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A theoretical &n ~lysis of the excit ~tion spectrum of long-chain polyenes is presented. Because

of the twofold degeneracy of the ground state of the dimerized ch ~in, element ary excit~tions

corresponding to topological solitons «re obt ~ined. The solitons c'~n h'~ve three ch;urge st &tes

g =0. + &. The neutral soliton h'~s spin one-h;~lf while the ch;urged solitons h;ive spin zero.
One electronic state is loc'&lized;~t the g ip center for e;~ch soliton or &ntisoliton present. The
soliton's energy of form ~tion, length, mass, activation energy for motion, ~nd electronic proper-

ties «re c calculated. These results «re compared with experiment.

I. INTRODUCTION

Because of the degenerate ground state of the
bond-alternated polyene chain, one expects excita-
tions to exist in the form of a topological soliton, or
moving domain wall. In an earlier paper, ' we sug-
gested the possibility of such soliton formation in the
conjugated organic polymer (CH)„, polyacetylene,
and we outlined some of the implied experimental
consequences. Related theoretical studies have been
carried out in a Ginzburg-Landau' scheme as well as
in a continuum approximation. ' '

Magnetic-resonance studies of undoped Izn»s-

(CH)„have shown the existence of highly mobile
neutral magnetic defects in the polymer chain.
Since a charge neutral soliton in a long-chain polyene
would have an unpaired spin localized in the wall, it
was suggested that the motionally narrowed spin res-
onance might arise from bond-alternation domain
walls induced upon isomerization. Moreover,
analysis of the transport" and magnetic properties' in

lightly doped samples led to the suggestion that dop-
ing may proceed through formation of charged
domain walls. Thus, the concept of soliton formation
and the detailed evaluation of properties are of direct
interest to the continuing development of this novel
class of conducting polymers.

Our theory assumes the existence of bond alterna-
tion along the polymer chain (i.e., alternating "single"
and "double" bonds) and relatively weak interchain
coupling (i.e. , quasi-one-dimensional behavior).
There is experimental evidence that both these as-
sumptions are valid in (CH)„. Raman studies""
have detected the splitting of the carbon-carbon bond
stretch vibrations resulting from bond alternation
consistent with the normal mode analysis. " Weak
interchain coupling is suggested by the observation of
considerable anisotropy in physical properties after
polymer orientation. " Moreover, recent nuclear-
magnetic-resonance studies have' demonstrated

one-dimensional electronic spin diffusion in the poly-
mer, both undoped and heavily doped.

In this paper we present a detailed theory of soliton
formation in long-chain polyenes in the one-electron
approximation. The model Hamiltonian is described
in Sec. Il and solved for the perfect dimerized ~h ~in

in Sec. III. Soliton excitations and their properties
are derived in Sec. IV, and doping effects ~re con-
sidered briefly in Sec. V. Section VI includes a brief
comparison with experiment il results.

II. MODEL HAMILTONIAN

To simplify our description of (CH)„, we assume,
as described above, th ~t to lowest order one can
neglect interchain electron hybridization. Also, we
assume that the o- electrons can be treated in the adi-
abatic approximation since the gap between the cr

bonding and antibonding states is large ( —10 eV)
compared to the phonon and soliton energies ( & 0.5
eV). Furthermore, since we are interested primarily
in the dimerization structure of Iza»s-(CH)„, we tre tt

only that configuration coordinate zI„ for e hach CH
group» which describes translation of the group
along the symmetry axis ( v) of the chain, ~s shown
in Fig. 1. For the structure shown in Fig. 1(a)
zz„& 0, while z.z„+~ and zz„~ & 0, leading to a short
("double" ) bond between groups n —l and n, and a

long ("single" ) bond between» and» +1. These dis-
placements have the reverse signs if double and sin-

gle bonds are interchanged, as in Fig. 1(b). Let a be
the equilibrium spacing between the x coordinates of
successive CH groups in the undimerized structure
(i.e., all bond orders equal to 1:5). iz is approximate-
ly l.40 x d3/2 A = 1.22 A. Because of symmetry,
the remaining five coordinates for each CH group are
not coupled into the dimerization structure to first
order in phonon coordinates «nd will be neglected,

Since the change of 'oond length due to dimeriza-
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where M is the total mass of the CH group. The
model Hamiltonian is the sum of these energies

shown in Fig. 2. We note that Eq. (2.2) is the stand-
ard form of the electron-phonon coupling in metals.

Finally, the kinetic energy of nuclear motion is
given by

(b)
Hl

H H
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+
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FIG. 1. Perfectly dimerized tia»s-polyacetylene showing
the dimerization coordin &te «„ for the two degenerate

ground st ~tes: 3 phase [Fig, 1('~)] ~nd 8 ph ~se [Fig. 1(b)].

where i„, and i„, create and destroy n electrons of
spin s ( + —, ) on the n th CH group. The c and c

satisfy Fermi anticommutation relations while it„and
p„= M6 „satisfy canonical commutation relations

[p„,«, ] =B,ir/i (2.5)

tion is small, of order 0.08 A, we assume that the o.

bonding energy can be expanded to second order
about the undimerized state,

En = —' Q K («„+I —«„)' (2.1)

rn, +I=nro Sn(«n+I «n) (2.2)

to is the hopping integral for the undimerized chain
and u is the electron-lattice displacement (phonon)
coupling constant. Model calculations" ' indicate
that this linear approximation is valid since the
bond-length changes are small. A sketch of t„+~ „ is

where K is the effective o- spring constant.
We assume the rr electrons (p, orbitals) can be

treated in the tight-binding or Huckel-type approxi-
mation with a hopping integral t„+~ „which can be ex-
panded to first order about the undimerized. state

We note that cis-(CH)„can be treated in a similar
manner using the configuration coordinate il„shown
in Fig. 3. For the pattern shown in Fig. 3(a), «„and
lI„+2 are negative and l(„~ and u„+~ are positive,
while the signs are reversed for the configuration in

Fig. 3(b).
Missing from ff are the explicit Coulomb interac-

tions between vr electrons. They are partially includ-
ed by using screened values of to and o. . %'e also
treat Coulomb interactions between the charged soli-
ton and impurities. However, if the 7r-7r Coulomb
interactions are very strong, our approach is invalid
and one should start from the "large-U" limit for the
m electrons.

Finally, we note that H should be supplemented
with the constraint of fixed total length of the chain,
since we assume that a is the equilibrium lattice spac-
ing of the undimerized, including m bonding.

'n+t, n

'o '~
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to-t)
!

I
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FIG. 2. Ne ~rest-neighbor hopping integral as & function
of the dimerization coordinate difference. The undimerized
ch ~in has «„+]—«„=0, while this difference is equal to 2«0
~nd —2«0 for ~ single &nd a double bond, respectively,

FIG, 3. Two dimerization structures for i is-polyacetylene,
the dimeriz ~tion coordin &tes ~re perpendicular to the C—H

bonds, as shown. The 3 &nd 8 structures are not degen-
erate in energy as they are for the tfa»s phase.
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III. PERFECTLY DIMERIZED CHAIN The conduction- and valence-band states «re given by

%e begin by investigating the perfectly dimerized
chain in the Born-Oppenheimer approximation,
where the configuration coordinates «„are con-
strained to be

Xk = —g~' 4n
W

x'= g '"'"(—i)"y1

k ~N n

(3.4a)

(3.4b)

u„= ( —I )"u (3.1)

X ((n+1 s('ns + (ns(n+1, s ) + 2NKiI (3.2)

Since the hopping potential is periodic with a period
2a, we use a reduced-zone scheme with zone boun-
daries at +7r/2a. In Fig. 4 the zero-order (u = 0)

. bands are shown, where,

The kinetic energy EM will be treated later. By
evaluating the ground-state energy as a function of «,
one can determine the values of the displacement
amplitude «which minimize the total energy Ep. By
symmetry, if «p minimized Ep, so does —«p. Hence
we expect a twofold degenerate ground state corre-
sponding to the two-bondings configurations shown
in Figs. I (a) and 1 (b) .

For fixed u, the first two terms of Eq. (2.4) are

H (u) = —X [ro+ ( —I ) "2nu ]

,v, ikan,1

ks I— ( (ns
VN

(3.S;t)

'ks = X' ( I ) 'ns
1

n

(3.5b)

By inverting these transformations 0"can be ex-
pressed in the k representation

H = $ [ k ( (' C (' (' )
ks

+ 4uu sinka (ck,+&k", + ik",+ok, ) ] + 2NKu'

(3.6)

where $„ is the 7r orbital on the nth group. We use
periodic boundary conditions on a chain of N CH
groups. The chain length is I = W«. The operators
(k" and (k for the zero-order bands ~re related to the
operators (n, by

Ek" = —2tpcoska = —
&k

Ek ' = + 2(p cosk~ = ~ k

(3.3) Finally, f/~ can be brought to diagonal form by defin-
-ing operators

Eo
k

uks ~k~ ks + Pk~ks

k, C
' k", V

aks ~k ~ ks Pk ~ ks

(3.7a)

(3.7b)

to
where

(3.8)

By inverting Fq. (3.7) arid requiring that IId be diago-
nal in the «operators, one finds

II"=g Ek(itk, —iik", ) + 2NKu'
ks

(3.9)

where

(~2+ g2)1/2 (3.10)

«nd the gap parameter Ak is defined by

5k =4+«sink« (3.11)

t 0

FIG. 4. m bands for undirnerized (rarer-(CH)„with a zone

scheme for a unit cell having two CI-I groups. When dimeri-
zation is included, gaps occur at /- =++/2a, with C 1nd &'

becoming the conduction 1nd valence bands of a semicon-
ductor,

1

O'k =

1Pk= —,

1+
Ek

1/2

k1—
E

sgnk

(3.12a)

(3.12b)

Thus, the single-particle energy eigenstates of the

with I~ = «+«being the occupation number operator,
as usual. The transformation coefficients, for
o.k

= real positive, are given by

1/2
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perfectly dirnerized lattice are

1/2

1 6k
4k= —, 1+

Ek

1 +k
Xk +sgnh

Ek

&

'
1/2

Xk

(3.13a)
1

1/2 r

k c—1+ Xk —sgnk —1—k 2 E 2

1/2

Xk

(3.13b)

(3.14)
with eigenvalues

Ek"= —Ek, Ek=+Ek .

Phases are chosen so that Pk' Xk' as I) „0.

Ep(u) = —2 XEk+2IVKtt'
k

(3.15)

where A; is summed over the first Brillouin zone of
the dimerized lattice —m/2a (k ( rr/2a with the
two terms in Eq. (3.15) corresponding to the 7r and tr

energies. By replacing the sum by an integral, one
obtains

The ground state of the chain for exactly one m

electron per atom on average is given as a function of
tt by Eq. (3.9) where ttk", = 1 and nk, =0. One has

p~/2a
Ep(u ) = — [ (2tp coska ) '+ (4nu sinka )'] 'I' dk + 2IVKuz

7r Jp

4+t fe'/2

[1 —(1 —z') sin'ka ]'I' dk a + 2IVKu'
m

4IVtp z
IVKI pzz'

E(1 —zz +
7r 2(1

(3.16m)

(3.16b)

(3.16c)

where E(1 —z') is the elliptic integral and

t1 20«
z

to to
(3.17)

For small z,

E (1 —=') =—1+—'(ln4/lz
I

——')='+
2 2

(3.18)

Therefore, the vr energy is always more negative than
the o. energy and Ep(u) has a local maximum at
« = 0, corresponding to the Peierls theorem. Taking
the value'9 K = 21 eV/A', the rr bandwidths'P as
W„=4to = 10 eV, and choosing n so that Ep has a
minimum when the dimerization gap is E& = 4t1

I

=1.40 eV, we find Ep(u) shown in Fig. 5, with mini-

ma at + up where up=0. 04 A. With this choice of
parameters, we find n =4. 1 eV/A, a value com-
parable to that given by quantum chemical calcula-
tions. " The bond-length change due to dimerization is
+ J3 up = + 0.073 A, close to the value used by
Baughman et al. " in their calculations. The conden-
sation energy per site in eV is

E,' = —[Ep(up) —Ep(0) ] = —0.015 . (3.19)

The density of states per spin of the perfect dimer-
ized bands is

(IV/~)IEI/[(4tp'-E')(Ez-~')]'/2, ~-IEI —2tp,
pp(E) =—

0, otherwise,
(3.20)

„Eo(u)/N i ID (E)

U

c/tV

FIG. 5. Born-Oppenheimer energy per CH group plotted
&s 1 function of the staggered dimerization coordinate
iI = ( —I )"v„. The two stable minima correspond to
3 (+ «p) &nd 8 (—«p) phases.

-2to

f
////////t /iii///,

-2tl 0 2tl 2to

FIG. 6. One-electron density of st &tes for 3 or B phase
ti'airs- (CH )„.
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where the gap parameter 5 is defined as

= 4'.L(p = 2(] (3.2 1)

has
2~(,ika(n-n )

n —n' even (3.24)
& k (~+(S) —Ek

po(E) is plotted in Fig. 6.
Since our treatment of the soliton requires the

Green's function G"((0) for the perfect dimerized lat-

tice, we next derive this quantity. Using the eigen-
function expansion one has

G~, (o)) =
HN

N k

[~ + ip ( 1)n]2, i»a(n n—)

( O) + I 8 ) 2 Lk2

n —i~' odd, (3.25)

For the diagonal element, one finds

Cd Ek + I 6
(3.22) —I QJ

[(4(p —m Xm —6 ) j
where 5=0+. 0 for A. =i, v, respectively, and the
wave functions (]i»»(n) = (Q„l([i»») are given by Eqs.
(3.4a) and (3.13a),

G.'.(~)=, , ", , „,. 0& I~l &a(4t»)(h~ „~)](

Q» (n) = [n» +i P»( —1)"](."»'"/ JN

(1)»(n ) = [i ~»( —1)"—p»](""'"HN

= —i ( —1)"(ft» (n )

(3.23a)

(3.23b)

[(, 4t, )(, q, )]„,. I~l) t() .

pd(E) = — g" g lmGd„(E)
7T

(3.26)

This expression is consistent with the density-of-states
Eq. (3.20) expression since

Thus, combining Eqs. (3.8), (3.22), and (3.23), one We note for later use that

1

2(t( —to )
—(to+ t() +i t(

1+8
1 —8

(

~ ]/2
1 —8" 1+8 2f( IQJI 2f() (3.27a)

G„'„„(~)=
1 ]/2

1
( )

8+1
2((2 (2 )

]/2
8 —1+(p 8+1 l(0I ~2t(, or lo)l ) 2to. (3.27b)

where

(p +(] ——co2

8 = , , n odd
(t() —t(

(3.28)

I

m orbitals do not overlap, one has,

(y» It& I (]i» &
= i 2&M. sin't () IE»,

where M„ is the dipole matrix element

(3.30)

and t( = —,6, as defined above. Equations (3.27) and

(3.28) apply for n odd while the same expressions
hold with t~ replaced by —

t~ for n even. As an appli-

cation of these expressions we calculate the frequency
dependence of the optical-absorption rate. In the
long-wavelength limit, the dielectric tensor is

M = —' P(x.,v, ;) P(x+a, v, ;) rl'(
l X

Inserting Eq. (3.30) into Eq. {3.29), one finds

[(4t )' — ']'i'
Imt (ct) ) ~ ' ~3(~2 —4/2) [/2

2a ~ I~l ~4to

0, otherwise

(3.31)

(3.32)
4a'~ne' l (e»lt, I e») I'

Cgg Q) =1 +
meQj» 2E» (0+l5 f (3.29)

where n is the m electron density and m, is the elec-
tron mass. For polarization of the electric field along
the chain, j= x, and assuming next-nearest-neighbor

This expression is plotted in Fig, 7 in comparison
with experiment. The experimental results are ob-
tained from analysis of the inelastic electron scatter-
ing data of Ritsko ~( al. "on nonoriented (CH)„
films.
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I=IG. 7. Infr ~red absorption plotted as a function of pho-

ton energy for undoped (la»s-(CH )„. The experiment ~l

results ire obtained from analysis of the inelastic electron-
scattering data of Ritsko (1al. (Ref. 15) on nonoriented
(CH)„ films.

IV. SOLITON EXCITATION

p„= (-1)"u„. u„= (-1)"p„
The two ground states are then defined by

—irp, A phase,

~uo, 8 phase.

(4. 1)

(4.2)

Suppose that P„approaches —rro(A phase) as
n +~ and uo(8 phase) as n —~ and that the
region in the vicinity of » =0 forms a domian wall or
soliton separating the 8 and A domains. This wall is
analogous to that in a uniaxial antiferromagnet, with
the order parameter changing sign over the wall

thickness cf —= 2la. We wish to find the energy E, to
form the soliton at rest, the width parameter I, the
charge Q, and spin s of the soliton, as well as its ef-
fective mass M, . Other quantities of interest are the
spacial distributions of the soliton's spin and charge
density, its interaction with charged impurities, and
internal vibrational excitations of the soliton.

If one calculates straightforwardly the energy to
create a soliton in a finite length of chain, a difficulty
arises. Suppose the chain is initially in the A phase

As we discussed above, the classical ground state
of the dimerized chain is twofold degenerate with

ll 0 = + ( 1 ) Llo. Associated with this degeneracy, we

expect there to exist an elementary excitation corre-
sponding to a soliton. " It is useful to define an order
parameter ilia„associated with any displacernent u„

and a soliton is created so that the left-hand portion
of the chain is in the 8 phase. The system increases
its energy not only because of the increase of local

energy in the vicinity of the soliton but also because
the left-hand boundary of the chain terminates 8-
phase material rather than A-phase material. This
end-effect energy shift is inconvenient since we want
to treat the solitons as localizable elementary excita-
tions. One scheme to eliminate the difficulty is to
create an antisoliton (S) followed by a soliton (S) so
that the material goes from A to 8 to A as one moves
from left to right along the chain. If S and S are
widely separated they do not interact and the energy
change is twice the soliton creation energy E,

To simplify the numerical work„we found it con-
venient to calculate the energy of a single soliton in a

finite chain for various shapes of the wall. Since the
end effect is independent of wall shape, a calculation
of the absolute energy of S + S for any single wall

width serves to fix the zero of soliton energy when
calculating the energy of a single soliton in a finite
chain, This is the procedure we use. Alternatively,
one can calculate the end-effect energy analytically by
determining the energy difference between an A- and
8-phase end of a chain.

To determine the minimum energy configuration
which approaches the perfect A and 8 phases as»
goes to +~ and —~, respectively, we isolate a s'eg-

ment of the chain surrounding the soliton whose
center is located at » =0. Let the segment extend
from» = —v to + v. We decompose the full Born-
Oppenheimer Hamiltonian H into

H =Hp+ V (4.3)

where the zero-order Hamiltonian Hp corresponds to
perfect 8-phase displacements for» ~ —v and perfect
A-phase displacements for» ~ v. The hopping is de-
fined to be zero between groups in the segment
—v ~ » ~ v. Therefore, the hopping integrals defin-
ing Hp are

r, (-1)"-"r,, —

~n+I, n '0. —v» ( vp

f0+ ( —1) ri. l1 ~ V. (4 4)

v~~» (v
The P„'s are to be varied so as to minimize the total
system energy.

Here for convenience, we have taken v to be odd.
Physically, H p describes 2v —1 isolated atoms
between the semi-infinite 8 and A chains. The per-
turbation V is the missing hopping in the isolated
segment for any set of displacement order parameters
(y, )

—1'..+i = —1'.+i..= ro+ ( —1)"~(4.+i+4. ) (4.5)
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A convenient method for determining the ground-
state energy shift AE of an extended system due to a
localized perturbation V is the relation"

2
AE = —

J Im lndet[1 —Ga(cu) j 1' des . (4.6)

The determinant in Eq.
site representation. Since
and B, only the boundary
ments enter, i.e. , G„"„ ind
and (4.11) one finds

(4.6) is evaluated in the
V is zero in segments A

limits of G" in these seg-
Go„„. From Eqs. (4.10)

G' is the Green function in the absence of V, and p.

is the chemical potential, which is zero for our sys-
tem. This method has the advantage that one need
not diagonalize H to determine AE. Also„ the deter-
minant has a size limited by the spacial extent of V.

In our case the determinant has dimension 2v+1.
We find good convergence for the soliton in (CH)„
with 2v+1 of order 41—61.

To evaluate Eq. (4.6) we must determine Go.

Since the ffo hopping breaks the chain into three
noninteracting segments

GO ( ) Go ( )

[G„',„+) (~) j'
Gnn (~)

(4.13)

1

f/(), /1 ~~V
—ti~&tanh(»/I). v &» & v

where G„"„&nd G„"„+[ &re given by Eqs, (3.25) 'tnd

(3.27).
The integral in Eq. (4.6) was carried out numerical-

ly with the trial function

/1 «~V

S —v(// & v (4.7)

1/0. /1 ~~ V. (4.14)

8 //~ —v

G i (cu) = (I/cu)8 I. —v & ll, ll & v
nn n, n

'

I

To determine G in A, we consider a perfect A-phase
chain and place an infinite-site diagonal potential U

on group v —1 so that the chain to the right of this
site is uncoupled from site v —1 and thereby uncou-

pled from the rest of the chain. In segment A, G
satisfies

(4.8)

G" = G + G„„~UG", . n lt™v, (49)

Go is block diagonal in these segments, In S, one has

0.9—
I I I I I I I I I I I I I

hE is plotted in Fig. 8 for three values of the energy

gap L,; = 1.0„1.4, and 2.0 eV. As discussed above,
the zero of energy was shifted to give the correct
answer for a widely separated soliton- tntisoliton p iir

with /=1.
For the value 1.4 eV, the soliton formation energy

is E, =0.42 eV and the width parameters / = 7. We

have tried other tri il functions with little change of
-energy and shape of the soliton. Thus, for (CH)„ the
wall is quite diffuse and one expects small lattice

where G. is given by Eq. (3.24). Taking the limit

U ~, one finds for the A segment

G', =G', —
nnnn G„„

n it' ~ v . (4.10)

In the 8 segment, Go is determined in the same
manner from a 8-phase chain by placing an infinite
potential on site —v+ 1,

0.8—

0.7
0

0.6

0.5

. 0.4—

g= 2.0 eV

= 1.4eV

G' =G0
nn nn

—d —d

I

G„
0.3

(4.11)

where G is the Green's function for a 8-phase chain,
corresponding to t~

—t~ in the expression for G .
We note that as a consequence of symmetry, one has
the relation,

E =1.0eV

O.Z—
I I I I I I I I I I I I I

2 4 6 8 10 I2 1416 18 20222426

Go Go-n, -nnn
(4. 12)

I IG. 8. Soliton energy I'(/) plotted is 'i function of in

issumed h ilf-width / for sever il v'ilues of the energy g ip I'g.
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hp(E) dE =0 (4. 15)

From this relation and the fact that hp(E) is a sym-
metric function of F, it follows that the valence band
has a deficit of one-half a state for each spin, as does
the conduction band. Since the valence band is fully
occupied both with and without the soliton, the
valence band is missing a total of one electron in the
presence of the soliton. It follows that in a neutral
soliton the missing electron occupies the state $o.
Note that the valence band remains spin paired while
the electron in $0 is spin unpaired. Thus, a neurial

periodicity effects in pinning the soliton. Preliminary
calculations show that F., varies by roughly 0.002 eV
as the center of the soliton moves between lattice
sites, This indicates that relatively free translation of
the soliton would occur in an otherwise perfect lat-

tice, down to temperatures on the order of 20—40'K.
In passing we note that while the wall is diffuse,

this does not imply that a Ginzburg-Landau-like
theory involving a gradient expansion of the free-
energy functional is appropriate. Rather, the wall

thickness la is of the order of the nonlocality distance

(o =fvf/rr5 and a more accurate analysis, including
nonlocality and umklapp processes, must be carried
out, as we have done here.

To investigate the electronic structure of the soli-
ton we have calculated the change in the density of
states /t p(E) due to the presence of the soliton. The
results are plotted in Fig. 9 and show a single sharp
state $o(n) at Eo=0, the gap center, for each spin
orientation. Below, we derive the explicit form of
Ifl (oa). Since the total number of electronic states in
the 7r band is conserved (i.e. , independent of }p„}),
it follows that:

solito» has spi» o»e-half.
'

As we discuss below, the
low-energy-charged soliton states correspond to re-
moving the unpaired electron from Po or adding a
second electron of opposite spin to Po. Therefore,
the .&pi» of'a chalyeil solito» is zero. In summary, one
has

go=0, so= 2,
I

0+=+e, s+=0 (4.16)

It would appear that in forming a soliton we have
violated Kramer's theorem, which requires that the
spin of a system with an even number of electrons be
an integer, and with an odd number be half an odd
integer. Since the total number of electrons is con-
served in creating a neutral soliton yet the soliton has
spin —,, a compensating spin must occur somewhere

else in the system. The situation is clear for a ring of
N CH groups, where N is very large compared to I.

Because of the single-valuedness of the order param-
eter, a soliton S which separates 8 and A phases must
be followed by an antisoliton S which separates. A and
8 phases, as illustrated in Fig. 10. In this figure the
order parameter is plotted radially, positive outside
and negative inside the ring. If S and S are widely
separated, their interaction is exponentially small and
they are independent excitations. However if 5 and 5
are neutral, they each have spin —, and Kramers

theorem is satisfied. This model also clarifies the
counting of electronic states, since there must be an
integer number of states in the valence band with
and without S and S. Since for each spin direction 5
and S each remove one-half of a state from the
valence band, one complete state is removed by S
plus S, satisfying the integer-state counting rule.
This result also holds for the conduction band, For a
finite chain discussed above, a similar argument
holds if S or S are created far from the chain ends
and are themselves widely separated. If only S or 5
is created, it can be shown that an extra spin of one-

2tp -2t 2t 2tp
Z W/

FIG. 9. Changes of density of st ~tes Ap(E) due to the
presence of ~ soliton. The g ~p center state gives a 6 func-
tion of strength unity. This is compensated for by densities
missing from the v &lence &nd conduction b &nds each in-

tegrating to one-half a state. In essence, the gap-center state
is a nonbonding state between the bonding ~nd antibonding
b &nds.

FIG. 10. Soliton S and antisoliton S occurring in a ring
of (CH)„. The order par&meter p is plotted radially.
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half is created or destroyed at a chain end, ensuring
that Kramers theorem is satisfied. 24

At each site», the electron density missing from
the valence band is exactly compensated by the den=

sity I t&o( &&) I' of the unpaired electron. This can be
proved as follows. For any configuration of the
chain, the local density of states p„„(E)satisfies the
sum rule

Qp„„(E)&

0.125— ——n= 5
ooooooo ~

p„„(E)dE =1 (4.17) ~ or

which follows from the completeness of the eigen-
states of H ( &

&1&„&I). [Note Eq. (4. 15) follows from
Eq. (4.17) by summing on» ]The. refore the change
of p„„(E)due to the presence of the soliton in-

tegrates to zero. Furthermore, &) p„„(E)= Ap„„(—E),
so that we find the local compensation sum rule

f —4
2J &&&p„„(E)rIE+ (i&t&o(n) I'=0 . (4.18)

which proves that the missing electron density in the
valence band is exactly compensated at each site by
the go electron density. Thus, a neutral soliton is

both globally and locally charge neutral. An analo-
gous relation of local charge compensation has been
derived by Brazovskii4 in the continuum model.

Since the energy of the system is the same if the
occupancy of &to is zero, one, or two, the width and

energy of the soliton are identical for the three
charge states g =0, + c. From this it follows that the
charge distribution of the 0 = 0, + e soliton is given

by +e~& (o)»~'.
Ap„„(E) for the valence band is shown in Fig. 11

for» =0, 6, and 12, and for» =1, 5, and 11 in Fig.
12. The smallness of Ap„„(E) for odd» is consistent
with the fact that l&t&o(») )' vanishes for odd», as we

now demonstrate. Since ED=0, the wave function

I IG. 12. S &me &s 1 ig. 11 except results for» =1, 5, 11

are shown.

t&(&on) of the gap center state satisfies

&&&+&n@o( &&) + &n+&+24&&0, ( n + 2 ) = 0

where

(4.19)

tn+ I, n n, n+ I

= to+ ( —1)"n(&i&„+& + &1&„) (4 ~ 20)

and &1&„ is given by Eq. (4.14). Since @&&(n) for even
and odd» are uncoupled, there are two linearly in-

dependent solutions, one of which decreases ex-
ponentially as» + ~, while the other diverges and
is not normalizable, If the soliton is centered on
» =0, + 2, . . . the normalizable state only involves
even», while it only involves odd» for a soliton cen-
tered at + 1, + 3, , . . . The state is a linear combina-
tion of even and odd» if the soliton's center is

between sites. In the present case, the soliton is cen-
tered on n =0 and $ (»o) =$&&(—n ). For even n

one finds

~Pan(E)

0.125— ——n=6
~ oooooooo n ~ lP

go(» +2) =— tn+&, n

~ ( )
, tn+2, n+1,

—tn+i, n 4—i, n —2

tn+2, n+1, tn, n- l

f

Ao(0)
t2~

(4.21)

paua ~—
o'

tp

-rr goo ~o~orooooo

-2tt

HG. 11. Ch ange in the local density of states hp«(E)
due to the presence of a soliton, plotted for the valence-
band region —2(0 ( L (—2( ~. Symmetry ensures
5p«(L) = Ap«( —E), so the conduction- and valence-band

changes are mirror symmetric about the gap center. Not
shown is the 5 function at the g ~p center of strength

to()l&~&. R»esults for n =0, 6, 12 are shown.

1
&t&o(n) =——sech —cos—n»

I I
(4.22)

In passing we note that Coulomb interactions

while &to(n) =0 for odd n &to(0) is .determined so
that &t&o is normalized to unity. ~&t&o(») ~

is plotted in

Fig. 13, for I =7 and I = 5, showing little variation
with I. Roughly speaking, &t&o(n) behaves like a WKB
state, tunneling through a barrier of height b and

modulated by the zone-edge wave function for
&( = + n/2u,
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'& Iclt (n) I

O.20--

0. 1
6--

I \
t ) n

C

2=7

I I I k~
-18 -16 -14 -12 —10 -8 -6 - 4 —2 0 2 4 6 8 10 12 14 16 18

FIG. 13. CiaP-center state Probability density ~lga(ci) ~
Plotted for a soliton centered on n =0. Two soliton widths t =5 and 7

;~re considered. By symmetry, $p(») =0 for odd» if the soIiton is centered on even».

between electrons split the Qa level for different oc-
cupancies in a nonintuitive fashion. "

The mass M, of the soliton can be determined by
calculating the energy of a slowly moving domain
wall,

E, &A (5.1)

a charged soliton (Q =+ c ). Choosing the center of
the gap as the origin of energy, the minimum energy
to inject an electron (or hole) is 5, while the energy to
make a charged soliton is E, . Thus, if

chic„(t) =ctotanh[(na —u, t)/l ja (4.23) soliton doping occurs through the formation of
charged solitons, while if

—,M, tc,'= —,M $cic„

M«p ~,2 2
»sech4—

2(2a 2 (
c

(4.24)

Therefore, using the parameters for E& = 1,4 eV one
obtains,

4 «p
M, = ——M =6»t,

3( a

where m, is the free electron mass. The small value
of M, is a consequence of the smallness of the di-
merization length up compared to the lattice spacing
a. One would expect that the soliton would have
high mobility because of its small mass, and it must
be treated as a quantum particle.

V. DOPING EFFECTS

In the traditional semiconductor picture of doping,
an impurity donates an electron (or hole) to the con-
duction (or valence) band of the solid and no struc-
tural change of the solid occurs. In (CH), one must
consider whether the state of lower energy is a free
electron (or hole) as in the semiconductor picture, or

From time-reversal symmetry, any change in wall

shape, e.g. , (, must be of order v,2 and does not con-
tribute to M, for small v, . Continuing to work within
the adiabatic approximation, we find

E, &A (5.2)

semiconductor band doping occurs. For a range of
gap sizes we found E, —0,65. Therefore, soliton
doping is favored in (CH)„-like systems. This result
implies that for each donor (K, Na, etc. ) or acceptor
(Cl, AsFs, etc.) which transfers an electron or a hole
to the chain, "one charged soliton is formed. Since
charged solitons have zero spin, no spin resonance or
Curie-law susceptibility would be associated with the
charge carriers, as is experimentally observed. One
might ask, how is it possible to transport a single
charge +e without having spin transport. In essence,
the charged soliton carries one missing electron, half
of which is in the up-spin valence band and half in
the down-spin valence band. This is accomplished by
slightly deforming all of the states in the valence
band so as to reduce locally the up- and down-spin
electron density each by a total of half an electron in
the vicinity of the soliton. Far from the soliton, the
electron density returns precisely to its value without
the soliton. For Q = —e, the soliton has two elec-
trons spin paired in $a and the missing electron den-
sity from the valence band is doubly compensated for
by the ctco electrons.

Next we calculate the interaction energy of AEI of
a charged soliton Q = + c interacting with an impurity
of opposite sign of charge Q'= + e. For simplicity we
assume the impurity to be a point charge located a
distance 0 from the chain and centered at » =0.
When the soliton is centered on site»„ the Born-
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Oppenheimer energy has the additional term

)1 fls

[(na )'+ d']'t' (5.3)

where we assume the interaction is screened by the
macroscopic dielectric constant e. For E& = 1.4 eV
and e = 10, one finds for ~x, ~/d ( I,

AEt (.v, ) = —Eb+ —,kbx, '+ 0 (x,4) (5.4)

0.06 eV, tt =2.0 A

~0.05 eV, t/ =2.4 A. (5.5)

Treating the soliton as a quantum particle, the zero-
point motion reduces the equilibrium binding energy

I

to Eb
2
~~s.

In a more complete treatment of the soliton-
impurity interaction, / must be allowed to vary to
minimize the system energy since the Coulomb ener-

gy is reduced as / is decreased. In Fig, 14, —Eb(I)
for .v, =0 is plotted as a function of / as calculated
from Eq. (5.3) for E„=1.4 eV and .d =2.4 A. Also

200-

-40 - ~E
b

I I I I I I t I I I I

0 4 8 12 16 20

FIG. 14. Free-soliton energy I;, the Coulomb energy of
ch urged soliton-ch;urged impurity inter;Iction —Lb, 'lnd the
sum L, —Lb 'lre plotted 'ls I function of the soliton width i.

When bound to In impurity the soliton width deere Ises
somewh It, '&Ithough the binding energy ch'Inges rel'Itively
little due to this effect.

where v, = i~, a. One finds E =0.33 eV and /b
=0.0029 eV/A' for d =2.0 and 0.30 eV and 0.0028
eV/A2, respectively, for t/ = 2.4 t]. If the soliton is

treated classically, the equilibrium binding energy is

Eb, compared to a measured activation energy for
conductivity in the dilute alloy AE„.,„d

=—0.30 eV.
For small amplitude motion of the soliton about

the position of the charged impurity, one obtains the
quantum of vibrational energy

trcu, tt(k=, /M ) 't'

p„(t) =ttotanh[»a/[la +5(t)] ]

then an effective H tmiltonian c tn be written

(5.6)

and

I&, = —/'I~ + —MI~
I 2 I

I 2 I 2

tt QP
~

= tr ( k
~ / M

~
)

(5.7)

(5.8)

The coefficients /.
I and MI lre given by

(j'E
/i]= ——

a 2 ()/2

Mit()2
hatt'secha'/4 „,I

(5.9)

(5.10)

For E~ =1.4 eV, and I =7, hcoI =0.09 eV. Infrared
absorption experiments on doped (CH)„have been
carried out by Fincher et al. and phonon modes in

the presence of a soliton have been treated by Mele
and Rice. '8

VI. COMPARISON %ITH EXPERIMENT;
CONCLUSION

The existence of paramagnetic defects in undoped
tiai~s-(CH )„ is well established. '" Isomerization of
iis-films results in a spin resonance signal whose in-

tensity grows with increasing tea»s-isomer content.
The results imply that the magnetic defects in trait»-

(CH)„are not due to impurities but are on the poly-
mer chain- and are induced by isomerization.

Goldberg et a/. ' suggested that the narrow room-
temperature electron-spin resonance (ESR) in trans
(CH)„results from motional narrowing due to a

mobile bond-alternation domain wall. Recent ESR
studies of (CH) „and (CD) „have demonstrated
that the ESR linewidths are determined by the un-
resolved hyperfine splittings; the temperature depen-
dences of the measured linewidths in trans (CH)„-
and trans (CD)„are consistent -with the picture of a
mobile defect. The mobility of the neutral defects
has been confirmed through observation of the
Overhauser effect in trans (CH)„by Nec-htshein
et al. ' However, they observed no such enhance-
ment in cis-(CH)„(i.e., containing a small trans con-
tent), but rather the "solid-state" effect due to cou-
pling to immobile electron spins. Thus the neutral
defects induced by isomerization are highly mobile

plotted tre E, ( I) for the free soliton and E, ( I)
—Eb(l). For the bound soliton, the Coulomb attrac-

tion shrinks wall thickness to approxim ately I = 5 tnd

incre uses the binding energy to Eb = 0.32 eV. The
shifted vibr ltional qu centum is hew, =0.07 eV. The di-

pole oscillator strength of this excit ttion is large be-

e&use it corresponds to a full electronic ch urge being
excited.

Another excitation mode of the soliton is the I or
shape oscill ttion. If one writes
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only in the fully isomerized trans (C-H)„ in agreement
with the ESR studies. The spin resonance of the
trapped immobile defects in the partially isomerized
polymer has been used to obtain information on the
spatial extent of the magnetic defect. ' Analysis of
the results implies a delocalization of the spin over a

region with half-width of about seven lattice con-
stants. Thus the theoretical description of these neu-
tral defects (in the undoped polymer) as mobile soli-

tons, with the unpaired spin spread over the extend-
ed domain wall, is in good agreement with all aspects
of the experimental results.

Experimental studies of the doped polymer are also
qualitatively consistent with the concept of doping
through soliton formation. Light doping of (CH)„
produces a dramatic increase in conductivity with no
accompanying increase in Curie-law spin susceptibili-
ty. It has been suggested' that this may be attribut-
able to nonuniform clustering of dopants into metal-
lic regions, resulting in a small Pauli, rather than Cu-
rie, magnetic susceptiblity. While such clustering
may play a role at dopant concentrations approaching
the semiconductor-metal transition ( —1 mole%),
complete clustering is unlikely especially at the light-
est doping levels. Moreover, compensation of the
charge carriers by many orders of magnitude in un-

doped trans (CH)„pr-oduces no decrease in Curie-law
intensity. ' Thus the spins associated with the Curie

law and the charges associated with the conductivity
are apparently decoupled in the lightly doped regime.
Furthermore the strength of the Curie-law contribu-
tion decreases "on doping consistent with the ex-
pected ionization of isomerization-induced neutral
solitons upon doping.

We conclude that the solitons, "or bond-
alternation domain walls, described theoretically in

this paper appear to play a fundamental role in the
properties of polyacetylene, especially at very light
doping levels. However, detailed experimental stud-
ies are required, especially as a function of dopant
concentration, to clarify the role of solitons in the
doping mechanism and in the subsequent electrical
transport.

ACKNOWLEDGMENTS

We would like to thank Dr. Sergi Brazovskii and
Dr. Steven Kivelson for stimulating discussions, and
Dr. 3. Ritsko for permission to use the Imedata pri-
or to publication. We are also indebted to Dr. David
Campbell for an informative discussion on soliton-
antisoliton collisions in $' field theory. This work
was supported in part by NSF Grant No. DMR 77-
23420 and by NSF-MRL program under Grant No.
DMR 76-80994.

'Address ifter J ~nuary 1980: Dept. of Phys. , Univ. of Cali-
forni ~, S inta B barbara, C clif. 93106.

'W. P. Su, J. R. Schrieffer, and A. J. f3ceger, Phys. Rev.
Lett. 42, 1698 {1979).

2M. J. Rice, Phys, Lett. A 71, 152 (1979).
3Hajime Takayama, Y. R. Lin-Liu, and Kazumi Maki, Phys.

Rev. B 21, 2388 (1980).
4S. A. Brazovskii, JETP Lett. 28, 656 (1978); and private

communication.
~B. I-Iorovitz and J. A. Krumhansl, Solid State Commun.

26, 81 (1978).
fl. Shirakawa, T. Ito, ~nd S. Iked ~, Die M ~cromol. Chem,

179, 1565 (1978).
"I. B. Goldberg, f3. R. Crowe, P. R. Newman, A. J. f3eeger,

~nd A. G. M ~cDiarmid, J. Chem. Phys. 70, 1132 (1979).
8B. R. Weinberger, J. K iufer, A. Pron, A. J. Heeger„and A.

G. M ~cDiarmid, Phys. Rev. B 20, 223 (1979).
A. Snow„P. Brant„and D. Weber, Polym. Lett. 17, 263

(1979).
-'"J. C. W. Chien, F. E. K &rasz, G. Wnek, A. G. MacDi ~r-

mid, and A. J. Jfeeger, Polym. Lett. (in press).
''Y. W. Park, A. Denestein, C. K. Chiang, A. J. Ikeeger,

~nd A. G. MacDiarmid, Solid State Commun. 29, 747
(1979); Y. W. Park, A. J. Iheeger, M. A. Druy, ~nd A. G.
MacL)iarmid, Phys. Rev. B (in press).

' S. Lefr tnt, L. S. Lichtman, H. Temkin, L). B. f itchen, D.
C. Miller, G. E. Whitehall, and J. M. Burlitch, Solid State
Commun. 29, 191 (1979).

' I. Ikarada, M. T &sumi, fk. Shirakawa, &nd S. Ikeda, Chem.

Lett. (Jpn. ) 12, 1411 (1978).
'4C. Tric, J. Chem. Phys. 51, 4778 (1969).
' C. R. f incher, Jr. , D. L. Peebles, A. J. f3eeger, M. A.

L)ruy, Y. Matsumura, A. G. M ~cL)i ~rmid, 13. Shirakawa,
«nd S. Iked ~, Solid State Commun. 27, 489 (1979); Y. W.
Park, M. A. Druy, C. K. Chiang, A. J. Ikeeger, A. G.
MacDi &rmid, I-I. Shir ikawa, and S. Iked t, Polym. Lett.
17, 195 (1979). J. J. Ritsko, E. J. Mele, A. J. Ikeeger, A.
G. MacL)iarmid, and M. Oz~ki (unpublished).

' M. Nechtschein, I. L)evreux, R. L. Greene„T. C. Clarke,
«nd G. B. Street, Phys. Rev. Lett. 44, 356 {1980).

' L. Salem, Iltr Mr&lr r'ttlat Otl)ital Ihr'r)t t r)/ C'r)]tjttp;rttr'rl Si'»-

tr ttI» (Benjamin, New York, 1966).
' R. E. Pcierls, ()ttrttttttttt Ilier r)ii r)f'Sr)lirls (Clarendon, Ox-

ford, 1955), p. 108.
' Y. Oshik ~, J. Phys. Soc, Jpn. 12, 1238, 1246 (1957).
"P. M. Grant «nd I. P. B itra, Solid State Commun. 29, 225

(1979).
'S. I-lsu, A. Signorelli, G. Pez, &nd R. Btughm &n, J. Chem.

Phys. 68, 5405 (1978); R. B ~ughm ~n and S. Hsu, Poly.
Lett. 17, 185 (1979).

Sr)litr)t)» rtt]rl ('r&ttrlr'tt»r'r/ Mattr't l Iti'sir'», edited by A. R.
Bishop ind T. Schneider (Springer-Verlag„New York,
1978).

T. L. Einstein ~nd J. R. Schrieffer, Phys. Rev. B 7, 3629
(1973).

W. P. Su (unpublished).
25J. R. Schrieffer (unpublished).

For references see A. J. Heeger and A. G. MacDiarmid, in



22 SOLITON EXCITATIONS IN POLYACETYLENE 2111

Pr oeeedirtps of'the Dubr ovrtik Cortfer ertee orr Quasi-Orle-

Dirrrerrsiorral Cortduetors, Leetur'e Notes irr Physi~'s 96, edited
by S. Barisic {Springer-Verlag, Berlin-Heidelberg, 1979), p.
361; A. J. Heeger and A. G. MacDiarmid, in NATO
Co» fer erree Series VI: Materials Scierr~ e edited by W. Hat-
field (Plenum, New York, 1979), p. 161 ~ See also accom-
panying paper in this volume by A. G. MacDiarmid and
A. J. Heeger for more details on chemical aspects of the
problem.

"C. R. Fincher, Jr. , M. Ozaki, A. J. Heeger, and A. G.
MacDiarmid, Phys. Rev. B 19, 4140 (1979).
E. J. Mele and M. J. Rice (unpublished).
B. R. Weingberger, J. Kaufer, A. J. Heeger, and A, G.
MacDiarmid, (unpublished).
Y. Tomkiewicz, T. D. Schultz, H. B. Brown, T. C. Clarke,
and G. B. Street, Phys. Rev. Lett. 43, 1532 (1979).

'P. Bernier, M. Rolland, M. Galtier, A. Montaner, M.
Regis, M. Candille, and C. Benoit, J. Phys. Lett. 40, L297
(1979).

While we have used the term soliton to refer to a shape-

preserving nonlinear excitation in the absence of other
such excitations, their integrity may be questioned when

soliton-antisoliton collisions become important as their

density increases. At present, little work h ~s been done

on soliton-antisoliton collisions in the coupled electron

phonon model discussed above. However, judging from

studies in the related problem of $4 field theory [T. R.
Koehler {unpublished); C. Wingate (unpublished); B. S.
Getmanov, JETP Lett. 24, 291 (1976); and A. E. Ku-

dryavtsev, JETP Lett. 22, 82 (1975)], collisions between

soliton and antisoliton rarely lead to their mutual annihila-

tion. Rather, the excitations reflect approxim ~tely el isti-

cally or, for small relative velocity, can form ~ bound

state. Investigation of this problem for the above Harnil-

tonian is being 'carried on by our group at present.


