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Two-photon absorption in Ge: Band effects
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Calculations are reported of the two-photon absorption in germanium using a Kane band model. All
bands within 10 eV of the valence-band edge are considered. The matrix elements are evaluated using k ll
theory to find the relevant wave functions. The spherical model of Baldereschi and Lipari is used to treat
the distinction between the light-hole and heavy-hole bands properly. Detailed calculations are made to test
various approximations that simplify the evaluation of these complicated nonlinear optical coefficients. For
Ge it is essential that the split-off band be included as an intermediate state and that the nonparabolicity of
the conduction band be treated correctly. The results of the most complete calculation are in good
agreement with experimental results.

I. INTRODUCTION

With the advent of high-intensity lasers, the
study of multiphoton transitions has become in-
creasingly more important. Because the selection
rules for single and multiphoton transitions are
different, each provides different information on a
material's band structure. Multiphoton transitions
also provide another avenue for studying exciton
effects. Furthermore, the study of these proces-
ses aids in the understanding and description of
the propagation of intense electromagnetic fields
through nonlinear materials.

In this paper we present a theoretical study of
the two-photon absorption in germanium. There
are two important reasons for studying Ge. First,
the experimental results for Ge are not extensive
and those that are available are not consistent. Z u-
bov et a/. ' measured the two-photon absorption
coefficient K, at 2.36 pm and found it to be I
cm/MW. Wenzel et al.' found that K, was 2.5
cm/'MW near 2.7 pm. This result is inconsistent
with the more recent results of Gibson et ~/. ' for
the wavelength range from 2.65 to 3.0 pm. They
found that Ks is less than 0.75 cm/MW throughout
this region and is only 0.50 cm/MW at 2.7 pm.
Gibson et al. were one of the first to eliminate the
contribution made to the measured total absorp-
tion by those carriers generated in the two-photon
absorption process. Consequently, they extracted
two-photon absorption coefficients that were lower
than the previously measured total absorption co-
efficients. Gibson et al. also reanalyzed earlier
data" for InSb using their more detailed inter-
pretation of the data. Their results were again
several orders of magnitude lower than the pre-
vious experimental and theoretical estimates.
However, more recent results' suggest that Gib-
son's results for InSb are too low because the
conduction electron density of the InSb samples
was sufficiently high for electrons to fill the con-

duction-band states needed for the two-photon ab-
sorption. We expect this effect to be far less im-
portant in Ge with a band gap five times larger
than in InSb. Consequently the Gibson results
should be the most reliable available for Ge.

The second reason for considering Ge is that it
has not been studied theoretically as much as the
zinc-blende semiconductors. "' Only Arifzhnnov
and Ivchenko' have considered Ge in detail. They
provided a group-theoretical analysis of the ex-
pression for E, but gave no explicit results for K,.
Ge has not been extensively studied for several
reasons. For other semiconductors one can often
make the approximation that the splitting 6 be-
tween the valence and split-off band edges is either
much greater or smaller than the energy gap E,
between conduction Bnd valence bands. Such ap-
proximations greatly simplify the matrix elements
that must be calculated. However, in Ge 6 ——3E,.
Furthermore, for the zinc-blende semiconductors
one can choose basis states so that the matrix ele-
ments involving states with wave vector k trans-
form simply when considering states with different
wave vectors. Due to the symmetry of the conduc-
tion basis states in Ge (they have the symmetry
l', rather than I", ) this is not possible. These two
complications make the evaluation of matrix ele-
ments and the summation over intermediate states
more difficult to perform for Ge.

In Sec. II we present the calculations of K,. We
consider only direct two-photon transitions in Ge.
Near threshold a hole is created in the heavy-hole
(hh) or light-hold (lh) valence bands and an electron
fills a state in the lowest conduction band (c). For
higher photon energies we also consider transitions
where a hole in the split-off (so) band is created.
Two-photon absorption is a two-step process. We
thus consider all transitions where the interme-
diate state is one of the above states or a state in
the next highest conduction band (uc, the I",, band).
These bands are shown in Fig. 1. In each case,
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FIG. 1. Band structure of Ge including light-hole
(lh), heavy-hole (hh), split-off (so), conduction (c), and
upper conduction (uc) bands. The solid curves give the
effective-mass approximation. The dashed curves are
more realistic approximations for the lh and c bands.

the bands mentioned, we consider all possible tran-
sitions involving intermediate states within 10 eV
of the valence edge. We use the spherical model
of Baldereschi and Lipari" to describe the valence
states. This allows us to include their degeneracy
properly but not their anisotropy. For comparison
we also perform the calculations assuming that the
heavy- and light-hole bands are degenerate and can
be described by a single effective mass. This per-
mits us to determine the contribution of the va-
lence-band structure to the results. Finally we
study the effect of going beyond the effective-mass
approximation for the energy bands. This was
done recently. for the zinc-blende semiconductors, '
and large increases in K, resulted when nonpara-
bolic bands were used.

In Sec. III we present the results. When all of
the contributions are included properly we obtain
results which are 25/0 lower then Gibson's results.
In view of the uncertainties in the experimental
results and in some of the parameters used, this
agreement is quite satisfactory. Exciton effects
ignored in the simple-band model do not appear to
make as large a contribution as suggested by Lee
and Fan for the zinc-blende semiconductors. We
present final conclusions in Sec. IV.

one step is allowed (does not vanish for states at
the center of the band) and the other is forbidden
(vanishes at the center of the band). There are no
a,llowed-allowed transitions in Ge. By including

II. THEORY

For light with a frequency ~ and polarization g,
the two-photon transition rate is given in second-
order perturbation theory by

2n 4meI' ~ t d'k ~(c(j p+(Zfq p)v) '
2~ M ~ k ~ k g' c Q

We do not consider exciton effects"'" in this pa-
per so the states in Eq. (1) refer to single-particle
band states with energies e„(k). The sums are
over valence and conduction states involved as
initial and final states and over intermediate states
J. Since we have direct dipole transitions, k de-
notes the wave vector of the states 1c), ~ v), and
jJ) involved in the transition. I is the beam inten-
sity, e the dielectric function, and m the free-elec-
tron mass. The two-photon absorption coefficient
K, is given by

K, =2h&u T/I .
We assume that the beam is randomly polarized.
Thus our final results are averaged over all pos-
sible polarizations.

We use k p perturbation theory to describe the
wave functions to first order in k. This is neces-
sa,ry because the forbidden steps of the two-step

I

transitions are described by the first-order cor-
rections to the wave functions. The basis states
for the perturbation theory are those at k= 0. We
use the basis set of Fawcett. " The matrix ele-
ments of Eq. (1) and those needed in the k p theo-
ry are evaluated using the experimentally deter-
mined matrix elements P = 0.6909 h'/mao and Q
=0.5622 8 /ma, . The real c and so bands remain
doubly degenerate for kc0. We also treat the uc
bands as if they remain degenerate since their
contribution to K, is small. As a result, the chan-
ges in the c, so, and uc wave functions for kg0
can be found using standard first-order perturba-
tion theory. The energies are given in the effec-
tive-mass approximation -by second-order pertur-
bation theory. To second order the c and so bands
remain degenerate as they should but the uc bands
split. As mentioned, we ignore this splitting by
assuming a single uc effective mass. In Table I



GARRETT BR YAIY T

TABLE I. Energy gaps E~ and effective masses ~~ of
electron states in the conduction {c) and upper conduction
{uc) bands and of holes in the heavy-hole (hh), light-hole
(lh), and split-off (so) bands. Energies are measured
relative to the valence-band maximum and are in eV.

so

0.2 9
0.09

0.00
0.042

0.00
0.33

0.805
0.04

2.9
0.64

)v, k) = g lv, )(V,V,), .
j =, 1

(4)

where j =1,4 for the heavy-hole states and is 2 or
3 for the light-hole states. Once the appropriate
choice of basis states for a particular direction
of k has been made, the valence wave functions,
including the first-order correction which contri-

we list the effective masses and energy gaps.
The degeneracy of the lh and hh states is also

lifted for kc0. This cannot be ignored as it was
for the uc band since the valence states are the
initial states of the absorption process. Conse-
quently, we apply second-order degenerate pertur-
bation theory to find the correct combinations of
valence basis states that lift the degeneracy for
each k c0. When this is done the energy bands are
no longer spherically symmetric. This makes the
evaluation of Eq. (1) extremely complicated. To
simplify the calculation we use the spherical model
of Baldereschi and Lipari" to find the valence
states. In this model the degeneracy of the valence
bands is accounted for, but the energies are no
longer anisotropic.

In the spherical model the effective Hamiltonian
of second-order degenerate perturbation theory is
written

H= nk' —-$(k 3)', o. & ',-$ &0

when terms which lead to the anistropy are ig-
nored. Zis the spin operator for a, spin- —,

' system.
The valence basis states ~v, ), i =1 to 4, that lift the
degeneracy when, for example, k = kS can be writ-
ten in terms of Fawcett's states. In this represen-
tation J, is diagonal and the states (i = 1,4) for Z,
=+—,

' correspond to the heavy-hole states while the
J, =+-2' states are the light-hole states. For kckm,
B is diagonalized by a rotation. If 8 is the angle
between k and z and P is the azimuthal angle, then
H is put in diagonal form U~ U&HU & U e by the ro-
tation operators U'e = exp(iaaf', ) and U~ =exp(if', )
which diagonalize the component of Z parallel to k.
The new basis states ~v,.k) which lift the degener-
acy for wave vectors in the direction k are given
by rotating the basis states for k =2:

butes to the momentum matrix elements, are given
by standard k p theory

) g lP)(PIW p/mlv, .k)

8 -6g
where the sum is over the c, uc, and so basis
states. In this model the energy is again given, by
the effective-mass approximation. The effective
masses are given in Table I.

When we use the effective-mass energies the
kinetic energy of the electron-hole pair created
by the two-photon absorption is e,„=h'0'/2V. ,„,
where 1/p. „=1/m, +1/m„and m, and m„are the ef-
fective masses of the conduction band and a par-
ticular valence band. We then get the usual (e„.„)'~'
for the density of electron-hole states. Since the
amplitude for the two-step process is proportional
to k, the transition rate from a particular valence
band will depend on O'. The value of k is fixed by
energy conservation and gives a transition rate
proportional to (p, „)'~'(2k&v —E,)' '. Because
(p,hh)' ' is four times larger than (lj, ,~)'~', the hh
band should be much more important in the ab-
sorption process. Consequently, it is important
that we treat the distinction between the two va-
lence bands accurately.

We also consider the effect of using realistic
energy bands. The lower dashed curve of Fig. 1
actually gives a better description of the lh band,
as inspection of Fawcett's results" shows. This
band does not intersect the so band as the effec-
tive-mass approximation does and the apparent
effective mass is larger. Consequently, the use
of the more realistic lh energy band should in-
crease the contribution of the lh band to the tran-
sition rate. A study of Fawcett's results also
shows that the conduction band is nonparabolic.
However, the modification he calculated does not
appear to be as large for the c band as for the lh
band. Calculations will show, however, that the
inclusion of the nonparabolicity of the conduction
band in the evaluation of transition rates is more
crucial than a proper treatment of the lh band.

To obtain a simp/e analytic expression for a
realistic lh band for use in these calculations, we
assume that it has the form

@2k2 g2k2 2~ 1/2
e D, (k) = — + (aE)'+ -~E. (6)2mjj, 26m@,

The factor AE(hm~)' wa. s determined by requiring
that Eq. (6) give the same k' correction as obtained
from fourth-order perturbation theory. The other
constraint applied to determine hE and b, m+ was
that the new band have the same slope at large k
as the hh band. Thus 1/mD, —1/Em~ ——1/mhh. This
constraint is arbitrary but an inspection of the
bands calculated by Fawcett shows that it is rea-



22 TWO-PHOTON ABSORPTION IN Ge: BAWD EFFECTS l995

sonable. We find that DE=0.2337 eV and Lmz
=0.0481m. The results are given as the lower
dashed curve of Fig. 1.

We have not attempted to determine an analytic
expression for a realistic c band that would be
valid over the entire range of k in Fig. 1. Detailed
comparisons of calculated K, with Gibson's results
are only possible for @co within O. OV eV of the
threshold. Moreover, it is not clear what the ap-
propriate simple form should be. However, in the
energy range near threshold the following expres-
sion is valid:

me.(k) = —+ am, (ka,)') .
C

We use the effective mass of Table I for m, and
Fawcett's value Am, = -1.1 x10~ as an estimate
for the coefficient of the k' term. At large k Eq.
(7) is no longer valid because it overestimates the
increase in the effective mass and e, decreases
for increasing k. Even for (ka,)' greater than 5

x104, the bending of the band shown in Fig. 1 is
probably too extreme. However, the comparisons
we make with the experimental values will test
electron states for (ka,)' only up to 4.5 x10'. In
this range we expect Eq. ('I) to be an adequate
estimate for the mass enhancement.

A comment should be made about the parame-
ters used. The room-temperature energy gaps"
are used because the data of Gibson were taken at
room temperature. An average energy is used
for the uc band gap because we ignore the splitting
of the uc band. The effective masses do not ap-
pear to be temperature dependent. For example,
the effective mass of the conduction band is 0.04m
at both 1.5 K (Ref. 15) and 300 K." Averages of
existing experimental masses' ""are used for
m„, m~, mhh, and m„,. Unfortunately, the value of
P that we use is not consistent with m, =0.04m if
we assume that the second-order perturbation re-
sult for e, gives the correct effective mass

done because the spin-up and spin-down states
make the same contribution, the sum over valence
states and the intermediate-state sum are difficult
to perform. To proceed, we perform the inter-
mediate state sum for fixed c and v. Vfhen we in-
tegrate over all directions of k and average over
g, only certain terms of the intermediate-state
sum make contributions. These terms are evalu-
ated numerically and their contribution to the tran-
sition rate determined. The sum over v is also
done numerically. No analytic expression is given
for T because it would be very lengthy and not
enlightening. Instead, the final results are given
in Figs. 2 and 3. There are several techniques
which make the evaluation of the sums easier.
These are discussed briefly in the Appendix.

0.4—
~ ~ ~ ~ ~ ~ ~ ~ ~

0.3

C

0.2

III. RESULTS

All of the results presented in Figs. 2 and 3
were found by including the contributions of all
bands mentioned as intermediate states and by
making the proper distinction between lh and hh
states. The solid curve of Fig. 2 was found by
using the effective-mass approximation for the
bands and by ignoring the k dependence of the en-
ergy denominators in Eq. (1). Similar calculations
were performed to test the importance of uc and
so bands as intermediate states. When the first
was ignored K, decreased by ten to twenty percent

m 2P'rn 2 1
m, 35 E, E +4 (8)

0-PHOTON ABSORPTION
GY- DISPERSION EFFECTS

This expression gives m, =0.034m if P=0.6909
k'/mao. and the room-temperature energy gaps are
used. A value of P = 0.624 I'/ma20 must be used to
give m, =0.04m using Eq. (8). This value of P is
significantly lower than those found experimental-
ly.""We perform calculations with this new
value for P and for m, = 0.034m to test the impor-
tance of the uncertainties in these parameters.

Actually evaluating the sums in Eq. (1) is ex-
tremely cumbersome because a large number of
terms are included when the wave functions are
found to first order in k p theory. Although the
sum over conduction states in Eq. (1) is easily

O. I

0
O.IO

I I

0.20
hw-Ecl2 (GV)

I

0.30 0.40

FIG. 2. Energy-dispersion effects on two-photon ab-
sorption. The solid curve is calculated by including all
bands but by ignoring the k dependence of the energy
denominators and by using the effective-mass approxi-
mation. The short dashed curve includes the k depen-
dence of the denominators, the long dashed curve uses
the realistic lh band. The dotted curve includes both
effects. The lower dashed curve is the absorption from
the so band including both effects.
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FIG. 3. Comparison of the experimental results of
Gibson (Bef. 3) with the simple band-model predictions.
The solid curve is found considering all effects except
the use of the realistic c band. The dashed curve is
found using the realistic c band. The error bars are
taken from Gibson's work.

over the energy range shown in Fig. 2. However,
when both bands were ignored, K, dropped by a
factor of 2. Ignoring the so band is equivalent to
assuming that A»E„@su. Since 6-—3E„this ap-
proximation should not be valid in Ge. Although
ignoring the so band is a good approximation for
some zinc-blende semiconductors' it is a very
poor approximation for Ge.

Another calculation was made to determine the
importance of including the distinction between lh
and hh states. When they are assumed to remain
degenerate, the calculation of K, is straightforward
because the same valence basis states can be used
for all directions of k. There is then no need to
use the spherical model to find new basis states
for each direction of k. When the lh and hh bands
are treated as degenerate we can replace the u', „'
factor in the transition rate by either —,'(g', h'„-+ p',a,')
or [-,'(p, ,„„+p, ,D, )]'/'. In the first case the results are
6/o less than the solid curve and in the second
case, 15/~ less. Thus, if we make a fortuitous
choice for an average p, ',

/' (i.e. , we do not replace
it with p,g„' or p, ',/~'), then ignoring the distinctior
between lh and hh bands does not crucially affect
K~.

In Fig. 2 we show the effect of including the k

dependence in the energy denominators (in the man-
ner discussed in the Appendix) and of using the
realistic energy band for the light holes. As ex-
pected, these contributions are only important away
from the threshold. In the energy range consid-
ered, the corrections are only fifteen percent. In-

eluding the k dependence of the denominators low-
ers the results. Using a more realistic lh band
increases the contribution of the lh band because
the lh density of states and the k in the matrix ele-
ment increase. The effects of including the k de-
pendence of the denominators and using the realis-
tic lh band compete against each other. A calcula-
tion which includes both differs little from one
which includes neither in the energy range up to
0.2 eV above threshold. Also shown in Fig. 2 is
the absorption coefficient for transitions starting
from the so band. The shape is similar to that
of the other absorption coefficients. The transition
rate is lower because the density of so states is
lower than that of hh states. The increase in en-
ergy gap also decreases the transition rate.

Different values of P and rn, were used to test
their effect on K,. Specifically, one calculation
was made with m, reduced to 0.034m and another
with P = 0.624 h'/ma, . In these calculations the k
dependence of the energy denominators was in-
cluded and the realistic lh band was used. The
new values of P andm, are too low to be reliable;
but, as mentioned, they are needed if Eq. (8) is to
give an m, consistent with the P used. Since the
absorption coefficient scales very roughly as P'
and as m', ', K, decreases when the new parame-
ters are used. In fact, it decreases by 35% for the
new value of P and by 20/0 for the new value of
m, . However, the uncertainty in K, should not be
as large as this suggests since the actual uncer-
tainty in P and m, should be much less.

A comparison between the experimental results
of Gibson' and the calculation that includes the
realistic lh band, the k dependence of the denomi-
nators, standard parameters, and the distinction
between lh and hh bands is shown in Fig. 3. Our
comparison is limited because no data are avail-
able for Ace more than 0.0V eV from the threshold.
Obviously, even when the uncertainty in the data
is considered, the predictions are too low by a
factor of about 2. The agreement is adequate near
threshold but gets worse 0.05 eV beyond the thres-
hold. The more rapid rise beyond 0.05 eV is not
predicted by the calculation using the simple c
band. However, when the nonparabolic conduction
band is used, a large enhancement of the calculated
absorption occurs. In view of the uncertainty in
the experimental results, the parameters used and
the approximations made, the agreement between
this calculation and the experimental results is
quite satisfactory. Most importantly, the more
rapid rise in E, at higher energies is evident.
This occurs because the apparent effective mass
of the c band increases for increasing k. This ef-
fect of the nonparabolicity of the c band is es-
pecially important for two-photon absorption which
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scales roughly as the —,
' power of the apparent ef-

fective conduction mass rather than as the —,
' power

as in single-photon absorption. Consequently, the
two-photon absorption should more readily reveal
the contribution of the nonparabolicity. This is ap-
parent from Fig. 3. Because we do not determine
a realistic c band valid for large k, we do not de-
termine the shape or magnitude of the absorption
coefficient at large energies.

Zubov' measured K, at 2.36 ~ to be 1.0 em/MW.
At this energy (0.518 eV) we predict K, to be only
0.4 cm/MW when we use the effective-mass ap-
proximation. However, Zubov obtained the experi-
mental value without correcting for the generated
carrier absorption. As Gibson has shown, this
leads to K, values which are too large. Moreover,
use of the nonparabolic c band can increase the
calculated absorption coefficient by more than a
factor of 2 for hu greater than 0.05 eV from thres-
hold. Thus the simple band model should be con-
sistent with Zubov's result provided that realistic
bands are used.

We should note that no attempt has been made to
include higher-order corrections to the matrix
elements, even though it is apparent that higher-
order corrections to the effective masses are sig-
nificant. Unfortunately too many terms would have
to be evaluated to make inclusion of these higher-
order corrections feasible.

are considered. For example, the exciton effects
increase the absorption in ZnTe by a factor of 10
and in GaAs by a factor of 2. In these materials
the lowest exciton has a binding energy of 10 and
4.4 meV, respectively, while in Ge it has an energy
of only 1.6 meV." For this reason we would fur-
ther expect exciton effects to be less important
in Ge.

The effect on the band states of the intense fields
needed to measure two-photon absorption has been
ignored. KeldyshP' originally studied the effect of
an intense field on electronic transitions. When
this theory was applied to two-photon transitions, "
the results were typically a factor of 10 lower
than measured values and were lower than those
calculated with the band model of Basov. Thus it
would appear that inclusion of the Keldysh effect
would lower our results and worsen the agreement.
Although the simple band model appears to be ade-
quate for Ge, the importance of exciton and high-
field effects cannot be ruled out. These effects
require further consideration.
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IV. CONCLUSIONS
I

We have presented a simple band-model calcula-
tion of the two-photon absorption in Ge. The cal-
culation treats the degeneracy of the valence bands

correctly and includes all allowed transitions in-
volving states within 10 eV of the valence edge.
In addition, the k dependence of the energy denomi-

nators is treated approximately but adequately
and realistic energy bands for c and lh states are
used. %'hen all of these contributions are in-
cluded, the agreement between our results and

Gibson's results is good. The two effects which

must be included to obtain reliable results are the
use of the realistic c energy band and the use of

the so band as an intermediate state. The other
approximations, ignoring the k dependence of the
denominators, ignoring the distinction between lh

and hh bands and ignoring the uc band, are all
more reasonable.

. Several effects have not been considered in the

simple band model. No attempt has been made to
include exciton effects as done by Lee and Fan. '
The good agreement that we get with Gibson's re-
sults suggests that this effect should be small.
Lee and Fan find a large enhancement for some
zinc-blende semiconductors when exciton effects

APPENDIX

We must consider the following operator

g n p ~A&J ~n. p

~ e~(k) —c„(k)—Ru' (A1)

To determine T, we calculate

cM„g vM„c . (A2)

Wg evaluate M„ for two simplified cases. In the
first case we ignore the k dependence of the ener-

gy denominators, using only the energy gaps to
evaluate e~(k) —e„(k). In this case M, is the same
for lh and hh states. Moreover, in the interme-
diate-state sum, the sum over lh and hh can be
done by ignoring the distinction between lh and hh

states when the denominator is the same for both.
The same valence basis states can then be used
for each wave vector.

We also evaluate M„with the k dependence of the

denominator included. In this case M~ and Mhh are
different. However, in the sum over J the sum

over lh and hh can only be done simply if the dif-
ference in the two bands is still ignored. Thus

we make the following approximation:
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6 P~&«ln p

),b 6 I (k) —6y(k) —Kco

v i(4«)v. k}Jg g, hh

I 1
v v (k) —v „(k) —Ktv v, (k) —v „(k) —Ilv }

(AS)

The results for K, found using Eq. (AS) do not dif-
fer greatly from those found when the k depen-
dence is ignored altogether. Thus we expect Eq.
(A3) to give an adequate approximation for the k

depe nde nce.
There are several ways to make the evaluation

of Eq. (A2) easier. First note that

)&CIM~Iv& '= Z l&CIM-lv&l'- g &CIM-"lv& '.
og h v6lh hh e~ 1h

(A4)

As argued before, when we sum over all lh and
hh states and the operator is the same for both, we
can ignore the difference in lh and hh states and
use the simpler valence basis states. Thus the
first term in Eq. (A4) is easier to evaluate. In

the second sum we must use the lh states found
using the basis states given by Eqs. (4) and (5).
However, this sum is easier to perform than the
original one over hh states. To see this we need
to consider the following.

The matrix operators U& and Ue take the follow-
ing form":

e"«' o

ei@/2

o e-'«'

with c=cos(9/2) and s =sin(8/2). The basis set is

0 0 0

Iv, ) =

0
, Iv,)= , lv.)= , lv, ) =

0

(A6)

Iv,T) = a(k) Iv,.k), (A7)

with

(g g 1P)(P leak p/m
'

8 -~8

The sum over lh can now be written as

)vk)(vk)=B(k) g )vk)(v, . k()Bv(k)
—2k3 2 $3

(A8)

But

g lv, k)(v, kl

where hh basis states for k=M are Iv, ) and Iv,)
while Iv, ) and Iv,) are the corresponding lh states.
At other k, the lh basis states are given by Eq. (4)
with j =2, 3.

The wave function is given to first order in k by
Eq. (5). This can be written as

0 0 0

~SC s

e-i 3@/2

DISCS' S

(A5)

2 ~ 3

j =2, 3; i gk =1 y2, 3k 4
Iv,.)(U &U ),, (U, U~),.„(v,l.

-~SC's c(1 —3s') -s(1 —3c') k) 3 cs'

pcs' s(1 —3c') c(1 —3s')

-s' DISCS' -~SC s

+Sc s

C
3

The product of the rotation operators can be
simplified in the following way:

0 0 0 0
-(-,')'~'k k,

-MS

0100 1
UqU@ =~

0 0 1 0

,0 0 0 0,
-~k

2 k. + —,'k k, (-,')'~'k k,

(-')'~'k k -'k k

(A10)

where
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0 -k,
A=-

k
0 -u, /M2

0

-a /~q 0

0.

(All)

(Al2)

and k, = (k„a jk,)/~2,
The operator A defines new basis states for the

lh band

)v, u) = Q ~v, )A, , for j =2, 2.

These states give the'same sum over lh states
and yet are simpler to work with. A. has a simpler
form than U @ or U e and some of the elements in
A vanish. Moreover, the elements of A. are written
in terms of k, and k, . When Eq. (A2) is integrated
over all directions of k only terms with even pow-
ers of k, and matching powers of k and k, mill
contribute. The use of Eq. (All) makes it easier
to identify those terms in Eq. (A2) that must be
evaluated.
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