PHYSICAL REVIEW B

VOLUME 22, NUMBER 4

15 AUGUST 1980

Local-field effects and excitonic polaritons in semiconductors: A new insight
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The influence of the local-field effects on the interpretation of the excitonic polariton dispersion curves in cubic
semiconductors is investigated. It is shown that in real compounds for which the background dielectric constant is
appreciably greater than one and for which the electron and the hole of the exciton are weakly bound, the usual
description of the polariton effect is no more valid. In particular, the longitudinal-transverse splitting no longer
preserves the center of gravity of the optically allowed multiplet; as a consequence, the value of the exchange energy
which can be deduced from the available experimental data can be modified up to an order of magnitude.

I. INTRODUCTION

Since the pioneering work of Thomas and Hop-
field on cadmium sulfide,' a number of theoretical
and experimental studies have been devoted to ex-
citonic polaritons?® in semiconductors, and recent
progress in dye lasers has allowed very accurate
investigations in this field.®*” As a starting point,
the transverse excitonic frequency and the long-
itudinal-transverse splitting (LTS) related to the
oscillator strength measuring the photon-exciton
coupling look sufficient to characterize the polar-
iton effect near the center of the Brillouin zone?;
nevertheless, reality can be more complex. In
wurtzite compounds (e.g., CdS), the separation
between transverse excitonic branches and long-
itudinal excitonic branches is imposed by the C,,
crystal-field symmetry.’ In cubic crystals, those
among the excitonic modes which are coupled to
the electromagnetic field in the electric dipole
approximation are associated with three-time-de-
generate energy levels.®® When the long-range
dipolar exciton-exciton interaction is takeninto ac-
count, thetriplet excitonic level splits into two le -
vels: The singlet upper oneis the longitudinal exci-
tonlevel and the twice-degenerate lower one is the
transverse exciton level. In a first-order pertur-
bation theory, the center of gravity of these levels
is preserved,®'° and this last point is important
if one aims to calculate the exact exchange energy
from the experimental data. As a matter of fact,
in the cubic T, semiconductors where the conduc-
tion and the valence band are, respectively, of I"6
and I'j symmetry, it is now possible to obtain in
the same experiment the transverse and longitu-
dinal frequencies (I'y), and also the energies of
the usually optically forbidden levels (I';+I",).7 1112

At this stage, it is worth noting two limitations
" to the demonstrations of Refs. 8 and 9: First,

they are performed by assuming that the back-
ground dielectric constant is equal to one; i.e.,
there is no higher resonance frequency in the
crystal. Such a simplifying hypothesis is not real-
istic, since as a matter of fact this constant is of
the order of 10 in the excitonic energy range (€,
~9 in ZnSe, €,=5 in CuBr). Second, the calcu-
lation is strictly valid only for a localized, i.e.,
tightly bound exciton (Frenkel exciton), while in
many semiconductors the hole and the electron
are weakly bound (Wannier exciton).®'!* So one
can ask what modifications to these ideas occur in
real semiconductors where the background dielec-
tric constant is appreciably greater than one'* and
where the excitons may be strongly delocalized.
We shall see later on that these features can
greatly influence the interpretation of the available
experimental data.'® In both cases, however, the
relevant question is: What is the effective field
undergone by an elementary excitation in the
crystal?

More explicitly, the two following relations are
customarily applied to excitons in cubic semi-
conductors,®!*'1¢ assuming that there is only one
resonance in the frequency range of interest:

Wy + 2wp = 3w, | (1)

€=€,+4mB/(1 - w?/w2). (2)

In these equations, w; and w; are, respectively,
the longitudinal and transverse frequencies, w, is
the bare exciton frequency, i.e., when the long-
range part of the exchange interaction is not taken
into account. For Wannier excitons where the
effective-mass approximation is valid, wy is a
quadratic function of the wave vector E, €= (kc/w)?
is the dielectric function, and 478 is the so-called
oscillator strength. Equation (1) expresses the
conservation of the center of gravity of the exci-
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tonic multiplet level, and Eq. (2) expresses the
dispersion relation of the coupled exciton-photon
mode. If the medium presents two resonances

in the same frequency range, the dispersion curve
is then currently written as!!1®

4rB,(K)  4mB,(K
€=€at7 ja‘g(/l§+ : _“wzz(/z,g, (3)

It is precisely the goal of this paper to discuss
the validity of those well-known ideas, and par-
ticularly:

(i) to give evidence that Eq. (1) is never verified
for excitonic polaritons in real semiconductors;

(ii) to show that Eq. (3) cannot be used without
caution since the local-field effects come out
through a renormalization of the oscillator
strengths and frequencies;

(iii) to propose a set of more general equations
to be used instead of Egs. (1)-(3), and to make
precise the conditions of applicability of (1)—(3)
which appear as limiting cases (i.e., €,=1, no
charge delocalization) of our results; and

(iv) to investigate the consequences upon the
values of the parameters deduced from the experi-
ments by using various relations.

Section II deals with the polariton effect in the
presence of a polarizable background within the
Lorentz local-field approximation. In Sec. III we
consider the delocalization of the excitation where
the above approximation is no longer valid. Sec-
tion IV is devoted to the interpretation of some
recent experimental results concerning the ex-
change energy.

Before beginning explicit calculations, we have
to point out that for excitonic polaritons the full
quantum-mechanical calculations, though neces-
sary to obtain the position and dispersion of the
excitonic level as well as the coupling strength
between photon and exciton, essentially lead for
the polariton dispersion curve to the same formal
results as a classical theory.® So, henceforth,
we shall develop a non-quantum-mechanical treat-
ment, which is easier to carry through.

II. FRENKEL EXCITONS AND POLARIZATION
OF THE BACKGROUND

In this section we intend to investigate the con-
sequences upon the dielectric properties of the
exciton of the other resonance levels in the crys-
tal. Another point of view is to consider the ex-
citon as a polarizable quasiparticle immersed in
a continuum characterized by the background di-
electric constant €,. Let E be the macroscopic
electric field inside the medium; the dielectric
polarization P can be viewed as originating from
a set of polarizable oscillators. The ith oscillator

is characterized by a dispersion relation w; (E)
and its polarizability at the frequency w is given
by1’7

. ©)
0, (R, 0)= Tk )

If we now assume that the effective field under-
gone by such an oscillator is the Lorentz local
field,'® F; = E+£7P (it is worth noting here that
strictly speaking this hypothesis is meaningful
only when the charge densities are sharply local-
ized and thus refers to Frenkel’s description;
this point will be discussed in more detail in Sec.
III). Then the dielectric function €(k, ) is given
by

Z_; n; ai (Ey (/.))

3
1-in)ima;(k,w)’ (5)

1

where »; equals the density of oscillators of the
ith kind. Let us suppose that the frequency of in-
terest w, is much lower than the upper resonances
W;40- The background dielectric constant €, ori-
ginating from those high levels is then given by
Eq. (5) where the summation is now restricted to
i#0.

Then, a short calculation leads to the following
expression of the dielectric constant in the vicin-
ity of w,:

i(E,m): 1+47

dmnga (K, w)[5(€n+ 2) P
1 -3, (k, w)[5(e+2)]

ek, w)=¢€ +

(6)

Equation (6) can be formally written as Eq. (2) if
one sets

B= noaéO)[‘;‘(E”l-{- 2) .
1-3mnga[5(e. +2)]

(7

The dimensionless quantity n,a{” characterizes
the photon-exciton coupling. In the linear-combin-
ation-of-atomic-orbitals approximation it is given
by

_2N leX ,|?

[ vV hw,
where N/V is the number of atoms per volume
unit and eX,, is the atomic electric dipole matrix
element between the ground state and the excited
state. The transverse and longitudinal frequencies
w, and wy, are the solutions of € *(wy)=0 and
€(wy)=0, i.e.,

R LRI PRTCIE ®)

wi= w2+ (81/3€,)[5(€,+2)]n 2P wi.
From Egs. (8) one obtains the equality
€, wi+ 203 = (e, +2)WE. (9)

Since in excitonic states the LTS E; =7w, =w,
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is much weaker than 7Zw,, Eq. (9) reduces to
€W+ 2wy ~ (€, + 2)w, . (10)

At this point we want to make some remarks.
Only if €,=1 does Eq. (6) appear identical to
Egs. (29) or (30) of Ref. 8, and only in this case
is Eq. (1) verified. However, Eq. (1) has been
frequently applied until now together with Eq. (2),
although they are not compatible in actual cases
(€, >1). It must be pointed out that using Eq. (6),
and therefore Eq. (10), instead of Egs. (1) and (2)
can greatly alter the value of the exchange energy
(up to an order of magnitude) as will be shown in
Sec. IV.

Precisely, the interest of Hopfield’s calculations
is to show that in Frenkel’s description the dipolar
exciton-exciton interaction is equivalent to a local-
field effect which leads to Eq. (1) if no other pol-
arizable excitation is taken into account. The im-
portant point is the following: Introducing a real-
istic background dielectric constant €,> 1 requires
that the center of gravity of the multiplet be no
longer conserved, even at first order. The reason
is the following: In a first-order perturbation
theory, the conservation of the center of gravity
comes from the assumption that the degenerate
level is coupled to the other levels weakly enough
so that those levels will not appreciably intervene
in the removal of the degeneracy. Now, the
background dielectric constant precisely accounts
for the coupling to the higher levels, which can be
neglected strictly only if (e, =1)<< 1.

III. DELOCALIZATION OF THE EXCITON

Until now, we have supposed that the excitons
undergo the Lorentz local field while saying it
was only valid for localized excitations (Frenkel’s
excitons), and so we found again the commonly
used formulas in the limit €, - 1. Now, one
knows'® that in semiconductors the elementary
electronic excitations are delocalized and more
suitably described by the Mott-Wannier picture.
However, the complete quantum-mechanical
treatment of the dipolar exciton-exciton interaction
for Wannier excitons would be tremendous® and
has never been published®; nevertheless, it ap-
pears that in this case the effective field differs
from the Lorentz field,?? and one can question its
expression. One knows? that for completely de-
localized charge distributions, the dielectric con-
stant is more accurately given by the Sellmeier
formula

€=1+4ma , (11)

which means that the effective field is just the
macroscopic field in the medium, than by the

Lorentz formula

4mna
€e=1+ 1—_% . (12)
On the other hand, the delocalization of the ex-

citon (we mean how closely the electron and the
hole are bound together) is indeed connected to
the delocalization of the charge density. If the
atomic overlap is weak, the electron and the hole
stay concentrated on the same center, although
the exciton can migrate from one center to
another. Conversely, if the overlap is important,
the electron and the hole are weakly bound and
may be separated by several cells. Most gen-
erally, one can write the effective field undergone
by an exciton as

F=E+3myP, (13)

where the local-field factor y, lying between 0 and
1, is an increasing function of the charge local-
ization measured by the ratio of the cell parameter
to some characteristic length of the extension of
the atomic charge.'® The upper limit y=1 corres-
ponds to a strongly localized density, and thus
to Frenkel’s description. The effective field is
then properly described by a Lorentz field, and
thus Eq. (6) is fully valid. Conversely, a Wannier
exciton corresponds to a completely delocalized
excitation, so it is very likely that there is no lo-
cal-field correction at all; the effective field is
just the macroscopic field in the medium and ¥
- 0. Now, most generally, one deals with an in-
termediate case where 0<y<1.

One can take up again the preceding calculation
which introduced the y factor, and one finds®*
477213 n; o

€=14—nt—o—.
1—%1772 n;Q;
1

(14)

If the frequency w, of the level of interest is very
much weaker than all the others, some algebra
shows that the dielectric function is given by

[4mn,a(®/(1 = w?/w?) {5[3+v(c. - D]P
1—2my[n,al/(1 - /23 +v(e. - 1)}
(15)

The expressions of the transverse and longitudinal
frequencies are

wh=wi -2y {z[3+v(€. =D ]mea{Pw? | (16)
wf = wi+3m[(3 -y)/c {5 [3+7(es - D}nga Vw2,

from which one gets the relation

e(w)=¢€,+

Y€ wi+ (3 =y)w2=[3+y(c, -1)]w?. (17

Both Zw;, and Zw; increase but E;; decreases
when v goes from 1 to 0; clearly, the center of
gravity is not conserved. For y=1, one finds
again the results of the preceding section. In the
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completely delocalized case (y =0), the dielectric
constant is given by a Sellmeier-type formula:

dmp,al?
€=€ + T 0
1-w?/w?

where wy goes to w,, and wi to
2 )
wi(1+4mn.al®/e,) .

The case Y<1 with €, =1 can be obtained from the
above formulas if needed.?® We note that Eqgs.
(15) and (16) are different from the corresponding
ones (i.e., taking into account the electronic de-
localization) which have been obtained for phonons
[see Eqs. (39) and (40) of Ref. 19].

If one deals with two oscillators of frequencies
w, and w, of the same order, both much lower
than the upper resonances, the local-field effects
couple the two oscillators together so that it is
less legitimate to treat them separately the closer
the frequencies are. It is a straightforward mat-
ter to find that

4,0 (9 . 4l )(3+y(€, —1)>2
1—-w?/w? 1-w?/w} 3

€T 1 _ig n,al® nza;‘)" ' (3+7(€w —1)\
SN T2 1= 0/w? 3

(18)

with
4 Z}Z 10
=14 ———t2L2 1
€= +1-—§1r~/ ST mQ; (19)
i#1,2

Some manipulations of rational fractions show
that Eq. (18) can be written as

4nBy  _ 4nBy
"°+1—w2/w;kz 1-w?/w?’

€=¢ (20)
which is formally identical to (3). However, one
has to keep in mind that w}, w}, ¥, and 8} are
complicated expressions of 7, €,, w,, W,, n,@{,
and nza;‘”.. Equation (20) expresses two kinds of
couplings between the two oscillators: The first
one is made explicit in Ref. 17 whereas the sec-
ond one is due to the local-field corrections. It
is only when y = 0 that the equations used in Refs.
11 and 16 for two interaction resonances are
found again?®®; in this case, the second type of
coupling vanishes.

IV. CONSEQUENCES UPON THE VALUE
OF THE EXCHANGE ENERGY

In light of the preceding, we aim to discuss in
this section the interpretation of some experi-
mental results of interest. In some semiconduc-
tors”’!! where the conduction band belongs to the
T, symmetry and the valence band to the I'y sym-

metry, the energies E(J,M) of the levels origin-
ating from the I'y X I'; exciton have been measured.
The short-range part of the exchange interaction
splits the eightfold-degenerate level of the I'; x I'y
exciton into a triplet T’y |J= 1,M) of energy 7w,
and a quintuplet (I';+T',) [J =2,M), whose separa-
tion is precisely the so-called exchange energy A.
The long-range part of the exchange interaction
splits the triplet level into a longitudinal mode

1,0) of energy Zw;, and a transverse mode

1,+1) of energy Zw;. The |2,M) states are not
coupled to the electromagnetic field in the center
of the Brillouin zone in the electric dipole ap-
proximation, but the |2,M) states can mix** with
the II,M) states at a nonzero wave vector, which
allows one to know their position.””!! From an
experimental point of view, the two attainable
parameters are

E(1,0)=E(1,+1)=FE, and E(1,+1) ~E(2,M)=56.

The LTS is thus known without any further inter-
pretation, but we see (Fig. 1) that the measure-
ment of the exchange energy A demands the know-
ledge of the exact relation between A and the split-
tings 6 and E;,. From Eq. (17), one easily de-
duces

Y€
A—6+ELTW' (21)
Table I shows the practical influence on the value
of the exchange energy of various expressions
using different values of €, and y. It appears that
this influence may be sometimes weak (ZnSe) but
it can also modify the calculated exchange energy
by an order of magnitude (CuBr) according to the
equation involved.?®

We can now answer the following question: What
kind of experiments should be made to decide upon

R
— o>
=1 1o
Eir
A — |1+
=2 0
= M>
e, 12.
Yoo
B=d+EuryienTH3

FIG. 1. Schematic diagram showing the position and
symmetry of the levels originating from the T'g X T ex~
citon in cubic semiconductors. The underlying formula
shows the relation between the exchange energy A and
the actually measured energy splittings 6 and Ey (lon-
gitudinal-transverse splitting); €. is the background
dielectric constant and vy the delocalization factor.
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TABLE I. Influence of the effective-field expression on the calculated exchange energy.
(The experimental data for CuBr and ZnSe are extracted from Refs. 11 and 7.)

Energies CuBr ZnSe
(meV) (€0=5.4) (€2=9.0)
Experimental data Eix 12 1
[ 1.5 1.8
A A=6+ LEp 5.5 2.1
! (€o=1,y=1)
A=8+ Epp(€o/c+2) 10.3 2.6
(€x>1,7v=1)
A=0 1.5 1.8
y=0)

the local-field correction to be applied to an ex-
citon? Indeed, it is necessary to know indepen-
dently E;;, A, and 6. Then, Eq. (17) gives the
local-field factor y. As a matter of fact, E
and 6 can both be obtained in the same experi-
ment, ! and there exist other independent ways
to get the exchange energy A.*® Nevertheless,
all these measurements must be precise enough
to determine the relative energy position of all
the levels of interest. Such is the order of mag-
nitude of the exchange interaction that getting
such precision appears to be difficult, except in
cuprous halides where it is hoped it can be per-
formed.>°

V. CONCLUSION

We have shown that, even in the Frenkel ap-
proximation, it is not consistent to maintain the
relation of conservation of the center of gravity
‘of the optically allowed excitons when simultan-

eously the long-range part of the exchange inter-
action is taken into account, and that a background
dielectric constant larger than 1 is used. More
generally, in semiconductors where the Wannier
picture is known to describe more accurately the
Coulomb interaction between electron and hole, a
careful examination of the effective field acting on
the excitons is needed to deduce the exchange en-
ergy from the experiment. In some cases this
value can be altered up to an order of magnitude.
Conversely, the precise knowledge of the longi-
tudinal transverse splitting, the so-called energy
8, and the exchange energy A permits one to use
the relations established in the text to measure
the effective field acting on the exciton.
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