding such a region is characterized by the
number of 8 —8 bonds provided that triple-site and
other multisite correlations are not important. Ac-
cording to the definition of the SRO parameter (34),
the number of 8 —8 bonds is given by the value of
the SRO parameter. Our observation is compatible
with the above remarks.

'x 10

C. Band bottom

More-detailed results for the behavior of the band
bottoms in Figs. 3(a) and 5(a) are given in Figs. 7
and 8, respectively. Figure 6 shows that the band
edge moves towards. higher- or lower-energy side ac-
cording as o )0 (ordering) or o. (0 (clustering),
respectively. This tendency agrees with the calcula-
tion by Woolley and Mattuck although their method
is quite different from ours. Roughly speaking, the

0
-1.60 -1.5 9 -1 58 -1 57

Fig. 8. Band bottoms of Fig. 5(b). The band edge moves
towards higher- or lower-energy side according as cr )0 (or-
dering) or cr & 0 (clustering) approximately in proportional
to o.
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IV. CONCLUSION

We have presented a new self-consistent method
for studying the electronic structure in CsC1-type
order-disorder alloys. For a better description of par-
tially ordered states, we included both long- and
short-range order parameters. The theory was based
on a model with finite values of the second-neighbor
hopping integral as well as the usual nearest-neighbor
tight-binding model. The numerical results suggest
that the inclusion of the second-neighbor hopping in-

tegral is quite important because DOS curves become
asymmetric by that. Our method can produce rea-
sonable DOS for all the range between the disordered
state and the ordered state. As a result of numerical
study over LRO and SRO parameter space, we found
that the striking differences appeared according to the
degree of order. This fact emphasizes that the effects
of order should be investigated more intensively. We
did not make any calculation for the strong-scattering
regime because of the occurrence of unphysical
behavior. In fact, convergence difficulties are ob-
served chiefly for LRO and SRO parameter values

such that the deviation from the relation (35) is

large. However, we feel that this failure cannot be
attributed to the nonanalyticity problem mentioned
before, because we did not encounter any nonanalytic
behavior of the Green's function as far as perfect-
disorder and pure-LRO cases are concerned, even in
the strong-scattering regime (5 & 6). This analytic
feature of our system justifies the present investiga-
tion, though this may depend on both its 50-50'/0
concentration and its lattice structure. Quite recently,
the authors have found that the convergence difficul-
ties can be improved to a considerable extent, if con-
sistencey between a cluster and the external media is
required not at the central site but at a boundary site
of the cluster. Testing of the boundary-site approxi-
mation is now in progress.

In this paper, we have reported only the calcula-
tions for quite restricted cases. More, explicit investi-
gation over wider range of each parameter value and
a comparison with other methods such as a generali-
zation of the cluster-Bethe-lattice method"""
which can be applied to our problem will be made in
a subsequent paper.
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