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The Kapitza resistance between a solid and liquid 4He is explained by two parallel processes.
One is the well-known Khalatnikov-acoustic-mismatch channel that has a frequency-independent

transmission coefficient. The other we propose herewith is due to the difference in quantum ef-
fects between the bulk liquid and the compressed surface layers. The crucial point is the pres-

ence of an "optical branch, " that is a dispersion curve with zoo &0 for k 0. e illustrate this

type of coupling with a mechanical equivalent model. The excitations in the surface are stimu-

lated by the transverse part of the sound waves in the solid. The coupling is frequency depen-

dent with two regions of enhancement: one near zero frequency and another near coo. In the

spin-lattice model of helium the quantum effect is described by a nonzero angle for the spin

orientation, and we show that the deviation from the interlayer coupling parameters from the

bulk value gives rise to a ch ange in the spin orientation which leads to an optical branch in the

dispersion.

I. INTRODUCTION

In 1941 Kapitza' observed a temperature jump
between liquid He and the solid with which it was in
contact. He also observed that this thermal boundary
resistance Rk increased upon lowering of the tem-
perature. He found a relation Rk —T ' in the region
between 1.6 K and T&. Subsequently, it was realized
that the "natural" explanation, assuming that the en-
ergy was transported by phonons and that the resis-
tance stems from the reflection of these phonons at
the surface, led to a resistance much higher than was
observed. . The discrepancy between this theory, due
to Khalatnikov, 2 and the experiment, has led to an
enormous amount of experimental work and several
theories. For the older work we refer to the review
article of Pollack. ' For a more recent review, see
Snyder. 4

In order to delineate our work, let us define the
Kapitza resistance as the thermal boundary resistance
between liquid helium and any given solid. Actually,
it does not matter in our model whether the helium
is liquid or a solid at relatively low pressures. Furth-
ermore, we will exclude the 'He wetting a surface of
a magnetic material, since this leads to dipolar cou-
pling mechanism and an extra conductance in the re-
gion below 0.1 K as was explained by Leggett and
Vuorio and refined by Maki et al. If we assume
that the magnetic conductance and the nonmagnetic
conductance are additive, which may not be the case,
then our ideas will refer to the nonmagnetic part only.

The Khalatnikov theory gives a result for Rk pro-

portional to T ', but the proportionality constant is
two orders of magnitude larger than the experimental
value. Since heat flows more easily than the
acoustical-mismatch theory indicates, it is reasonable
to assume that there must be a second channel
through which energy can be transmitted from the
solid to the liquid or vice versa. The goal of this pa-

per is to establish another mechanism which, we

think, is strongly suggested by some recent experi-
mental results.

Before we go into this we would like to mention a
few modifications of the acoustic mismatch theory
that have been developed, . It is well known that due
to the Van der Waals forces at the solid surface, a

layer of helium atoms is formed whose properties are
different from those of bulk helium. Taking this into
consideration, the Khalatnikov theory has been ex-
tended by considering this layer as a classical continu-
um which produces intermediate acoustic matching. "
Since the thickness of this layer is very small com-
pared to the phonon wavelength the effect is very
small.

Another, and very difficult, aspect of the Kapitza-
resistance problem is its dependence upon the condi-
tion of the solid surface. 9 When sound waves travel
from a solid, bounded by a perfect surface, to a liquid

(a less dense medium), only those waves restricted to
the critical cone are allowed to pass through the sur-
face. ' Accordingly, this implies that about 99'/0 of
the phonons have zero probability of transmission. "
If the surface contains defects, as from machining or
mechanical polishing, this critical cone is widened,
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and thus more energy is allowed to pass by diffuse
scattering. Another view is that the rough surface ac-
tually provides a larger surface area through which
energy may. flow. Incorporating these ideas into the
classical scheme improves the heat transport, i.e., de-
creases the discrepancy between the Khalatnikov
theory and experiment. Yet despite this, the largest
resistance observed (which we assume, was also due
to the roughest surface) is still less than that of the
Khalatnikov theory.

In view of the failure of the acoustic-mismatch
theory to explain the Kapitza resistance, Sheard
et al. ""have proposed a theory which takes into ac-
count the superfluid character of liquid 4He. By the
use of their transfer Hamiltonian, expressions have
been derived for the energy transfer by one-phonon,
one-roton, and second-order processes. They have
found that in the long-wavelength limit, the expres-
sion of the energy transfer reduces to that of the
acoustic-mismatch theory. The value of this expres-
sion is greater than that of the Khalatnikov theory by
only a factor of 4. The roton contribution is even
less; the ratio of energy transfer by rotons to that by
phonons being 0.042 at 2 K. Neither of these two
contributions bridge the gap.

Shortly after the publication of Sheard et al. ,
"

three sets of new experimental results were pub-
lished. The first set' ' involves internal reflection
at the boundary using a crystal sample, one side of
which is exposed to an evacuated chamber. As heli-
um vapor is introduced into the chamber, several
layers of He atoms are deposited upon the surface of
the sample. The purpose is to measure the reflection
coefficient of the boundary and its dependence upon
the amount of helium gas introduced into the
chamber. Three interesting results emerge from
these experiments: (i) A strong echo loss is the
result of the adsorption of three atomic layers. At
this thickness the loss is almost the same as the loss
when bulk liquid is present. (ii) The transverse echo
shows no structure when the roton minimum was
passed. (iii) The echoes most influenced by the ad-
sorbed layers are the echoes due to transverse waves.

The second set of experiments" ' ' studies the
angular dependence of phonon transmission through
the boundary. The typical angular distribution of the
radiated phonons reveals a pronounced narrow peak
centered at o. =0', corresponding'to the channel for
transmission which conserves the wave vector which
is parallel to the surface. That is, at o. =0'. transmis-
sion is governed by classical acoustics. But there is
also a channel which does not conserve the parallel
wave vector and gives rise to a broad background.
After integration over 2m sr, it is revealed that this
background gives a greater contribution than does the
central peak. Particularly noteworthy is the evidence
which shows that it is easier for phonons to travel
from the crystal to the helium than vice versa (as

judged by comparison of the heights of the two back-
ground curves).

The third set of experiments, "which is similar to
the first, involves measuring reflections of phonons
at various interfaces when the liquid He is replaced
by the solid He, solid H2, solid D2, and solid Ne.
These different materials may be characterized by the
de Boer quantum parameter which is a convenient
measure of the quantum effects in the system. This
parameter ranges from 2.68 for liquid 4He to 0.59 for
solid Ne; the larger the parameter, the greater the
quantum effects. There is a large discrepancy
between theory and experiment, particularly for
transverse waves, when liquid 4He, solid 4He, solid
H2, and solid D2 are used; the largest discrepancy be-
ing with the liquid- He data. The data involving
solid Ne reveals little discrepancy, indicating that
solid Ne behaves much like a classical system. Hence
classical theories adequately describe the heat
transmission for this case.

This experiment suggests that the anomalously
small Kapitza resistances are characteristics of sys-
tems in which quantum effects are important. The
similarity of the results for liquid and solid He, solid
H2, solid D2, indicates that the mechanism responsi-
ble for this anomalous transfer of energy is perhaps
the same for all these systems.

In Sec. II we will describe briefly the results ob-
tained by the acoustic theory. In Sec. III we give the
"mechanical equivalent" model of a system that
shows a second channel of energy transfer. In Sec.
IV we describe the quantum-mechanical model,
based on a lattice model of the liquid. Section VI
sums up our conclusions.

II. IMPORTANCE OF THE OPTICAL MODE

Since more energy flows from the solid to the
liquid than can be explained by either the classical or
the quantum-mechanical acoustic-mismatch theory,
we expect the existence of a second channel, parallel
to the acoustic channel. As indicated in the introduc-
tion, there exists strong evidence that a two-
dimensional array of helium atoms deposited on the
surface of the solid plays a key role in the enhance-
ment of heat transfer. It was also observed that the
transmission probability is dependent upon the fre-
quency of the phonons, "whereas according to the
acoustic-mismatch theory, the transmission probabili-
ty should be independent of frequency. We suggest
that a near resonance process is of importance in this
problem. When the surface layer is considered as a
classical continuum, the dispersion curve of the pho-
nons in the bulk solid does not intersect that of the
phonons in the layer, except at infinitely long
wavelengths and zero frequency, see Fig. 1. It is
clear that these phonons carry very little energy. But
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if there were an optic-like branch present in the spec-
trum, the situation would be quite different. Then
the intersection would take place at co &0, and the
solid phonons would couple with energetic excitations
in the surface layer. The mechanical model described
in Sec. III is an attempt to simulate the surface struc-
ture which produces an optic-like branch in the disper-
sion relations.

The problem of the energy flux perpendicular to
the surface is treated very nicely by Sommerfeld
and by Khalatnikov. Note that the conventions used
for the amplitudes are different in these two publica-
tions: the amplitudes 3, B, and C in the Sgmmerfeld
book have to be multiplied by ik in order to obtain
the amplitudes A, 8, and C in the Khalatnikov book.
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FIG. 2. Reflection and transmission of longitudinal wave
from the liquid towards the interface with the solid.

This is because Khalatnikov describes potentials and
Sommerfeld describes displacements. Here k is the
wave number. %e will use the Khalatnikov conven-
tion.

If a longitudinal wave with amplitude Al from the
liquid strikes the solid (Fig. 2), it will create a longi-
tudinal wave in the liquid (A('), a longitudinal wave
in the solid (B(), and a transverse wave in the solid
(C,). At the boundary, two conditions must be
valid: the continuity of normal displacement and the
continuity of stress. This leads to two conditions on
the amplitude and the fact that the spatial phases
must be equal at the boundary (Snell's law) which
gives the relation between the direction angles o., o.l,
and o, Solving the amplitude relations leads to the
relative values of AI', , BI, and C, .

The energy flow perpendicular to the boundary
must be conserved. By using the above mentioned
amplitudes, it is easy to verify that

i 2 2 2
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FIG. 1. Dispersion curves of phonons in: the solid, the
bulk liquid (- — ), the surface layer helium branches (
resulting from the ordinary dispersion curve (liquid helium
at the equivalent higher pressure) and the excitation branch.
Finely dotted line is the crossover in the absence of coupling.

~here c, ei, and c, are, respectively, the velocity of
sound in the liquid, the longitudinal velocity in the
solid, and the transverse velocity in the solid. Here p
is the density of the liquid, 0 the density of the solid.
Similar expressions can be obtained for a longitudinal
wave coming from the solid' "and a transverse
wave corning from the solid. ' These equations
simply confirm the energy balance and could have
been written down without obtaining the solution.
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III. MODEL OF A DISCRETE STRUCTURE COUPLED
TO A CONTINUUM SOLID

At very low temperatures, the wavelength of sound
is large compared to the lattice spacing in the solid.
Therefore, the discrete structure of the solid does not
play a major role in the following problem. Our
model consists of a continuum solid, covered by a
layer of atoms (surface helium). These atoms have
two states, represented by two sets of masses, and
they are in turn coupled to the bulk helium by a
damping constant. This damping constant is associat-
ed with one set of masses, namely that which
represents the following situation: energy is carried
by transverse waves, incident from the solid, which
impinge upon the surface. If the frequency of the in-

coming waves is nearly equal to one of the natural
frequencies of the surface layer, then the energy is
absorbed resonantly by the layer. Energy "leaks" into
the liquid via the dampers attached to one set of
masses. We propose that some of the surface atoms
must be excited to higher-energy states before giving
up the energy to the liquid.

This model is shown in Fig. 3 where the surface
atoms are represented by spheres of different masses
M and m; and the coupling consists of a bending
force constant y, representing flexible rods, a longi-
tudinal spring constant P, between the masses~and a
damping constant K.

fl -2

The transmission coefficient T for small y is given
in Eq. (22) of the Appendix. This coefficient is a
function of eo and has the following characteristics: it
is proportional to the damping in the liquid and it
shows broadened resonances one near ~ =0 (for
small k) and one near co = coo, the "optical" frequen-
cy. Both resonances are broadened by the damping:
4r» = K/2m.

The heat flux due to the phonons is given by

llH=, J~ d a) J~ dx n T„cu'x
2mc, 2

where x =cos cx, and n„ the Bose-Einstein function
for the phonons. The integral over x gives a factor
0.1 and the integral over eo is approximated by replac-
ing g (cu) as in Fig. 4(a) by simple rectangles: see
Fig. 4(b); the height for co=a&0 is 2/n ~a.

Thus we have

0.1h y2H=
( ), n„(T)

Although the temperature dependence in this equa-
tion arises soley from the Planck function at co = coo,

there may be also a temperature dependence hidden
in the frequency coo. Note that the result is indepen-
dent of K, provided ~ ~0, as it should be.

We find that this process leads to a heat conduc-
tance given by

1

1 ~ ~e dn

9T dT ~0

where A is the area. This quantity is constant for
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FIG. 3. Discrete surface structure that contains optical
branch attached to continuum. The parameters y, I8, , and
~ are the bending, spring, and damping constants; m and M
are different masses. Incident transverse wave with ampli-
tude A, , creates reflected transverse wave B and reflected
longitudinal wave C. The dampers represent the coupling of
the surface layer to the bulk liquid.
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FIG. 4. Transmission function g(co); (a) complete form
and (b) approximation used.
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2A —2 2n+2

2n —1 2A+ 1 20+ 3

FIG. 5. Equal-mass structure that gives rise to optical
branch in dispersion curve.

kT & Acro and goes to zero for kT (taboo.
We point out at this moment, for later use, that

the two-mass model is a special case of a two-
sublattice system. Similar results, i.e., two branches,
are obtained by two-spring models. In particular, we
would like to mention a model that comes close to
the picture we will propose for helium. This is the
model in which one set of atoms, say the even sites,
are coupled to another set, say the odd sites, by
spring constants P2. At the same time both the even
and the odd atoms are coupled amongst themselves
by spring constants Pt. The arrangement is shown in

Fig. 5. It is easy to show that this gives an excitation
spectrum with frequencies

m coj 2
=4Pt sin (ka) + 2P2 + P2 [4 sin ( 2

ka) —2]

IV. QUANTUM-MECHANICAL MODEL

It is of course inadequate to explain the Kapitza
resistance by a classical model since experimental evi-
dence ' clearly indicates that the discrepancy between
the acoustical model and the observation is propor-

For small k this leads to mcuq ——O(k') and
maP~=4P2+O(k2), the optical branch. The eigen-
vectors are given by the sum and difference of the
basis vectors, very similar to the case of almost equal
masses. If P2 = P~, the optical branch disappears,
since the periodicity of the system is now half the ori-
ginal periodicity.

We use this model to illustrate that a longitudinal
wave along the surface will have the usual phonon
behavior if all interaction constants are the same, but
that an optical branch will appear as soon as the in-
teraction constants are the same, but that an optical
branch will appear as soon as the interaction con-
stants between the layers are different. This we
know is the case in the first few layers of helium.
These layers are so strongly adhered to the solid that
the atoms are more closely packed than in the liquid.
This means that both the force constants as well as
the kinetic-energy factors are modified. The kinetic
energy is modified since, by virtue of the uncertainty
relations, the velocity is modified when the intera-
tomic distance is changed.

tional to the de Boer parameter. The previous con-
siderations were to emphasize the need for an optical
mode.

In order to introduce the quantum effects we ex-
press the property that the helium atoms are not lo-
calized due to the uncertainty principle. They jump
from site to site even in the ground state at T =0.
Assuming that the liquid, as well as the surface layer,
can be adequately described by a lattice model, this
zero-point motion of the atoms is described by a term
that annihilates the particle at a given site and re-
creates it at a neighboring site." Proper evaluation of
the operator wave function leads, in this way, to a
kinetic-energy term with a factor K = it/md2, where d
is the size of the lattice periodicity. We take this dis-
tance about equal to the interatomic distance of the
atoms in the liquid. The Hamiltonian contains a po-
tential energy term, representing the attractive in-
teraction (the well of the Lennard-Jones potential)
between the atoms. The repulsive interaction is tak-
en into account by requiring that not more than one
atom can stay (instantaneously) at the same lattice
site. In order to be able to use the grand canonical
ensemble, we add a chemical potential term. This
Hamiltonian is equivalent to a spin Hamiltonian
representing an anisotropic Heisenberg coupling in an
external field. If the coupling is stronger in the xy
direction than in the z direction, the latter being the
direction of the external field, then the excitation
spectrum is linear in k (phonon-like). This result is
found via a rotation-transformation in spin space. '8

Despite its schematic nature, we adopt this model
for liquid helium, for the bulk or for one layer at a
time. This is justified through the fact that the
model expresses, from the uncertainty principle, the
nonlocalized nature of the atoms by means of a tilted
spin. If the spin were exactly along the z direction,
the particles are either absent or present, but the
kinetic effect (the xy coupling) leads to the necessity
for a set of rotated axes to obtain the ground state.

We further hypothesize that the increased density
of the first two layers of helium on the interface of
the solid leads to a decrease of this quantum effect,
that is, the coupling between the layers is different
from the coupling in the layers. We assume the latter
is about the same as in the bulk liquid. In this
manner we arrive at a picture similar to a two sublat-
tice model: two systems each with internal coupling
constants (for computational reasons we take these
coupling constants to be the same inside each subsys-
tem) coupled to each other by constants that are dif-
ferent. If we folio~ the scheme of Matsubara and
Matsuda, eliminating the terms linear in the opera-
tors, we obtain one condition for two unknowns. It
was pointed out by Matsudp and Tsuneto that the
variation principle applied to the ground state leads to
two conditions. This means we can in principle
determine the two angles of quantization 8 and $. It
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can easily be seen, upon elimination of the field
terms, that in the case where the intercoupling
parameters are different from the. intracoupling
parameters, the two angles of quantization are un-

equal. Note that, as is the case in similar eigenprob-
lems, it is not correct to associate an angle with a
subsystem. This inequality of angles leads, after con-
siderable mathematical labor, to a second branch in
the excitation sprectrum: the optical branch. The
mathematics is only partly displayed here since thc
results are identical to the calculations of Liu and
Fisher for two subsystems in a three-dimensional
lattice. Since the approximations are of molecular-
field nature, the dimensionality plays only a trivial
role. We repeat the crucial point: due to the fact
that the interlayer coupling is different from the in-
tralayer coupling, the system has two different "an-

gles of quantization" and consequently has an optical
branch in its excitation spectrum. These "optical" ex-
citations are coupled to the bulk phonons by means
of a secondary energy exchange. If this picture is
correct, the two surface layers should have their own
temperature T, ( T„p«T, ( T„„„;,). The tempera-
ture dependence remains T at least as long at
T ) fcopjks because the number of bulk phonons is
proportional to T'. It is also trivial that there should
be no "cone" associated with this form of energy
transport.

We would like to report a very similar development
by Nakayama. " His theory is based on the same ob-
servations as we started out with in Sec. I: the im-
portance of the first few layers, the preference for

V. HAMILTONIAN OF THE MODEL

Let us assign the a sites to the helium atoms
adhering to the surface and the b sites to the helium
atoms that are part of the bulk liquid. Furthermore,
a; and a; are the annihilation and creation operators
on the a sites, b; and b; the operators on the b sites,
We introduce the Matsubara-Matsuda Hamiltonian
with

H =H„+Hbb+Hgb (2)

where the separate parts are given by

quantum systems, the absence of Snell's law and the
effectiveness of transverse phonons. However, his
proposed mechanism, the tunneling of helium atoms,
is quite different from what we propose.

Although we also assume that the helium atoms
are nonlocalized it is essential in our model that we
deal with two different coupling constants and it does
not matter whether the hopping terms are different,
which it is somewhat similar to tunneling, or whether
the interaction term is different.

We also mention the work of Namaizawa, ' who
introduced surfon waves as intermediary between the
phonons in the solid and the phonons in the liquid.
The quantum properties of helium come in through
the structure factor, no exchange of atoms between
the surface layer and the bulk atoms takes place.
Similar work was done by Gel'fgat and Syrkin. "

f2H„=
2 X (a; —

a~ )(a; —aj) —vp Xa; a;aj a&+p, Xa; a;
m '

(ig) &Ii)

Hpp=
2 X(b; —bj )(b; —bg) —vp Xb; bb) bg+p Xb; b;, Hl, =

2 X(a; —bj )(a; —b) —vp Xa; abbjmd

where we included the terms that stem from the use
of the grand canonical ensemble. The chemical po-
tential p, is the same for both type of sites. The in-
teraction energy is vo between atoms at the same
sublattice, and vo in the ab case. The lattice constant
is d in each lattice and d,b between the lattices, m is
the mass of the helium atoms. We have in mind the
mass of He, but the result should hald for the non-
magnetic part of He as well. Since the optical fre-
quency turns out to be inversely proportional to the
mass, the ratio of excess conductances of 4He and
3He can be obtained.

It is more convenient to replace the creation opera-
tors a; and b; by the spin operators S;+ and o;+ (and
the annihilation operators a; and b~ by SI and o; ).
The transformation leads to a set of spin Hamiltoni-

Hpy = Jgg X ( o'(~o'J' + cT; (rj~)

Jb~X—
&~i)

~,*~,*—H $~;,
H., =—J., g(S,+o~ +o,+o~ ) —J,', XS;oj',

(i~) (ij')

where J = f'/md2, J'= vp in each case, and

H = p, —
2

z,b(J,p J,b) ——z„(J„——J,', )
1 r 1

ans (compare Ref. 28)

H„=—J„x(S;+S~ + S~ Sg+) —J,', xS SJ Hx S;—
(tJ) I
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where z,q and z„are the intersublattice and intrasub-
lattice coordination numbers. We have assumed, and
will continue to do so, that the coordination numbers
and the coupling constants of each sublattice are
equal: z„=z~~, etc. This does not change the essen-
tial features of the model and makes the calculation
easier.

The first step in the solution is to rotate each spin
space so that linear terms are eliminated; this is done
by means of two sets of Euler angles: n, 8, and

1 1—
4 m in the S space and ~, 8, and ——n in the o-

space. It is essential that 8, the angle in S space,
need not be the same as P, the angle in o space.
After this transformation, the terms of the Hamil-
tonian can be grouped in three sets: (i) a linear part,
that is, all terms containing S+, S, o+, or o-, either
by themselves or multiplied by S*or o'; (ii) a diago-
nal part, or self-part; and (iii) a coupling part contain-
ing all products of two spin-raising operators or two
spin-lowering operators. The third part represents
the excitation spectrum if there were only one sub-
system. However, in our case we deal also with exci-
tations between the subsystems, and this will lead to
an additional excitation mode.

After this transformation is inserted we obtain a
revised Hamiltonian; for details we refer to Ref. 28.
This Hamiltonian contains a self-part and an excita-
tion part. The self-part contains Ising terms and xy
terms. The first terms give the ground-state energy,
If we consider the angles 8 and $ as the variables of
a variational problem, then we can determine their
values by minimizing the ground state with respect to
8 and qh. This leads to two relations, both containing
the magnetic field (i.e. , the chemical potential). If
we eliminate the field term, we are led to the follow-
ing condition:

(Zaa Jaa Zaa Jaa Zab Jab) Sin 8 Sin @

=z,bJ b(1+cos8cosqh) . (4)

We will call this the Matsuda-Tsuneto or MT condi-
tion. This condition plays an essential role in our
description.

The relations obtained by the variational process
can be inserted in the linear term, and the result is
that this term disappears. The remaining Hamiltoni-
an is used to construct the equations of motion after
we take the Fourier transform. The result is

ISI = N)Sg + I 5)S-It &0 g + I 50-g

IS I,
= I 5)Sg + 6]S—I, + I 5O'I + &O —I b

t

. . t
IOg = —KSIt + I5S It 620g + I52O

I o g =

ISSUE

+ 6S g+ I52OIf +62O

where Sb = X, S;exp (ikr, ) and a b = X,. a; exp (ikr;)
I

and the coefficients are given by

6] = AJ sin 8(s ) +z,b J b (o ) ( sin p/sin 8)

ap = dl J sin'$ (0 ) + z,b Jab (s ) ( sin 8/ sin y)

a = hJ sin 8 sin $(s)
5~ =AJ sin'8(s)

Sz = hJ sin'$ (s )

(Zab Jab +4J Sin 8 Sin p) (S )

We took the structure factor y(k) =1, the low-k lim-
it, and wrote: 4J =z„(J„—J,', ). If we consider the
right-hand side of Eq. (5) written in matrix form, the
resulting matrix M has the property

Ol ~ OlM=-, lo M'10

which implies that A. ~
= —P2 and A3= —A4. The first

pair corresponds to an acoustic mode: X~ 2 0 for
k 0; the second pair corresponds to an optical
mode i.e.

r

12Jpsinbsin8+0(k2)= —
Zab ab

sin 8 sin@

This mode is only present if 8 and Q are not equal to
zero. The spin model for liquid helium is based on
the idea that the kinetic energy is enhanced through
the quantum effect and consequently these angles are
not zero. The relative influence of this effect dimin-
ishes when the temperature is increased; i.e., each
angle becomes smaller. In a strict molecular-field
model, the angle becomes zero at the lambda tem-
perature, but we will assume that in a more realistic
model the short-range order will persist above this
temperature and that even in this region the. angle is
not zero. The justification we present here is that the
other manifestation of quantum effects in helium,
the presence of rotons, does not disappear either
above the X. temperature.

Since the equations that determine 8 and $ are dif-
ficult to solve in terms of general coupling parameters
and chemical potential, we will make the approxima-
tion that the, parameters associated with the surface
layer have values not too far from the parameters of
the bulk liquid. If we make the coupling constants
between the layers equal to the coupling constants in
the layer:. J„=J,q and J,', =J,'~ we find from the MT
relation that

sin 8 sin $+cos 8 cos @= —1

Hence $ = m+ 8. In this case, the optical mode is
not present. If the interlayer coupling is slightly dif-
ferent, we take 8=80+68 and @=n +8b —68 and
the optical mode can be expressed in terms of 8 as
follows

k =
Z

Zab Jab(4COtan8O/S8)
1
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while AH is determined by the difference in coupling
constants. Expanding the MT relation we find

Inserting this in the equation for the optical mode,
gives:

)( =4Job(job Jo Jb+J„)cos &o

It is interesting to notice that for small Ho this be-
comes independent of Hp, consequently, there will
still be an optical mode provided the J parameters are
different from the J' parameters.

The result obtained substantiates the mechanical
model: There is energy transferred to surface excita-
tions at a finite frequency. This mechanism will

disappear when kT &( A, in much the same way as
the Debye specific heat. will disappear below the
characteristic temperature. There is indeed experi-
mental evidence that at lower temperatures,
some~here around 0.1 K, the conductivity ap-
proaches the Khalatnikov limit.
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APPENDIX

Suppose a transverse wave, polarized in the plane
of incidence, impinges. upon the z =0 plane, as
shown. The transverse wave is reflected, while a
longitudinal wave is generated in the continuum by
the well-known mode conversion mechanism. In ad-
dition, a disturbance will now propagate through the
structured, i.e., atomic, layer.

Let g and j be the total displacements in the x and
z directions, respectively, in the solid, while X„ is the
displacement, parallel to the surface, of a mass at po-
sition nx(n =G, l, 2, . . . ) on the surface structure.
The total displacement of the continuum is the result
of three displacements

VI. CONCLUSION (= 6+6"+ 4i" ( = 4'+ (i'+ 5i', (Al)

In this paper we argue that the discrepancy
between the observed thermal conductivity resulting
from the phonon mismatch is due to the presence of
an extra channel, through which energy can be
transferred from the solid. This channel consists of a
two step process.'energy transfer from the transverse
waves in the solid into the surface layers of helium
atoms, and coupling from these helium atoms to the
bulk liquid. The essential assumption is that this sur-
face structure has an optical mode, i.e., a resonance
at cup ~0 for k 0. We show in a mechanical-
equivalence model how such a structure reacts to an
impinging transverse acoustical wave.

In the second part of the paper we use the spin
model of Matsubara and Matsuda'to show that the
quantum-mechanical off-diagonal long-range order is
different in the surface layer from that in the bulk.
This difference is due to the compression of the first
few layers, and it leads to an optical branch.

This optical branch will contribute an additional
term to the heat transfer coefficient; this term will
also have a T' dependence, similaj' to the phonon-
mismatch term, except at temperatures T ( 0)()/ks.
This drop-off has been observed and its position can
be used to fit cop and hence d J,b

—4J,'~. At much
longer lower temperatures, the heat transfer should
follow the Khalatnikov value. Another prediction of
our model is that the surface layer should have a
temperature different from the temperature in the
liquid and from the temperature in the solid. We
hope that the experimental effort could be directed
towards an observation of this prediction.

which comprise a composition of incident and reflect-
ed parts, ~here i refers to incident, r to reflected, and
t and I to transverse and longitudinal, respectively.
Each displacement can be written

g,'=cosa, A exp[ik, (x sinn, —z cosa, ) —i 0)r]

(i' = sinn, A ex p[ik, (x sina, —z cosn, ) —i Oir ]

(,'= cosa, B exp[ik&(x sina, + z cosa, ) —i ~r ]

(i = sinnrB exp[ ik, (x sinn, +z cosa, ) —i Oit]

(i"=sinniC exp[iki(x sinai+z cosai) —i 0)r]

gf = cosaiC exp [iki(x sinn, + z cosai) —i cur ]

(A2)
The displacement of the discrete masses is given by:

(A3)

where N is the total number of masses on a strip of
the surface, and k, is the wave number in the surface
structure. 3 is an arbitrary constant, 8, C, Xk, and
Yk follow from the matching conditions.

The condition that must hold on the boundary is
that of continuity of stress. Obviously, the displace-
ments of the masses are not necessarily equal to the
displacement of an element of surface on the solid,
hence, continuity of displacement does not hold in
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this model. The continuity of stress gives,

(r„=0

a =y(X„-g) .

(A4)

(AS)

tions are given by..

mX. = P, (X.+1+X. 1-2X.) + y(g -X„), (A6)

This notation indicates the position of the surface by
the first subscript and the direction of the stress by
the second subscript (compare Sommerfeld, Ref. 23,
p. 38).

The bending constant, y, has the proper units so as
to make the right-hand side of Eq. (AS) and expres-
sion of the force per interparticle distance.

We determine the four unknown amplitudes from
the two conditions (A4) and (AS) and the equations
of motion of the masses on the surface. These equa-

~ ~

MXn+1 Ps(Xs+2 + Xn 2Xs+1 ) + & sssKXss+1, (A7)

where n is even. The last term of Eq. (A6) describes
the coupling of mass m to the solid. That of Eq.
(A7) describes the coupling of mass M to the liquid.

First, we determine the natural frequencies of the
structured layer. This is the problem of the classical
diatomic linear chain. ' We take the Fourier
transform of Eq. (A6)

-ik (n-1)a -ik a

n

I

—2P (—N)-1/2 XX e
' s" +y( N) —1/2 g(P X )&

' s"
n n

(Ag)

We evaluate the different terms separately.
—ik na 1 1/2 -ik na( , N) Z —ge =(—,N) X[(A cosa, +3cosa )exp(ikx sina, +C sina ) exp(/k xs/in )a]/e* for x =na

n n

At this point (using the condition that at z =0, the
phase should be equal, regardless of the values of x
or n) we recover Snell's law

2—Xexp[/(k, sina, —k, ) na ] = Sk k s1„~
n

—Xexp[/(k/ sina/ —k, ) na ] = Sk k/sjg
2

n

with
OJ OJ OJks= —,ki= —,k
cs ci ci

with the c's being the respective velocities of sound.
That is, we find:

ks = kr sino. i = ki sinn (A9)

Both equalities express the same idea; the corn-
ponents parallel to the surface must be equal. The
second equality is the refraction law. Since the velo-
city of sound in helium is much smaller than that in
the solid, on account of the low density, the angle of
the cone is rather small. The first equality can only
be fulfilled for one value of a, which is also small;
that means the cone is empty. We assume that there
is a small spread in the surface velocities, and hence
the cone has a certain thickness. The result is that
the space angle associated with the second equality is
less than but may be comparable with the space angle
associated with the first equality.

H.ence, we obtain:

( 1
N )—1/2 g ge

' s "s

n

(k (, N)'"[.(& + B)cosa, + C sina/]

Noting that the time dependence enters by way of
the factor e'"', that

Xk =(—N) '/2 QX„e

Yq = ( z
N ) '/2 $X + e

The eigenfrequencies are given by

Ps
s02+ = (M + m + [ ( M —m ) 2+ /s, Mm cos ( k, a ) ] '

Mm
(A11)

The eigenvectors are

Xk = MPl cos HXk + JM sin 8 Yk

Yk =—Jm sin//X/, + JM cos8 Yk

(A12)

(A13)

and that the same arguments apply to Eq. (A7), we
find for the Fourier transformed equations of motion

—m &o'Xk =2P, Y1, cosk, a —2P,X„+y(gk —Xk)
(A10)—Mas' Yk =2p, Xk cosk, a —2p, Yk+i cuss Yk
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where tg (28) = 2(Mm) ' z cos(k, a )/(M —m ). Ap-
plying this transformation to Eqs. (A8) and (A9), we
obtain

X„'=yam cos8[(Mm)' (cu —t» )

+ IQ)K(m/M ) ' ']gg/G = P(—, (A14)

and

R = (—cosa, /Jm ) Im(cos8P —sin8Q)

S =cosa, [1 —(I/Jm ) Re(cos8P —sin80) ]

(A20)

Y„'= y JM sin8[(Mm)'t'(t»' —«)z+)

+i t»K(m/M)' ']gt, /G = Q( . (A15)

where

G = Mm (t»' —a)z+) (t»' —t»')

The transmission coefficient T is found from the
equations of conservation of energy flow perpendicu-
lar to the surface similar to Eq. (A3); i.e.,

2 2
sin20.+ =1 —T
sin2n,

—yM[cos 8(t» —t» ) +sin 8(t» —t»+)]

+i t»n (m [ cos'8(~' —mz+)

+sin'8( ~' —(»' ) ] —y)

with

4p k, yR cos 2n,

(p, k,Ap —yR ) + y S
(A21)

Note that G contains resonating terms even when y
and K are zero. This implies that, X» or Y» become
large with the proper values of the driving frequency,
co, when ~ and y are small.

Let us now return to Eqs. (A4) and (AS). Using

the index of refraction, n = k~/k, = (2 + X/p) '-i/2

where p, and A. are Lame constants, and Snell's law,

Eqs. (A4) and (AS) may be rewritten in the form

—(A +B) sin2a, + (1/n) C cos2at 0 (A16)

p, k, Bp —y(R —iS)

A pk, A p + y(R —iS)

p, k, n sin4a,

A p, k,A p+ y(R —iS)

(A18)

i p, k, (A ——B) cos2a~ +inst, ktC sin2at = y(Xq —gq)

(A17)

Remember that gq is a linear combination of A, B,
and C. Inserting Eqs. (A14) and (A15) in the right-
hand side of Eq. (A17) using the inverse transforma-
tion of Eqs. (A12) and (A13), and solving Eqs.
(A16) and (A17) simultaneously, we find

Note that T vanishes, as it should, under each of the
following conditions: ~~0, y~0, P, ~O.

If the damping constant K is zero, there is no
"sink" for the energy on the right-hand side (z )0),
and consequently all the incoming energy will be re-
flected back into the solid. If the bending constant y
is zero, the discrete structure on the surface will be
disconnected from the solid, and if the spring con-
stant P, is zero, there will be no connection with the
viscous damping into the liquid.

The rate of energy transport to the right side is
given by T, the transfer probability. This function is
rather complicated, Therefore, in order to under-
stand its behavior, let us make the simplification that
k, =0 and M = m. We now have cos8=sin8=1/W2,
and the problem contains only three parameters. '

4p, /m = c»pz as well as the coupling constant y and the
damping constant K. We will assume y to be small
and omit all terms of order y . This leads to a simple
form of T given by

T = (const) y'ng (t», o)+, K)

where

where

Ao=cos 2a, +n sin2nlsin2cx,

~0 =cos'2 ar —n'sin2I sin20. ,
(A19)

and

4cos 2agcosag2

const
pkcAO'

Cd( t»+ —
CU }

2m'(cu' —~z~)'(t»' —«»')'+,' ~'s)'[(t»' —t»z~) + (a)' —o)') ]' (A22)

In the region of small k„co =0 and co intersects the co+ branch at ~0.
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From Eqs. (A14) and (A15) we can see that for
small k„we obtain two resonance peaks, one at
cu =0 and the other at co = coo. The first peak does
not contribute very much to the energy transport
since the integrand contains a factor of Ace. So,
despite the fact that there are many phonons at that
frequency and that they have a large transfer proba-
bility, they carry little energy. The situation at
~ = ~0 is different; there are fewer phonons present
but the transfer probability is large and so is the
amount of energy transferred. Moreover, it has been
observed that phonons of high frequency are pro-

duced in the helium. That is, the spectrum of pho-
nons produced in the helium does not necessarily
have the same characteristic temperature as the
heater. ' This indicates that the "tail end" of the
blackbody distribution from the heater interacts with
the surface to produce high-frequency phonons in
bulk helium. Although the model deals with two
specific natural frequencies, ~+, the surface layer may
be characterized by more frequencies, thus allowing a
larger number of phonons from the heater to interact
with the surface excitations.
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