³¹Si tracer studies of the oxidation of Si, CoSi₂, and PtSi

R. Pretorius, W. Strydom, and J. W. Mayer* Southern Universities Nuclear Institute, P.O. Box 17, Faure 7131, South Africa

C. Comrie

Physics Department, University of Cape Town, Rondebosch 7700, South Africa (Received 24 March 1980)

Radioactive ³¹Si ($T_{1/2}=2.62$ hours) was used to study the mechanism of atmospheric steam oxidation of silicon, CoSi₂, and PtSi. Measurement of the radioactivity profile in the SiO₂ layer formed on Si shows that oxide growth takes place at the Si-SiO₂ interface by oxygen diffusion through the growing SiO₂ layer. The sharpness of the measured activity profile also indicates that Si is very immobile in SiO₂ at the oxidation temperature of 1000 °C. The oxidation studies on CoSi₂ and PtSi also show that SiO₂ formation takes place at the silicide-SiO₂ interface and that oxygen is the diffusing species through the SiO₂ layer. By marking these silicides with ³¹Si and measuring the radioactivity left in the silicide layer as a function of SiO₂ thickness, it was shown that silicon diffuses through the silicide by a substitutional (vacancy) diffusion mechanism. Nonradioactive silicon supplied from the underlying silicon substrate mixes completely with the radioactive silicon in the silicide layer, owing to the high silicon self-diffusion coefficients in both CoSi₂ and PtSi at the oxidation temperatures used.

I. INTRODUCTION

In silicon semiconductor technology the formation of an insulating layer of SiO₂ is crucial for photolithography, isolation of devices and interconnections, and final passivation of devices. The thermal growth of such SiO₂ films on silicon has been extensively studied using various oxidants, namely, dry oxygen,¹⁻⁹ wet oxygen,^{3,4,6,7,9} and steam^{2,3,5,7} at temperatures ranging from about 700 to 1300 °C. For all these oxidizing conditions it is generally found that following the initial growth, the thickness of the formed SiO, layer is proportional to the square root of time. thereby indicating that the oxidation process is diffusion limited. For SiO₂ thicknesses less than about 350 Å the growth is found to be approximately linear with time.4,9

Oxidation in steam or wet oxygen proceeds much faster than in dry oxygen^{3,5,7,9} and is thought to be due to the fact that the H_2O acts both as an additional source of oxidant and as an accelerator for the oxidation process. It is postulated that this latter effect occurs because the H_2O modifies the SiO₂ network, thereby enhancing diffusion of the primary oxidant through the SiO₂ film.⁹

There has also been much interest in the oxidation of the metal silicides.¹⁰⁻¹² These silicides are extensively used as ohmic or rectifying contacts to silicon devices and advantage has been taken of the good electrical conductivity of some of the metal silicides for the fabrication of gates for field-effect transistors.^{13,14} For such applications it is necessary to cover the metal silicide with an insulating layer, such as SiO₂, so as to enable the use of overcrossing conductors in subsequent layers.

The most commonly considered mechanism for oxide growth on silicon is that of oxygen diffusion through the growing SiO₂ layer and reaction with elemental silicon at the advancing Si-SiO₂ interface. Such a mechanism can be related to the presence of micropores and microchannels in the SiO₂ films.^{15,16} This model seems to be confirmed by ¹⁸O tracer studies carried out during highpressure steam² and dry oxygen¹⁷ oxidation of silicon. No work has, however, yet been carried out on the mechanism of metal-silicide oxidation. In this investigation we have used radioactive ³¹Si as a tracer to study the thermal oxidation of Si, CoSi₂, and PtSi in steam at atmospheric pressure.

II. EXPERIMENTAL

³¹Si was produced by irradiating high-purity silicon chips of irregular shapes and sizes in a nuclear reactor with a neutron flux of 2.5×10^{13} neutrons per cm² per sec. During neutron activation ³¹Si is formed from ³⁰Si (3.1 at. %) by the reaction ³⁰Si $(n, \gamma)^{31}$ Si which has a cross section of 0.10 b. ³¹Si decays with a half-life of 2.62 hours by emitting beta particles (max β^- energy is 1.48 MeV) for 99.93% of its disintegrations. The ³¹Si activity was measured with an end-window Geiger counter.

Silicon substrates, 10Ω cm and (100) orientation, were cleaned by conventional methods before loading into the *e*-gun evaporation chamber. Before evaporation of the radioactive silicon, care was taken first to clean it in organic solvents and

1885

© 1980 The American Physical Society

distilled water, followed by a HF:HNO₃ etch, in order to remove any possible interfering radioactivity due to surface contamination which could have taken place prior to irradiation in the nuclear reactor. Between 300 and 400 Å of radioactive silicon was usually deposited. For the oxidation studies of CoSi₂ and PtSi approximately 350 Å of Co and 500 Å of Pt were deposited on top of the radioactive silicon layer. These thicknesses were more than sufficient to consume all the radioactive ³¹Si during silicide formation. All depositions were carried out at a pressure of ~10⁻⁷ Torr and thicknesses were monitored with a quartz Inficon Thickness Monitor.

The Co and Pt samples were first annealed at $800 \,^{\circ}$ C for 10 minutes in a vacuum tube furnace at pressures below 1×10^{-6} Torr, in order to form $CoSi_2$ and PtSi. Oxidation of the silicon, $CoSi_2$, and PtSi samples was carried out at 1000 $^{\circ}$ C in a tube furnace through which steam flowed at atmospheric pressures. The position or activity profile of the radioactive ³¹Si in the sample was determined by a combination of rf sputter etching, radioactivity measurement, and Rutherford back-scattering.

III. RESULTS AND DISCUSSION

A. Oxidation of silicon

When the Si (100) samples with 300 to 400 Å of radioactive silicon are oxidized at 1000°C, a band of radioactive SiO₂ is first formed with the radioactive silicon. Upon further oxidation (see Fig. 1) this band of radioactive SiO, can move to the surface of the sample if SiO_2 formation takes place by substitutional (vacancy) diffusion of silicon through the SiO₂ layer or by oxygen diffusion through the SiQ₂ layer, with SiQ₂ formation taking place at the $Si-SiO_2$ interface. However, if the band of radioactive SiO₂ stays at the Si-SiO₂ interface, it can be deduced that Si diffuses by interstitial or grain-boundary diffusion to the surface of the SiO₂ layer to react with the oxidizing species to form SiO₂. Grain-boundary diffusion can, however, not take place in SiO₂ because of the absence of grains. Apart from the two limiting cases mentioned above the radioactive ³¹Si marker could be located somewhere in the middle of the SiO₂ layer if SiO₂ formation takes place by diffusion of both the silicon and oxygen, the exact position depending on the relative diffusion rates of both species.

The activity profile in the SiO_2 layer after oxidation of silicon is given in Fig. 2. The calculated activity profile at the SiO_2 silicon substrate interface immediately after initial radioactive SiO_2 formation is shown by the dashed lines. The presence of the activity at the surface of the formed

FIG. 1. Schematic diagram showing how radioactive 31 Si can be used to determine the diffusing species and diffusion mechanism during the oxidation of silicon. If the band of radioactive 31 SiO₂ is located at the Si-SiO₂ interface it can be deduced that silicon diffuses by an interstitial or grain-boundary mechanism. If oxygen is the diffusing species through the growing SiO₂ layer, or if silicon diffuses by a substitutional (vacancy) mechanism, the band of activity will be on the sample surface. If both Si and oxygen diffuse, the band of radioactive 31 Si marker could be located somewhere in the middle of the SiO₂.

 SiO_2 layer indicates that the oxygen is the diffusion species through the SiO_2 and that SiO_2 formation takes place at the Si-SiO₂ interface, or that silicon diffuses by a substitutional (vacancy) diffusion mechanism through the SiO₂ layer, thereby "pushing" or displacing the radioactive Si atoms to the surface of the formed SiO_2 , where they react with oxygen to form a layer of radioactive SiO₂. However, when the sample shown in Fig. 2 is heated up to temperatures as high as 1200°C, the band of radioactive SiO, still remains as a sharp profile at the surface of the sample thereby indicating that the silicon atoms are very immobile in the formed SiO₂ layer. We therefore conclude that SiO₂ formation takes place by oxygen diffusion or by the diffusion of some oxygen species through the SiO₂ layer with further SiO₂ formation taking place at the $Si-SiO_2$ interface. These results are in agreement with previous ¹⁸O tracer experiments.^{2,17}

B. Oxidation of CoSi₂ and PtSi

Rutherford backscattering spectra of the asdeposited virgin sample, after $CoSi_2$ formation at 800 °C for 10 minutes after steam oxidation at

1886

FIG. 2. ³¹Si activity profile measured in SiO₂, which was formed by oxidizing silicon in steam for 60 minutes at 1000 °C. The calculated activity profile after initial 31 SiO₂ formation is also shown (see dashed lines).

1000 °C for 30 minutes, are shown in Fig. 3. The thickness of the formed SiO_2 layer was determined by measurement of the width of the oxygen signal, the width of the step due to silicon in the SiO_2 layer, and by determining the shift of the front edge of the Co signal with respect to its surface position. These three values were internally consistent and an average value was used. These measurements show that the thickness of the formed SiO_2 layer is also proportional to the square root of time, as is the case for silicon (Fig. 4), thereby indicating a diffusion limited process. It is interesting to note that the oxidation rate for $CoSi_2$ is much larger than that for silicon.

The fraction of the activity left in the $CoSi_2$ layer after SiO_2 formation was determined by removing the SiO_2 layer by rf ion-beam sputtering and measuring the activity in the sample before and after removal of the SiO_2 layer. The removal of the SiO_2 layer was monitored by Rutherford backscattering.

In Fig. 5 the percentage of radioactive ³¹Si left in the CoSi₂ layer after thermal oxidation in steam at 1000 °C is given as a function of the normalized thickness (*D* value) of the formed SiO₂ layer. By expressing the SiO₂ thickness as *D*, where *D* is the ratio between the number of Si atoms in SiO₂ and the number of Si atoms in the CoSi₂, a universal relationship is obtained which is independent of the thickness or type of metal silicide studied. Curves A, B, C, and D in Fig. 5 have been theoretically calculated for different mechanisms of silicon diffusion through the CoSi, layer.

Curve A. Substitutional (vacancy) diffusion. If silicon diffuses through the CoSi, layer by a substitutional (vacancy) diffusion mechanism, the radioactive silicon atoms in the CoSi₂ layer will be effectively displaced toward the surface by nonradioactive silicon atoms entering from the single-crystal silicon substrate. As would be expected in this model, all the radioactive silicon atoms will be displaced from the CoSi₂ layer for D = 1 and the percentage activity left in the $CoSi_2$ will be zero. In practice, however, this would only happen for D values slightly higher than one due to the statistical nature of diffusion. Silicon atoms supplied from the silicon substrate thus, in effect, "push" the radioactive silicon from the CoSi, layer into the growing SiO, film. This would be similar to the mechanism found for silicon diffusion through Pd₂Si during solid-phase epitaxial growth of silicon in the Si (100)-Pd₂Si-Si (amorphous) system.^{18,19}

Curve B. Substitutional (vacancy) diffusion with high self-diffusion of silicon in the $CoSi_2$, and low self-diffusion of silicon in the SiO_2 . At tempera-

1887

FIG. 3. Rutherford backscattering spectra showing $CoSi_2$ formation at 800 °C and the formation of a SiO_2 layer during atmospheric steam oxidation at 1000 °C for 30 minutes. The arrows indicate the energies of alpha particles scattered from the indicated elements, when located at the surface of the sample.

tures of about 570 °C and higher, the self-diffusion rate of silicon in Pd₂Si and PtSi is so high that complete intermixing of radioactive and nonradioactive silicon atoms takes place in the silicide within 20 minutes.²⁰ If this were also true for $CoSi_2$ at the temperature of oxidation it is clear that all the radioactivity in the $CoSi_2$ layer can never be completely removed, regardless of how thick the grown SiO₂ layer is. Curve B in Fig. 5

FIG. 4. Thickness of SiO_2 formed on a silicon and CoSi_2 sample as a function of steam oxidation time at 1000 °C. The silicon sample consisted of a Si (100) substrate onto which 400 Å amorphous silicon was deposited. The square root dependence on time indicates a diffusion limited process.

FIG. 5. Percentage ³¹Si activity left in the $CoSi_2$ layer after oxidation at 1000 °C as a function of SiO_2 thickness (*D* value). A, B, C, and D are theoretical curves calculated for different silicon diffusion mechanisms through the $CoSi_2$ layer (see text).

was calculated for conditions such that complete equilibrium is immediately obtained between radioactive silicon atoms in the $CoSi_2$ layer and nonradioactive silicon atoms entering from the silicon substrate. As the SiO_2 layer grows, the percentage activity in the $CoSi_2$ layer will decrease exponentially with D, and curve B is thus given by

$$A = 100 \ e^{-D} \ , \tag{1}$$

where A is the percent activity.

Curve C. Substitutional (vacancy) diffusion with high silicon self-diffusion in both the $CoSi_2$ and SiO_2 layer. In this case complete intermixing between radioactive and nonradioactive silicon atoms takes place throughout both the $CoSi_2$ and SiO_2 layer. The relationship between the percentage activity left in the $CoSi_2$ layer and D is then given by

$$A = 100/(1+D).$$
 (2)

Curve D. Interstitial and/or grain boundary diffusion of Si through the $CoSi_2$ layer. Silicon could be supplied to the growing SiO_2 layer by grainboundary and/or "pure" interstitial (no interaction with Si atoms in the $CoSi_2$ lattice) diffusion of nonradioactive silicon atoms directly from the singlecrystal substrate. In this case no radioactive silicon atoms will be incorporated into the growing SiO_2 layer and the percentage activity in the $CoSi_2$ layer remains constant at 100%.

It is clear from Fig. 5 that our results for $CoSi_2$ oxidation at 1000 °C fit case B very well, which is in contrast to the study of $CrSi_2$ growth on Pd_2Si and PtSi, where curve C is approached at higher temperatures.²¹ The results for the PtSi oxidation are given in Fig. 6, and again it is clear that measurements approach curve B, although not as closely as for $CoSi_2$ oxidation. The PtSi results were obtained at an oxidation temperature of 800 °C. At higher temperatures the PtSi layer tended to "ball up" badly.

For the case of CoSi_2 oxidation, radioactivity profiles in the grown SiO_2 layer were also determined. This activity profile is given in Fig. 7 and represents the results obtained from the oxidation of three separate samples. Care was taken to keep the thickness of the CoSi_2 layer in each sample the same. Rutherford backscattering showed that the samples had an average CoSi_2 thickness of 1230 ± 50 Å.

The activity profile in the SiO_2 layers grown on $CoSi_2$ (Fig. 7) shows that the highest concentration of radioactive ³¹Si is at the surface of the sample and that the activity decreases exponentially as one moves to the $CoSi_2-SiO_2$ interface. The solid-line activity profile is calculated for conditions where silicon self-diffusion is very

FIG. 6. Percentage ³¹Si activity left in the PtSi layer after SiO₂ formation during oxidation in steam at 800 °C. The SiO₂ thickness formed is expressed as a D value, which is the ratio between the number of silicon atoms in the SiO₂ and in the CoSi₂.

high in the $CoSi_2$ layer and very low in the SiO_2 layer and that oxygen or some other chemical form of oxygen is the diffusing species during SiQ, growth. The first two conditions have already been proved to be the case as our results in Fig. 5 indicate. Proof of the very low self-diffusion of silicon in SiO, at 1000°C is also given by the sharp activity profile obtained during silicon oxidation (see Fig. 2). Once the radioactive silicon originating from the CoSi₂ layer is thus bound to form SiO₂ it becomes immobile and its activity concentration in the SiO₂ gives a record of the radioactivity concentration in the CoSi₂ layer at that specific moment. For a silicon specific activity of 220 $cpm/Å/cm^2$ and a CoSi₂ thickness of 1230 Å the theoretical activity profile as a function of x, the depth of Angstroms in the SiO_2 layer, is given by

$A = 33.2 \exp(-0.4636 x/1230)$

in cpm/Å/cm². The measured activity profile in Fig. 7 follows the theoretical activity profile reasonably well and thus provides direct proof that oxygen or some form of oxygen is the diffusing species through the growing SiO₂ layer and that growth takes place at the CoSi₂-SiO₂ interface. If silicon were the species diffusing through the SiO₂ layer, growth would have taken place on the surface of the sample and the highest ³¹Si concentration would then have been at the CoSi₂-SiO₂ inter-

22

FIG. 7. Radioactivity profile measured in SiO₂ which was formed on $CoSi_2$ during steam oxidation at 1000 °C. The solid curve is calculated for conditions where silicon self-diffusion is very high in the $CoSi_2$ layer and very low in the SiO₂ layer and with the assumption that oxygen is the diffusing species through the SiO₂.

face, decreasing exponentially toward the sample surface.

IV. CONCLUSION

In the present work radiotracer measurements with ³¹Si were made to investigate steam oxidation of silicon and $CoSi_2$ at 1000 °C and PtSi at 800 °C. The growth of SiO_2 on silicon is characterized by sharp radiotracer depth profiles in the SiO_2 , which indicate that silicon has a very low mobility in SiO_2 at the oxidation temperature of 1000 °C. The surface location of the radioactive ³¹Si indicates that oxide growth occurs by diffusion of oxygen to the Si-SiO₂ interface, in agreement with previous ¹⁸O tracer measurements.

For CoSi_2 and PtSi oxidation, the residual radioactivity left in the silicide layer after SiO_2 formation shows that silicon diffuses through the silicide by a substitutional (vacancy) mechanism. Nonradioactive silicon supplied from the underlying silicon substrate mixes completely with the radioactive silicon in the silicide layer due to high silicon self-diffusion in the silicide itself. This mixing thus dilutes the amount of radioactive silicon available at the silicide-SiO₂ interface for subsequent incorporation in the growing SiO₂ layer. The activity depth profile measured within the SiO₂ layer formed on the CoSi₂ indicates that the growth of SiO₂ occurs at the CoSi₂-SiO₂ interface by oxygen diffusion through the growing SiO₂ layer. In this investigation it was not possible to obtain self-diffusion coefficients because of the high diffusivity at the temperatures used. Measurements are currently underway to determine self-diffusion coefficients of Si in various metal silicides at temperatures below those used in the current investigation. The present results show that the combination of Rutherford backscattering and ³¹Si radiotracer studies can provide much basic information about thin-film interaction and interdiffusion in the solid state.

ACKNOWLEDGMENTS

This work was financially supported by the South African Council for Scientific and Industrial Research and the South African Atomic Energy Board.

- *Present address: California Institute of Technology, Pasadena, California.
- ¹J. T. Law, J. Phys. Chem. 61, 1200 (1957).
- ²J. R. Ligenza and W. G. Spitzer, J. Phys. Chem. Solids 14, 131 (1960).
- ³B. E. Deal, J. Electrochem. Soc. 110, 527 (1963).
- ⁴B. E. Deal and A. S. Grove, J. Appl. Phys. 36, 3770
- (1965). ⁵H. C. Evitts, H. W. Cooper, and S. S. Flaschen, J.
- Electrochem. Soc. 111, 688 (1964).
- ⁶B. E. Deal and M. Sklar, J. Electrochem. Soc. <u>112</u>, 430 (1965).
- ⁷F. W. Ainger, J. Mater. Sci. <u>1</u>, 1 (1966).
- ⁸E. A. Irene and Y. J. van der Meulen, J. Electrochem. Soc. <u>123</u>, 1380 (1976).
- ⁹E. A. Irene and R. Ghez, J. Electrochem. Soc. <u>124</u>, 1757 (1977).
- ¹⁰S. Zirinsky, W. Hammer, F. d'Heurle, and J. Baglin, Appl. Phys. Lett. 33, 76 (1978).
- ¹¹F. Mohammadi, K. C. Saraswat, and J. D. Meindl, Appl. Phys. Lett. <u>35</u>, 529 (1979).

- ¹²J. B. Berkowitz-Mattuck and R. K. Dils, J. Electrochem. Soc. 112, 583 (1965).
- ¹³T. Mochizuki, K. Shibata, T. Inoue, K. Ohuci, and M. Kashigawi, Extended Abstracts, Electrochemical Society Meeting (1977), Vol. <u>77-2</u>, p. 331 (unpublished).
- ¹⁴B. L. Crowder, S. Zirinsky, and L. Ephrath, Recent News, No. 464, Electrochemical Society Meeting (1977) (unpublished).
- ¹⁵S. W. Ing, R. E. Morrison, and J. E. Sandor, J. Electrochem. Soc. 109, 221 (1962).
- ¹⁶E. A. Irene, J. Electrochem. Soc. <u>125</u>, 1708 (1978).
- ¹⁷E. Rosencher, A. Straboni, S. Rigo, and G. Amsel,
- Appl. Phys. Lett. <u>34</u>, 254 (1979). ¹⁸R. Pretorius, Z. L. Liau, S. S. Lau, and M.-A. Nicolet, Appl. Phys. Lett. <u>29</u>, 598 (1976).
- ¹⁹R. Pretorius, Z. L. Liau, S. S. Lau, and M.-A. Nicolet, J. Appl. Phys. <u>48</u>, 2886 (1977).
- ²⁰R. Pretorius, J. Electrochem. Soc. (in press).
- ²¹R. Pretorius, J. O. Olowolafe, and J. W. Mayer, Philos. Mag. <u>37</u>, 327 (1978).