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Simple model for inhomogeneous mixed-valence systems: Application to Sm,S, and Eu,S,
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A simple model to describe the transport and magnetic properties of semiconducting inhomogeneous mixed-

valence systems is presented. %e assume that there is a nearest-neighbor charge interaction between the divalent

and trivalent rare-earth ions and that there is a nearest- and next-nearest-neighbor Ising-type interaction among the

magnetic moments. The magnetic and the charge order are studied within the Bethe-Peierls approximation.

Depending on the coupling parameters the ground state of the system might be ferromagnetic charge ordered,

antiferromagnetic charge ordered, segregated (clusters of ions with the same valence) ferromagnetic, and segregated

antiferromagnetic. The observed discontinuity of the conductivity in Sm, S4 is explained in terms of an order-disorder

transition.

I. INTRODUCTION

Mixed-valence compounds are systems in which
the cations are present in more than one valence
state, e. g. , the 4f" and 4f" 5d configurations of
rare earth (R) ions. It is useful to distinguish
between homogeneous and inhomogeneous mixed-
valence compounds. In the former case localized1

and band states coexist hybridized near the Fermi
surface and a metalliclike conductivity is observed.
In the case of inhomogeneous mixed-valence com-
pounds the ionic configurations are frozen since
there are no extended states at the Fermi level
and the transport properties are like those of a
semiconductor. These systems are further clas-
sified according to whether the cation sites are
equivalent, as for Sm384 and Eu3S4, or inequivalent
as for example for Eu304 and Fe304.

In this paper we present a simple model for in-
homogeneous mixed-valence systems with equi-
valent cation sites and apply it to R,S4 (R = Sm, Eu).
These compounds crystallize in the Th3P4 struc-
ture, where the R ions form a bcc lattice, and
are n-type semiconductors with a high carrier
density of 10 cm . Divalent and trivalent R ions
are present in the ratio 1:2, such that the average
R valence is 2.66 and one can write the net for-
mula as R 'R2 'S4 . The energy-level diagram
as obtained by electrical and optical measure-
ments shows that the 3p -valence states of S are
far below the 6s 5d conduction band and do not
play any further role. The ground states of the
4f configuration of Sm '

and of the 4f' configura-
tion of Sm are below the bottom of the conduction
band by about 0.2 and 5 eV, respectively. Hence
the 6s 5d conduction band is empty and can be
neglected as a first approximation.

The valence fluctuations are due to thermally
activated hopping of the 4f electrons. The hop-
ping frequency is given by

v=v e0

where v0 is of the order of 4 x 10 sec and h~
0.14 eV."' The conductivity data for Sm3S4

shows h change in the activation energy at 125 K,
which is attributed to the formation of a long-
range charge order. The Mossbauer spectra '

for Eu384 are also consistently interpreted in
terms of a thermally activated hopping.

Since the spatial configuration of the 4f electrons
is essentially frozen at low temperatures one ex-
pects the system to order magnetically. The
Mossbauer data revealed that Eu3S4 is ferromag-
netically ordered below T, = 3.8 K. The situation
is not so clear for Sm, S4. Extrapolating the bulk
measurements of X for Sm3S4 to low temperatures,7

a Neel temperature of 1 K corresponding to anti-
ferromagnetic order is obtained. In contrast to
the above result there is a previous measurement
which shows a Pauli-type susceptibility, ruling
out a magnetic ordering and the existence of the
magnetic moments of Sm".

Our model involves only 4f electrons and we ne-
glect their orbital degeneracy. Since the hopping
frequency is much smaller than the charge inter-
action between the divalent and trivalent R ions,
we assume that the thermodynamical properties
of the system are not affected by the dynamics
of the 4f electrons. The compound can thus be
considered as an alloy of R and R ions. Con-
cerning the magnetic moments of Eu and Sm
we assume that they can have only the two orien-
tations up and down, i. e. , we replace them by a
spin —,'. This represents a considerable simpli-
fication of the calculation.

We introduce a nearest-neighbor charge inter-
action between the divalent and trivalent R ions,
which takes account for their difference in size
and charge. We further consider a nearest- and
next-nearest-neighbor spin interaction of the
Ising type. The thermodynamical properties are
discussed within the Bethe-Peierls approxima-
tion. Depending on the signs and strengths of the
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interaction parameters the ground state of the
system might be ferromagnetic charge ordered,
antiferromagnetic charge ordered, ferromagnetic
with ions of the same valence clustered (segrega-
tion), and segregated antiferromagnetic.

By determining the strength of the charge inter-
action with the transition temperature T, = 125 K,
we obtain a change in the activation energy for
the conductivity of Sm384, which is in good agree-
ment with the experimental data, without adjusting
other parameters.

The rest of the paper is organized as follows.
The model is described in Sec. II. In Sec. III we
calculate the phase diagram at T= 0, the transition
temperatures to the ordered phases and the con-
ductivity of Sm3S4 near the order-disorder transi-
tion, as well as the discontinuity of the specific
heat at the transition. We close the paper with a
summary and a brief discussion of the results
(Sec. Dj').

II. THE MODEL

As mentioned in the introduction only f electrons
play a role and their dynamics can be neglected in
thermodynamical properties. For the sake of
simplicity we replace the S=P of the Eu ' ions
and the ~= 2 of the Sm by a spin —,

' with a corre-
spondingly enhanced magnetic moment. The sys-
tem can now be considered as a ternary alloy con-
sisting of Sm (Eu ) ions which may have spin up

or down and Sm (Eu ) ions without magnetic
moment.

The R ions are on a bcc lattice. We introduce
two sublattices o,'and P, such that each ion of one
sublattice is surrounded by z sites of the other
sublattice, z being the coordination number. We
limit ourselves to a probabilistic description of
the local environment by defining bond probabili-
ties of nearest-neighbor pairs. Denoting the
three alloy components by + (spin up), —(spin
down), and 0 (no spin) we introduce the pair prob-
abilities P",, (where i,j take the values +, —,0)
giving the probability of finding an ion i at the site
a and an ion j at the site P There ar.e nine pair
probabilities, normalized by the condition

The single-site probabilities expressed in terms
of the Po are given by

(2.2)

where n; denotes the probability of finding the
alloy component i at the site &. The probabilities
are further constrained by the total number of

electrons, i. e. ,

—,'(no +no)= 3=x for Eu3S4 (2.3a)

—,'(no +no) = 3 =x for Sm3S4. (2.3b)

g=P,p+P p
—Pp, -PpnB eP 0 nP

The energy H, depends only on 0 and can be writ-
ten as

H, =4NzUx(1 -x)a+const.

Note that for our systems U& 0, since the interaction
is repulsive of the Coulomb type or, equivalently,
it can be interpreted as of elastic nature (ion-size
effect).

The nearest-neighbor spin interaction can be
written as

H~g=-NzS Jg(P,"~+P" —P, —P,),
where 8 is the spin of the R ions. There are two
main competing mechanisms contributing to the
spin interaction. ' the superexchange, which is al-
ways antiferromagnetic, and the indirect exchange

These relations determine the concentration x of
nonmagnetic Eu ions and Sm ' ions, respectively.

Within the pair approximation the entropy of the
system is given by '
S= —(g —1)Q (nf inn;+n, inn() —N —QP"o"lnP„,

$j

(2.4)

where N is the total number of 8 sites.
As mentioned above we consider a charge (chem-

ical) interaction between nearest-neighbor ions
and an Ising-type interaction between nearest and
next-nearest neighbors.

The chemical interaction is due to the difference
in size and charge of divalent and trivalent R ions.
The internal energy associated with it can be
written as

H, =Nz U(P„+P, +P, +P" + P00

—P~~g —P 0
—Po, —Po ) + const . (2.5)

The above combination of pair probabilities cor-
responds to the probability of finding a pair of R
ions with the same charge minus the probability
of having a pair with different charges. Here, U

= U + Upp 2Up„and U&, is the effective interac-
tion between the i and j ions. We define the chem-
ical short- and long-range order parameters cr and

g by

1
, (P".,'+ P,'+ P;"+Po')2xi1- x)



&9I4 J. L. MORAN-LOPEZ AND P. SGHLOTTMANN 22

via the 5d band, which is always ferromagnetic.
Both mechanisms are short ranged and depending
on which one dominates the net interaction, may
be ferromagnetic (Jq & 0) or antiferromagnetic (Jq
& 0).

In order to include a next-nearest-neighbor in-
teraction among the spins we express the proba-
bilities of next-nearest-neighbor pairs in terms
of the P;&. Next-nearest-neighbor sites belong to
the same sublattice. Assuming that the nearest-
neighbor bonds are all independent we obtain for
the probability of finding a next-nearest-neighbor
pair i, l in the & sublattice

PofOP@0

nJ'
(2.10)

%=Hc+H gg+Hy2 —TS (2.12)

which must be minimized with respect to the P&, ,
subject to the constraints (2.1) and (2.3). Note
that the free energy is invariant under the simul-
taneous inversion of all the spins in one of the
sublattices and a change in the sign of Jq.

Summing over i and l these probabilities are nor-
malized to one. The probabilities in the P sub-
lattice are given by a similar expression. The
next-nearest-neighbor Ising interaction is now

given by

PQAPtxo PafPPR0
&sn=-«*&~3Z3f " " " " (211)

il j n~

where g* is the number of next-nearest neighbors,
e.g. , g* =6 for a bcc lattice. We are not inter-
ested in discussing spin-disorder-quenched phases,
e. g. , a spin glass, and for that reason we choose
this interaction to be ferromagnetic. In this way
42 aligns the spins of the same sublattice.

The free energy of the system is then given by

the same valence are clustered.
The boundaries between the phases are given by

Jg=0, 4U=S ~Jg~ + —3,
S*S ~3 (3.1)

for both systems, x = 3 and x = -,'. The phase dia-
gram is shown in Fig. 1 and the states charac-
terized by the nonvanishing pair probabilities are
the following. '

(1) Concentrated spin system, x = —,
'

(Sm384).
OF: ferromagnetic charge ordered P'..= —,', P,,
2
3f
SF: segregated ferromagnetic, P,.= 3 P33= 3j
OAF: antiferromagnetic charge ordered, P,

~0 2.~+0= 3~

SAF: segregated antiferromagnetic, Ppp = 3,
Dm0 2

+ w 3 ~

The last two states are obtained from the first
two states by inverting the spins in the P sublat-
tice.

(2) Diluted spin system, x = —', (Eu,84).
OF: ferromagnetic charge ordered, Pp0=3 Pp,
2
3 )
SF: segregated ferromagnetic, P„=-3, Ppp —3.

These states are obtained from the corresponding
ones for x = 3 by interchanging the alloy compon-
ents 0 and+.

OF: ferromagnetic charge ordered Ppp 3 Pp
2
3 f

SAF: segregated antiferromagnetic P, = 3, Ppp
2
3 ~

Here again the spins of the P sublattice were re-
versed. Note that there is no antiferromagnetic
charge-ordered phase for spin-diluted systems.
It should be mentioned that in this case if 42=0
the ordered phases are paramagnetic.

III. RESULTS

In this section we present the results obtained by
minimizing the free energy (2.12) with respect to
the P,,

A. Phase diagram at T= 0

At T = 0 K we have to minimize the internal
energy of the system. Since the free energy of
the system is invariant under a simultaneous
change in the sign of 4q and inversion of all the
spins in one of the sublattices, it is sufficient to
discuss the case Jz & 0 only. We have to disting-
uish the two cases x =3 (Sm383) and x= —,

'
(Eu384),

which correspond to diff erent spin concentrations.
For Jq & 0 there are two possible states: a charge-
oddered ferromagnetic state (OF) and a segregated
ferromagnetic state (SF), in which the ions with

s j,

FIG. 1. Ground-state phase diagram. The possible
phases are ordered ferromagnetic (OF), segregated
ferromagnetic (SF), segregated antiferromagnetic (SAF),
and ordered antiferromagnetic (OAF). Notice that OAF
cannot exist for a spin-diluted system.
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B. Transition temperatures go~=P„+P" —P, —P, (s.a)

In general the system undergoes two phase tran-
sitions as a function of temperature, correspond-
ing to charge (chemical) and magnetic ordering,
respectively. We assume that the charge interac-
tion U is much larger than the Ising spin interac-
tions Jq and J2. We consider only the case of a
repulsive U. The charge- ordering temperature
of the system is therefore much higher than the
Curie or Neel temperature.

In order to calculate the charge-ordering tem-
perature we set then

P„=P, =P,=P, P,p
—P (), Pp, —Pp

(3.2)

such that the free energy for a given x is only a
function of the short-range- and 1ong-range-order
parameters 0 and g. We find that g =0 for tem-
peratures higher than the critical temperature T«,
given by

(3.3)

and three long-range-order parameters, namely,
the two sublattice magnetizations and

P,p
——P 0. (3.9)

(3.10)

which is valid for T~ T«. The critical tempera-
ture and the short-range-order parameter are ob-
tained by solving simultaneously these two rela-
tions. The critical temperature as a function of
Jq is shown in Fig. 2.

For U»&
~
Jq~ »~*& J'2 we obtain that

The free energy is now expanded up to second or-
der in the long-range-order parameters and mini-
mized with respect to them. This yields an homo-
geneous system of three equations with three un-
knowns. There is a nontrivial solution only if the
determinant vanishes. This yields one relation
for T«(ocM); a second relationship is given by

=--,sS J&-zzs*S J2~„+ ln — =0Tg $+g

~,.=-1/{» 1) (3.4)

The critical temperature is, of course, the same
for x= 3 as for x= —,. The short-range-order
parameter at the critical temperature is given by

and

oc„=~3/(z 1)

T,„=4S ~J, ~
ln2 s —1+M

(3.11)

(3.12)

independent of the concentration x.
In order to calculate the magnetic transition

temperature we have to distinguish between the
spin-concentrated and spin-diluted systems.
From our previous analysis it is clear that the
transition temperature cannot depend on the sign
of J,. We assume that the magnetic critical temp-
erature T« is so small that the system is already
completely charge ordered. Let us consider the
spin-diluted case first. For x= 3 we have that

i. e. , Tc„ is proportional to ~Zq~, as can be seen
in Fig. 2.

C. The conductivity of Sm3S4 near the order-disorder
transition

As mentioned in the Introduction, the electrical
conductivity is due to a thermally activated hopping
as given by (1.1). The data for Smq84 shows a

m0 & m8 e0 2
Ppp —3 y P+0+P-0= 3 y (s.5) Tco/{Sz'S'j, I

and allothers vanish. Hence we have only one
order parameter which is long ranged. The tran-
sition temperature is then easily obtained:

TcM =pcs*S J2, x= 3. (s.6)

P„'+P~+s ', +P '=-3, P~~+P~~=-,' (3.V)

and all others are zero. There are four degrees
of freedom in the system corresponding to one
short-range-order parameter given by

Note that T« is independent of Jq, since the proba-
bility of finding two neighboring ions with spin is
zero.

The case of the spin-concentrated system is
more complicated. For x= 3 we have that

--2

I I I I I I

-6 -4 -2 0 2 4 6

'/z*~,
FjG. 2. Critical temperatures for magnetic ordering

as a function of nearest-neighbor coupling for a charge-
ordered system: (a) the spin-diluted and (b) the spin-
concentrated case.
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P, , =2x(i x)(i &) (3.13)

whose equilibrium value is obtained by minimiza-
tion of the free energy with respect to o and g.
Close to the order-disorder transition we obtain
the following expression for 0'.

8U (T- Tco)
A+Be(T„T) ' (s.14)

where e(x) is the step function, which is one for
x & 0 and zero for x & 0, and T«and Ocp are given
by (3.3) and (3.4), respectively. The constants
& and ~ are defined by

change in the activation energy' at 125 K. A pos-
sible explanation for this change is a charge-or-
dering transition. We assume that the conductivity
is proportional to the available Sm '-Sm pairs
in the system, since these are the only bonds that
contribute to the transport. With the conditions
(2.1), (2.3b), and (3.2) our system depends only on
the short- and long-range-order parameters, de-
fined in (2.6) and (2.7). The probability of finding
a pair with unlike charges depends only on the
short-range-order parameter

ment with the experiment.
The high-temperature activation energy-cannot

be calculated easily. Inelastic light scattering
experiments revealed the existence of an anoma-
lous phonon mode associated with the valence
fluctuation in Eu3S4. It corresponds to a zone-
boundary mode in which the S atoms vibrate,
while the R ions remain essentially fixed. The
hopping frequency vo in (1.1) is also of the order
of optical phonon energies. . Hence lattice vibra-
tions should not be neglected in estimations of the
hopping integral, i. e. , the activation energy.

D. Discontinuity of the specific heat at the order-disorder
transition

The onset of long-range order induces a jump in
the specific heat at T(-p, We consider here only
the electronic contributions due to a feasible lattice
distortion. In order to obtain the specific-heat
jump we expand the free energy in powers of 'g up
to fourth order and minimize with respect to o and

The specific heat is given by the second deri-
vative of 5 with respect to the temperature which
yields

x 1 —x 2A=(z -1) + +-
z(1 —x) —1 zx —1 z

8=3 — 1-x +x — 1-—

(3.16)

(s.16)

C = 32 zx(1 —x)(U/T )'/[A + Be (T —T)]

+O(T- T,o), (s.iv)

where & and B are defined by (3.15) and (3.16).
The discontinuity is then given by

We see that the slope of 0 as a function of tem-
perature changes at T'cp due to the onset of the
long-range order.

The variation of &2,3, with the temperature is
shown in Fig. 3 together with some of the conduc-
tivity data of Sm&84. The interaction strength
U has been deter mined from the critical tempera-
ture Tcp= 125 K, and the high-temperature data
has been matched to fix the activation energy A~,
Eq. (1.1). The rest of the figure follows without
adjusting further parameters and is in good agree-

LC =-32zx(1 —x)(U/Too)
A A+B

For x= ~ or x= 3 we obtain

(s.18)

64 U ' z '(z —3)'(2 z —3)2

81 7' (z —1)(z —2)(z' —3z+3) '

(s.i9)

IV. SUMMARY AND CONCLUSIONS

We have presented a model for inhomogeneous
semiconducting mixed-valence compounds, in

~n(~e ~T)

6.2

6.0

5, 8 O

6 10

T (10 K 'j
FIG. 3. Conductivity 0(Q cm ) of Sm3S4 as a function of the inverse temperature. The experimental data are taken

from Ref. 2. Only the critical temperature Tcp =125 K and the high-temperature activation energy AE = 0.142 eV are
fitted to the experimental data; the rest of the curve follows from the model without adjusting any further parameters.
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which the dynamics of the 4f levels is neglected.
The system was treated as a ternary alloy within
the Bethe-Peierls approximation, the alloy compo-
nents being nonmagnetic ions and magnetic ions
with spin up and down, respectively. We con-
sidered a charge interaction between neighboring
ions and Ising-spin interaction between nearest and
next-nearest neighbors. In Sec. III we calculated
the ground-state phase diagram, the critical tem-
peratures, and the behavior near the order-dis-
order transition.

We have focused our attention on the systems
Sm3S4 and Eu3S4, which are expected to behave
similarly for temperatures far above the magnetic
ordering temperature. The electrical-conducti-
vity data for Sm3S4 revealed an anomaly in the
hopping activation energy of the 4f electrons at
125 K. This change in the activation energy can
be explained in terms of an order-disorder tran-
sition as is shown in Fig. 3. At the order-dis-
order transition the specific heat should have a
discontinuity. A measurement of the specific heat
should be of interest. The low-temperature spec-
ific heat is dominated by the lattice vibrations,
whereas at higher temperatures the electronic dis-
order is expected to play an important role. Since
electrons and phonons are coupled as found by in-
elastic light scattering, the order-disorder tran-
sition might be accompanied by a lattice distortion.
The strength of the distortion may be estimated by
comparing &co——125 K with the energy separation
between the 4f and 4f states of Sm which is g
=4.5 eV. The latter energy should be of the order
of the "local deformation energy" due to the dif-
ference in size of the Sm '

and Sm ions. We ex-

pect the lattice distortion to be of the order of

(4.1)

which is in agreement with the lattice distortion
determined for EusS4 of about 0.4%.

At low temperatures we expect the system to
order magnetically. This is in agreement with
some of the experimental data. ' Here we have to
distinguish between the Sm and the Eu compounds,
since they correspond to the spin-concentrated
and spin-diluted cases, respectively. The Eu
compound cannot order magnetically if only a
near est- neighbor interaction is taken into account.

There are two main mechanisms contributing to
11the spin interactions: (a) In the supexexchange

the R ions interact by spin-polarizing the P orbi-
tals of the neighboring anions (S ions). The
effective interaction is always antiferromagnetic
and decreases exponentially with the distance.
(b) In the indirect exchange the 4f electrons are
virtually excited into the 5d band and mediate in
this way an effective interaction between the R
ions. This mechanism is always ferromagnetic
and also short ranged.

The short rangeness of the interactions justifies
the consideration of only nearest- and next-near-
est-neighbor interactions in a bcc lattice. We
have two competing mechanisms, one being anti-
ferromagnetic, the other ferromagnetic. Since
the Sm ion is nonmagnetic we expect the indirect
exchange to be less effective for Sm3S4 than for
EU3S4 where Eu has a S =~ ground state. This
simple argument may be the explanation for the
antiferromagnetic ordering of Sm3S4 and the ferro-
magnetic ordering of Eu3S4.
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