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A simple tight-binding model representing hydrogen in the Vb metals and including a special electron-phonon
interaction is shown to give a molecular Jahn-Teller resonance state for physically reasonable values of the various
energy parameters. This unusual resonance state is pinned to the shell of metal atoms adjacent to hydrogen by an
effective Coulombic attraction that exists because of the nearly equal but opposite electron displacements on that
shell, caused by the direct interaction of hydrogen on the one hand and by the Jahn-Teller interaction on the other.
The mutual orthogonality of these two interactions implies that the Jahn-Teller state is an intrinsic feature of the

host metal.

I. INTRODUCTION

The properties of the bce hydrides of V, Nb, and
Ta reveal a surprising complexity given the sim-
plicity of the hydrogen atom. The most striking
feature is the coexistence of an apparently cubic
lattice distortion and a matrix of hydrogen vibra-
tions that has tetragonal symmetry. If these two
properties are determined by direct interaction
of the hydrogen atomic s state with tight-binding
states (d orbitals) of the nearest-neighbor metal
atoms, then they should botk reflect the tetragonal
symmetry of the tetrahedral interstitial site oc-
cupied by hydrogen. Any attempt to explain the
cubic lattice distortion in terms of long-range
interactions (of unexplainably large magnitude)
must show why these same interactions do not also
impart cubic symmetry to the hydrogen vibration
matrix.

In fact, the paradox described above seems to
require a more radical explanation—that the inter-
actions determining lattice distortion on the one
hand and hydrogen vibrations on the other are dis-
tinct from one another. It was essentially this
idea that led to the proposi’cion1 that interstitial
hydrogen stabilizes a peculiar Jahn-Teller dis-
torted molecular resonance state made up of &,

d orbitals on the metal atoms closest to interstitial
hydrogen. It was shown in I that most of the im-
portant puzzles concerning the behavior of hydro-
gen in the Vb metals could be nicely rationalized
in terms of both static and dynamic aspects of this
Jahn-Teller resonance state. An important high-
light was the development of a striking mechanism
for hydrogen diffusion involving the interplay of
Jahn-Teller reorientation with coherent tunneling
of hydrogen on hexagonal rings. Supporting this
idea was the argument that Jahn-Teller reorien-
tation relaxation qualitatively explains the exis-
tence of a temperature-independent dispersion
step in the phonon branch corresponding to the

C’ elastic constant.? Experimentally, this relaxa-
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tion correlates with hydrogen diffusion, a result
predicted by the notion that Jahn-Teller reorien-
tation limits hydrogen diffusion.

While the basic ideas of I are firmly anchored
in experimental fact, their connection to funda-
mental principles is no more than tenuous; in-
deed, the very question of plausibility remains
open. The present article attempts to settle that
question by showing the essential reasonableness
of the idea of a quasimolecular Jahn-Teller reso-
nance state. The basic approach here is not a
frontal attack on the problem of hydrogen in the
Vb metals, but rather a highly simplified repre-
sentation of that problem by a model amenable to
exact solution.

II. MODEL OF INTERSTITIAL HYDROGEN
IN THE Vb METALS

The model we have chosen to represent inter-
stitial hydrogen in the Vb metals is illustrated in
Fig. 1. Hydrogen is located symmetrically be-
tween four atoms on the (100) surface of a simple
cubic (sc) semi-infinite lattice. The lattice is
represented by an s-band tight-binding Hamil-
tonian and hydrogen by a strongly localized s
state. The tight-binding orbitals for the impurity
cluster are schematically indicated in Fig. 1. A
direct interaction Vy couples the hydrogen state
to the four nearest-neighbor metal states, and
for simplicity we take Vy > T, where T is a posi-
tive number with -7 the hopping energy connecting
nearest-neighbor metal atoms. Finally, the mod-
el includes a special electron-phonon interaction
to be described in Sec. III.

Our primary reasons for choosing the above
model are twofold: (i) It is perhaps the simplest
model that includes enough features to mimic the
indirect Jahn-Teller response described in I; (ii)
the problem of the direct interaction has already
been solved for this model by Green’s-function
techniques® which are easily extended to the pres-
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FIG. 1. Hydrogen in centered configuration on (100)
surface of a simple cubic lattice. Dashed circles show
tight-binding orbitals on impurity cluster atoms.

ent case. One may well object to the use of an sc
surface to represent a bce bulk effect; but we
note that (in a perfect vacuum) a metal atom on a
(100) sc surface differs only slightly from one in
the bulk, having five nearest neighbors instead of
six. Besides, while it is true that a bce bulk
metal atom couples strongly to eight nearest neigh-
bors and six next-nearest-neighbors, an individual
atomic d orbital will participate strongly in per-
haps half of these couplings. A discussion of
localized molecular effects must necessarily focus
on interatomic interactions of individual d orbitals
rather than total averaged interactions between
neighbor atoms. For these reasons, use of an s-
band tight-binding Hamiltonian corresponding to a
bulk bce metal would not improve the present
model. In any case, we emphasize that our model
represents the real problem more by analogy than
in any literal sense.

Before proceeding to the Green’s-function reso-
lution of the direct interaction, it will be useful
to treat the impurity cluster (hydrogen plus four
nearest neighbors) as a separate molecule inter-
acting with the semi-infinite lattice (sans cluster)
and to develop symmetrized molecular orbitals
(MO’s) that transform according to the represen-
tations of the appropriate Cg4, point group. This is
more than a conceptual artifice—it is the extra
orbital limit and provides an alternative point of
departure for the discussion of resonances local-
ized on the cluster. Such an approach has been
fully justified and exploited to great advantage for
atomic impurity states, primarily by Anderson.*
In terms of the cluster metal atom orbitals labeled
in Fig. 1, we obtain the following symmetrized
orbitals:

Ay =3(|1) + [2) + [3) + |9),
1By =1(|1) - |2) + [3) = |9)), (1a)
lEy=3(|1y=]2) - [3)+ |2),

which are labeled by the corresponding represen-
tation using chemical notation. The states be-
longing to the doubly degenerate E representation
are further labeled according to whether they are
symmetric (+) or antisymmetric (=) under o?
(plane of reflection normal to y axis). Taking the
one-center metal atom matrix elements (the atomic-
orbital self-energies) as defining zero energy, we
obtain one-electron energies (the MO self-ener-
gies) corresponding to the MO’s of Eq. (1a):

€(A1) :—2T,
«(E,) =0, (1b)
E(BZ) =2T.

Taking Vy=0 and turning on the interaction be-
tween cluster and depleted lattice gives back the
perfect (semi-infinite) lattice; so we may also
characterize the cluster orbitals in the perfect
lattice representation by projecting the total den-
sity of states (DOS) onto the corresponding orbitals.
To do this, we introduce the lattice Green’s func-
tion

o= &L, @)

where lk) and E(k) are, respectively, the eigen-
functions and eigenvalues of the appropriate tight-
binding Hamiltonian, and z= € -~ {0 is restricted to
the lower half-plane near the real (energy) axis.’
In the tight-binding representation, the matrix
elements are G, ,(z) ={1|G(z) |m), so that the pro-
jection of G(z) onto the cluster orbitals of Eq. (1)
gives

GY(2)=(A;|G(2) |Ay) = Gyy +2Gy, + Cyg,
G} (2)=(B,y|G(2) | By = G11 = 261y + Gy, ®
GE(Z)> = <Et lG(Z) IEJ:> :GII - GIS .

In deriving these expressions, we have made full
use of the symmetry of the G, ,(z) as described by
Einstein and Schrieffer.® The particular G,,(z) on
the right-hand side of Eq. (3) have been evaluated
and are available in tabular form.® Using these
quantities to determine the cluster Green’s func-
tions of Eq. (3) allows an exact solution for any
perturbing potential whose range is limited to the
cluster of Fig. 1. Of particular interest in such
problems will be the local DOS given by

pr(e)= %ImGr-(é) , (4)

which is the projection of p(¢€) onto the cluster or-
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bital belonging to the I' representation. Figure
2 shows the unperturbed pr and reveals the fol-
lowing significant features: (i) the MO self-en-
ergies in Eq. (1b) retain their significance when
the “interaction” between the “extra orbitals”
and the extended states is switched on, and (i)
the pr are considerably sharper than p,, (all
normalized to one electron). The location (Fig.
2) of the various cluster DOS peaks within the
band justifies the intuitive arguments advanced
in I concerning the relative location of the vari-
ous MO’s associated with the impurity polyhedra
of hydrogen on tetrahedral interstitial sites in the
Vb hydrides. In chemical parlance, the bonding
state (|Ap) lies in the lower half, the nonbonding
state (| E))) in the center, and the antibonding state
(IBy) in the upper half of the band. The relative
sharpness of the molecular states reflects the
fact that of the five nearest neighbors coupled to
a given atom within a cluster state, only three of
these are external to that state, resulting in a
ratio’ of approximately V3 :v5 for molecular
state bandwidth to atomic state bandwidth (the
latter being identical to the bandwidth of py.).

We turn now to the direct interaction of hydro-
gen with the cluster metal atoms. This problem
involves only the fully symmetric (4;) subspace
and has already been studied in connection with
chemisorption.! Because our primary interest is
with indirect effects, we take for the direct inter-
action a very simple limiting case which fortunate-
ly, is a good representation of the actual effect in
many transition metal hydrides, including the Vb
hydrides.® We have chosen the molecular limit,
which results when Vy is the dominant energy
parameter of the problem. In this limit the inter-
action gives two localized states straddling the
band.® For the C,, cluster, these states are
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FIG. 2. Cluster-projected DOS [Eq. (4)] for Vg=0.
The dashed curve gives the total DOS. All DOS curves
are normalized to one electron. The unit of energy
throughout is 27T'.

b= (B + [A9)/VZ,
va=(H - |Ap)/VZ

(|H) represents the hydrogen s orbital), where V5
is a fully occupied bonding state and ¥, is anti-
bonding and empty. But the problem cannot be
considered resolved at this point because the solu-
tion given by Eq. (5) is not self-consistent. This
is due to a significant charge depletion localized
on the metal atom cluster. The Fermi level (¢p,
see Fig. 4) for our model was chosen to give a
fractional band occupancy (0.4) matching that of
the d band in the Vb metals. With this value of
€z, Eq. (5) gives local neutrality for the impurity
hydrogen atom, but for the metal cluster the re-
sult is a local depletion of electrons given by

My =(n4(Vy) =n,(0)], where

(5)

naVa)=2 [ (e Vadae. (6)

We calculate 7.4(0) =1.34 and 7 4(V —>) =1.00
giving An, =-0.34, which is a moderately large
Coulomb hole. A trivial accomodation of this
perturbation consists of small phase shifts of the
various non-A; cluster-projected DOS (Fig. 2);
for sufficiently small phase shifts, this essenti-
ally free-electron response can be described in
first Born approximation.m )

III. JAHN-TELLER ELECTRON-PHONON
INTERACTION

In this section we consider an alternate re-
sponse to the Coulomb perturbation—a peculiarly
molecular response. To describe the effect, we
temporarily adopt Anderson’s extra orbital point
of view,4 treating the impurity cluster as a sepa-
rate molecule. If this molecule is open shell with
the degenerate state (|E,)) of Eq. (1a) partially
occupied, the celebrated Jahn-Teller theorem™
tells us that some distorted configuration which
splits the electronic degeneracy will be energeti-
cally favored. For molecules with a fourfold
symmetry axis, Hougen12 has described the Jahn-
Teller effect in detail, including dynamic and
static aspects (both being pertinent here). The
particular symmetry discussed therein was Dy,
but the results apply also to C,, and to Dy;. Be-
cause the latter is the relevant point group for
hydrogen in the Vb metals, isomorphism is an
important feature of the present model. Figure 3
shows the Jahn-Teller active normal modes for
C4, symmetry. Here we are implicitly applying
the extra orbital point of view also to the vibra-
tional part of the total Hamiltonian for our model.
There should be no objection to this given the wide-
spread use of the tight-binding formalism for the
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FIG. 3. Jahn-Teller active normal modes for the Cy,
metal-atom cluster.

phonon field and the experimental reality of phonon
resonances. Infact, we will argue that a Jahn-
Teller effect sufficiently strong to produce a sharp
electronic resonance necessarily produces a sharp
phonon resonance corresponding to the appropri-
ate normal mode which, after all, is just the other
side of the same interaction.

Returning now to the electronic problem, it is
clear from Fig. 3 that through first order only the
B; mode can modify nearest-neighbor distances
and thus affect €(E,) (by changing the overlap inte-
gral 7). This conclusion also applies, at least
approximately, to hydrogen in the Vb metals as
described in I. But this fact leads to an impor-
tant simplification: The two electvonic states
]EQ and also theiv associated vibrational states
can be consideved independently. We have here
an accidental Born-Oppenheimer case where the
complete vibronic state is to a good approximation
a simple product state (i.e., |¢,)= [¢,0,)), in
spite of the vibronic Jahn-Teller interaction.

The net result is two harmonic oscillator poten-
tials, each displaced laterally in coordinate space
and downward in energy relative to the unper-
turbed values, but with unchanged vibrational
quanta. The oscillator associated with |E.) (| EJ))
corresponds to a displacement of the potential
minimum to a negative (positive) value of Q(By).
Thus, we have two kinds of Jahn-Teller centers,
called x and y types, labeled according to the di-
rection of enlongation for the stabilized center.
At sufficiently high temperature, a given center
will undergo thermally activated transitions be-
tween the two types, giving a very simple dynamic
Jahn-Teller reorientation process.

The total electronic stabilization relative to the
undistorted configuration is given by

AE =—(n,-n.)'E T (M

where 7, and %. are the occupation numbers for
|E,,) and lE 2, respectively, and

En=V:/2K, (8)

where

2¢(E,)
2Q(By) ’

and K is the force constant associated with Q(B;).
Equation (7) is derived by minimizing E(Q) =1kg?
- (2. -n)VQ with respect to . The quantity V
can be written in terms of the overlap integral 7.
First, Q(B,) is expressed in terms of displace-

ments between nearest neighbors:

V= (9)

Q(Bl) - A’}’lz + A’Vza -— A’V;M + A1’14 N (10)

where A7y, =735 — 75, the latter quantity repre-
senting the undistorted separation. Now we write

2e _ 9€ dQ) a_e_@@_)"
Q 37’12(617’12 * 31’2::(47’23 AR (1)
But
i)
<L 2 e |2y +Hc )= L 4T

971y = 4 9719 2 dr

(¢, is the electronic Hamiltonian) and similarly
for the other derivatives giving

J€ 1dT 0€ o€ 1 dT

e ST dr’ G v % dr

For the derivative of the overlap integral, we
take the result of Barisié et al.®®

daT

—=—q,T
dr 90t ,

- where g is the coefficient describing the expo-

nential decrease of the d function (go~1 A™). The
dQ/dr are taken directly from Eq. (10), and put-
ting the various quantities back into Eq. (11)
gives by use of Eq. (9) the result V=2¢,7. But
this quantity is essentially related to (%), the
average of the square of the electron-phonon ma-
trix element, wh1ch appears in McMillan’s strong-
coupling definition™ of the phonon-induced effec-
tive coupling constant that determines the super-
conductmg transition temperature. A recent
study using a nonorthogonal tight-binding inter-
polative scheme with a full complement of atomic
valence orbitals to calculate (/%) for Nb, demon-
strated that #,, d orbitals give by far the strongest
contribution. This is highly significant to the
present study, because the Jahn-Teller state pro-
posed for the Vb metal hydrides is based entirely
on #,, orbitals. Thus we take V= {((I%)'* and for
Nb this gives V>3 eV/A. Treating V as the Kan-
zaki force that distorts the lattice and allowing

it to act only along one of the four (111) bonds of
the Vb hydride D,, impurity cluster (consistent
with the hypothesis of I) gives a force dipole ten-
sor that agrees closely with experiment.'® This is
an indication of the internal consistency of our
model.
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To determine the force constant K, we note that
K=pw?, where u is the effective mass appropriate
to the normal mode Q(B;) and %Zw is the vibrational
quanta for that mode. Now, if the separate mole-
cule limit is physically reasonable, then u =M
(atomic mass of a cluster atom).' Moreover,
this limit implies a strong separation of the har-
monic oscillator corresponding to @(B;) from the
phonon continuum of the macroscopic crystal.
Thus if a Jahn-Teller distortion driven by Q(By) is
sufficiently strong, theve should be a sequence of
essentially dispevsionless phonon vesonances cov-
vesponding to tvansitions between the Q(By) har-
monic oscillator levels. In fact, such a sequence
has been observed in a recent neutron scattering
study of NbH, g and NbD, g; with isotope and tem-
perature-independent excitations at 10.8 and 18.4
meV."® Furthermore, the linewidth of these exci-
tations correlate with hydrogen diffusion. Taking
the smaller excitation as the @(B;) vibrational
quanta gives a value K =2.5 eV/A? for NbH, which,
combined according to Eq. (8) with the value for V
derived earlier, gives E;;=~1.8 eV. To express
E;; in units of 2T we use the relation appropriate
for the present model, 127 =B (bandwidth) which
for the Vb hydrides is about 10 eV. Thus for Nb,
E;r~1.1 in units of 27.

The full Jahn-Teller problem, including interac-
tion of the “molecule” with the lattice, can now be
solved. To do this, we first need effective one-
electron energies for the various Jahn-Teller
states. These are obtained by writing AE =n.€,
+n-€_ and noting that €.=-¢, giving €,=+AE/(n,
-n.) or, using Eq. (7),

e*:i(nil_n-)EJT . (12)

At this juncture, we abandon the extra orbital
approach and treat the €, as localized perturba-
tions affecting the manifold of extended states only
through the projection of the latter onto the par-
ticular combination of tight-binding states repre-
sented by |E,) in Eq. (1a). Considered as such,
this perturbation affects only the self-energy of the
projected states and is thus diagonal in that sub-
space. From this perspective the exact solution
is straightforward using Green’s function techni-
ques'®; in terms of the unperturbed quantities G2
of Eq. (3) we have

G,(z)=[1/GYz) - €] (13)
In particular, the projected DOS defined by Eq. (4)
is just

pu(€) =pl[(1 - €, ReGY) + (me,p))*]™ (14)

and the corresponding occupation variables (now
continuous) are given by

n*:Z fEF [ (E)d€ . (15)

Thus we have the case first described by Ander-
son’® where the n, depend on €, through Eqs. (15)
and (14) while the €, depend on n, through Eq. (12).
The Hartree-Fock solution to this problem is rela-
tively straightforward and shows that a stabilizing
distortion exists so long as pX(€z)E;r> . Figure
4 shows p, for several values of E;;, and includes
p? which obtains when E;z < 0.63. (As discussed
earlier, the location of p. and p- relative to one
another depend on whether the Jahn-Teller center
is x or y type.) The effect of the Jahn-Teller
stabilization on local charge density is given by
Ang={n, =nd +n.—n%, which can be calculated
using Eqs. (15) and (14) with the result Ang =0.42
(0.48) for E;r=0.92 (1.15). Thus the Jahn-Teller
perturbation acting in the E subspace approximate-
ly neutralizes the Coulomb hole of —0.34 generated
in the A, subspace by the hydrogen direct interac-
tion. This effective Coulombd attvaction pins the
Jahn-Teller state to the hydvogen site. Whether
or not stabilization in the Vb metals of this parti-
cular state requires the presence of hydrogen is
an intriguing question with potentially major ram-
ifications. Experimentally, these states appear
to be well camouflaged —even when decorated with
hydrogen atoms’'—so that their existence in the
pure metal is at least conceivable.

IV. SUMMARY AND CONCLUSION

The model calculations described above convin-
cingly demonstrate the plausibility of the basic
idea advanced in I—that the unusual behavior of
hydrogen in the Vb metals is primarily deter-
mined by a molecular Jahn-Teller electronic reso-
nance state. The existence of such states in the
context of the present model requires only that
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FIG. 4. Jahn-Teller resonance states for several

values of E;;. The dashed curve is identical to p, of
Fig. 2.
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E;p> 1.26T (for 40% band occupancy) and does

not depend on band idiosyncrasies (such as edge
effect, sharp minimum in center of band, etc.).’
We have estimated a value of E;=~2.2T for Nb
based on (i) an electron-phonon coupling param-
eter as measured by the superconductivity critical
temperature and also by theoretical calculation®
and (ii) a force constant for the relevant localized
phonon resonance mode (“normal” mode) derived
from what we claim to be the observed “harmonic
oscillator” frequency.18 We have also argued that,
to the extent that the direct interaction Vy falls

in the strong-coupling regime, the Jahn-Teller
resonance state is pinned to the hydrogen site by
an effective Coulomb attraction. Stated different-
ly, the interactions represented by Vy and E;p
displace nearly the same amount of electron den-
sity, but in opposite directions relative to €.

An important shortcoming of the model is the
neglect of the Coulomb self-repulsion energy be-
tween two electrons in the same orbital.?? The
results are essentially the same so long as 4E;;

- U=1/p", making it somewhat more difficult to
obtain a spontaneous Jahn-Teller resonance distor-
tion. A rough estimate of U for a four-atom mole-

cule is given by §U,4omic ™ 3 €V, a value which re-
duces Ly to the borderline, but which is probably
an overestimate due to neglect of molecular cor-
relation effects.

Finally, we wish to stress the fact that the Jahn-
Teller resonance states described in this article
are not intrinsic to the hydrides of the Vb metals—
but to the pavent metal. Interstitial hydrogen ap-
parently acts indirectly to stabilize these unusual
resonance states to below €z—the resulting hydro-
gen “decoration” provides an experimental handle
for an otherwise elusive entity. The consequences
for pure transition metals of molecular Jahn-Tel-
ler resonance states, if indeed they exist, remain
to be explored.
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