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Dynamical motion of atoms in surfaces: A model of W (100) as an example
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For a model of the (100) surface of tungsten, we have studied the mean-square displacement of atoms and its

anisotropy as a function of distance from the surface. In addition, we study correlations in the motion of nearest and

next-nearest neighbors in and near the surface. These calculations employ the continued-fraction method to
construct the rdevant spectral densities. We assess the accuracy and efficiency of the method, and analysis of the

structures in the various spectral-density functions provides insight into the modes which control displacement

amplitudes and correlations in the surface.

I. INTRODUCTION

While the lattice dynamics of crystal surfaces
has been an active topic of theoretical study during
the past decade, ' rather little detailed data are
available on clean crystal surfaces. For example,
considerable attention has been devoted to the
theoretical analysis of surface contributions to
the specific heat, and the few experiments avail-
able are in qualitative accord with theory, , but
examples of meaningful quantitative contact are
sparse. ' Information on the mean-square dis-
placement in the surface can be extracted from
the temperature variation of low-energy-electron
diffra. ction (LEED) data, although the procedure
used to extract information from the data may
well lead to significant quantitative errors on the
order of ten or twenty percent. '

At present, electron spectrometers with energy
resolution sufficient to study phonons at surfaces
through high-resolution electron-energy-loss
spectroscopy (EELS) are either operational or
under construction in many laboratories. To date,
most EELS experiments explore the vibrational
motions of adsorbates on the surface, ' though
there are notable exceptions. ' We are particularly
intrigued by the beautiful experiment reported
recently by Ibach and Bruchmann, ' which through
analysis of an EELS spectrum of an adsorbate-
covered Ni (ill) surface provides information on
the frequency of a zone-boundary Rayleigh sur-
face phonon. In the near future we can expect
experiments such as this one to provide informa-
tion on the frequencies that control atomic mo-
tions in surfaces. There is thus need for further
theoretical development which focuses not only on
thermodynamic effects of the surface and the
mean-square displacement there, but also on the
frequency spectra of the surface atoms and
correlations between these motions.

The purpose of this paper is to present a series
of such calculations for a model of the W (100)
surface. We do this through application of a

method introduced by Cyrot-Lackmann and her
colleagues in the study of the electronic structure
of transition-metal surfaces, ' but which has not
been applied extensively to problems in surface
lattice dynamics. This is the continued-fraction
method. Specifically, we consider correlation
functions of the form (u (l)us(1')), where u (l) is
the nth Cartesian component of displacement of
the atom at site l. With the choice n =P, 1 =1', we
have a component of the mean-square displacement
of the atom at site 1. For such correlation func-
tions we may introduce a spectral density function

p 8(1, 1'; a) to write

(n (l)u, (l')) = —(1+2n„)p,(l, l'; (u),
2M ~o

(1.1)

with M the mass of the atoms and n„=Lexp(hu&/

gsT) —1] ' the Bose-Einstein function. We use the
continued-fraction method to construct the spec-
tral-density function, then we calculate the cor-
relation function by performing the integration
on frequency in Eq. (1.1). As we shall see, study
of the spectral-density functions provides con-
siderable insight into the characteristic fre-
quencies and phonon modes that control particular
atomic motions in the surface. Before we turn to
a discussion of the method and a presentation of
our results, we comment on the reasons why we
have chosen to use the continued-fraction ap-
proach.

In theoretical studies of the lattice dynamics of
surfaces, it has become usual to proceed as
follows. ' One considers not a semi-infinite
crystal, but rather a finite slab semi-infinite in
two directions (the x and y directions), with a
finite number N of layers in the z direction, which
is normal to the surface. In practice, N may
range from 10 to 20. Periodic boundary conditions
are applied in the x and y directions while the
atoms in the outermost layers have a local en-
vironment identical to atoms in the surface of a
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semi-infinite crystal. ' Then for such a system,
translational symmetry in the x and y direction
renders k„,the component of wave vector parallel
to the surface, a good quantum number. Thus, one
seeks eigensolutions of the equation of motion in
the form u, (1)=exp(ik„ 1„)u(l,) with 1=1„+gl,
and 1)1 the projection of 1 onto the xy plane. For
a monatonic crystal, for each k„,one diagonalizes
a 3N & 3N dynamical matrix to find the set of
eigenfrequencies and eigenvectors. Finally, to
calculate a correlation function such as (u, (1 )u8 (1')),
one must integrate the appropriate combination of
eigenfrequencies and eigenvectors over the two-
dimensional Brillouin zone. For each k„included
in the numerical integration, the 3N x 3N dynami-
cal matrix must be diagonalized.

From our point of view, the slab method has a
number of disadvantages. First of all, essential
use is made of the translational symmetry parallel
to the surface. Of course, a perfectly smooth,
ideal crystal surface has precisely such trans-
lational symmetry. In the near future, we shall
direct our attention to localized perturbations on
the surface such as an isolated adsorbate atom.
In such a problem the translational symmetry is
now lost, and it is difficult to envision application
of the approach outlined in the preceding para-
graph to this important class of problems. As
others have emphasized, ' the continued-fraction
method is a "real-space" method that makes no
use of Brillouin zones or wave vectors. As a
consequence, it can be applied to surfaces per-
turbed by localized defects with no more difficulty
than encountered in studying the perfect surface.
In the present paper, we concentrate on a per-
fect-crystal surface so that our calculations may
be compared directly with earlier studies of the
same surface by the slab method to see if the con-
tinued-fraction method reproduces these results.

There is a problem of principle with the slab
method that may be stated as follows. It is well
known that for a two-dimensional layer of atoms
with displacement u(1) confined to the plane, the
mean-square displacement (u') diverges as the
transverse dimensions L„and I-, of the layer are
allowed to become infinite. If we consider a slab
with a finite number of layers N and let L„and I-,
become infinite, (u') diverges again because to a
long-wavelength acoustical phonon, the slab is
indistinguishable from a single atomic layer of
suitable mass density" in the limit ~k„~d«1,
where d is the slab thickness and ~k„~ is the wave
vector of the phonon. Thus, for a slab with a
fixed number of layers, one finds that as the
number of points in the two-dimensional Brillouin
zone is increased in a numerical calculation, (u')
necessarily increases without bound. In practice,

the number of k„points is chosen to correspond
roughly to a cube, with periodic boundary condi-
tions applied in the y and y directions and true
surfaces perpendicular to z. 'Then an attempt to
improve accuracy by using a finer mesh in the
two-dimensional Brillouin zone requires one to
increase the number of layers N simultaneously
to avoid the divergence. In a practical calcula-
tion this becomes costly, since the time required
to diagonalize the 3N & 3N matrix scales as ¹

for typical computer routines. 'The cost of the
calculation then scales as N' overall. This
divergence is a special feature of lattice dynamics,
and there is no analog in the electronic structure
problem, where many groups also use slab
methods.

'The continued-fraction method allows us to work
with a truly semi-infinite geometry for which no
such divergences occur. If results of high ac-
curacy are desired, we also believe it much more
efficient than the slab method, though we claim
no greater accuracy in our calculations of static
correlation functions such as (u (1)u~(1')). We do
believe the continued-fraction method does a
superior job of providing the spectral densities
p z(1, 1'; &o), which will be required in the analysis
of EELS data. We are frankly impressed by the
results we have obtained, which seem very reliable,
save in the low-frequency limit, where the fact
that one samples a finite cluster of atoms limits
one's ability to obtain proper behavior for the

spectral density. The reader may compare the
results and calculations reported here with an

early paper by Roundy and Mills, "which in es-
sence calculates certain spectral densities by the
slab method. Only rather crude histograms were
reported by Roundy and Mills, and while the in-
formation that emerged from their slab calculation
might have been processed more optimally, it is
hard for us to see how results as detailed as those
reported here could be obtained without a major
increase in computing time.

The flexibility of the continued-fraction method,
and the reliable spectral densities that can be ob-
tained with it, suggests to us that it should be
more widely used in studies of the lattice dy-
namics of crystal surfaces. We now turn to a
discussion of the method, to our results, and the
conclusions that follow.

II. GENERAL DISCUSSION AND THE METHOD
OF CALCULATION

We begin by writing down a number of general
relationships that enter the description of the
lattice dynamics (in the harmonic approximation)
of an array of N particles, each with mass M.
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The aim of the introductory remarks is to estab-
lish our notation and also to make contact with
earlier applications of the method of continued
fractions to problems in the electronic structure
of surfaces. The opening remarks cover well-
trodden ground, but for clarity we wish to summa-
rize the basic structure of the theory.

If u (1) is the oth Cartesian component of the
displacement u(1) of the mass at lattice site 1

from its equilibrium position, then u (1) obeys the
equation of motion

~ e"'(l)e,"'(1')
8 S

(2.7)

e"' 1 e"' 1' & (d —v (2.8b)

It is this quantity we shall calculate by mea. ns of
the method of continued fractions. From
U 8(1, 1'; z) we may introduce the spectral-density
function, with & a positive infinitesimal,

p (1 1' &u) = —" [U.,(I, 1'; ~+ «) - U., (1, 1', « - «)1
Zlr

(2.8a)

u (1)+ QQ D 8(l) I')u8(1') =0~
g l'

(2.1)
which enables the correlation function in Eq. (2.6)
to be written

where one may construct the dynamical matrix
D 8(1, 1') from knowledge of the interatomic po-
tential. ' If cu, is the frequency of the sth normal
mode of the system and e"'(1) is the associated
eigenvector normalized so that

~(s) 1 2 j
N I

(2.2)

one extracts e, and e,"'(1) from the eigenvalue
equation

(2.3)

Since the matrix D„8(1,1 ) is Hermitian by virtue
of the relation D ~(1, 1')=DO (1', 1), '~,' is neces-
sarily real, and e"'(1) may be chosen real also.
The eigenvectors then satisfy an orthonormality
relation which may be written

(u (1)u, (1')) =
0

dv (I+2n„)p z(1, 1', e).
(2.9)

The function p 8(1, 1';.v) provides information on
the characteristic frequencies which contribute
to correlations between the displacements u (1)
and u8(I'). Consider as a special case the auto-
correlation function (u'„(1))which gives the mean-
square displacement of the atom on site 1 in the
Cartesian direction n. Deep in the bulk of a
crystal of cubic symmetry, (u'„(1)),(u,'(1)), and
(M', (1)) are necessarily equal and independent of l.
One then easily sees that

p„„(1,1; (o) = p„(1,1; z) = p„(1,1; v) = —,p„,((u),

(2.10)

~(s) 1 p (s')

e l

and a closure relation that reads

(2.4)

4 Q

dM p& &(Q3) = 3, (2.II)

where p„,(«) is the density of phonon modes per
atom in the bulk, normalized so that

p(8) ] p(&) li (2.5)

We have assumed the system is in thermal equili-
brium at temperature T, so n, = [exp(kv, /ksT)
—I] i.s the Bose-Einstein function which gives the
number of thermally excited quanta associated
with the mode of frequency (d, .

For our purposes, it will prove convenient to
introduce the Green's function U ~(1, 1'; z) de-
fined by the relation

where in these statements 6 8, &„,, and &;;, are
Kronecker delta functions.

Upon quantizing the vibrational motions of the
array of masses, one finds the correlation func-
tions (M (1)u8(1')) between displacements associated
with the mass at 1 and that at 1' may be written'

(~, (I )u8(1')) = P e"'(1)e~"'(1')(I+2n, ) .
2M co,

where the factor of 3 on the right-hand side of
Eq. (2.11) arises because each atom has 3 degrees
of freedom.

As we move from the bulk of the crystal toward
the surface, we may think of p„„(1,1; e),
p„(1,1; v), and p„(1,1; u&) as effective local phonon
densities of states which describe the composition
in frequency of motions of the atoms in the x, y,
and z directions, respectively. Near the surfa. ce,
the three directions are no longer equivalent by
symmetry, of course, so these three functions
will in general be different. Finally, for 1 41',
p 8(1, 1', &u) is a, generalization of the notion of a
local density of states. Genera, lly speaking, we
refer to p 8(1, 1'; ~) as a spectral density which
may differ dramatical1y near the surface from the
form appropriate to the bulk of the crystal.

We may make direct contact between U ~(1, 1'; z)
and the Green's functions which enter the theory
of electronic energy levels in crystals in the tight-
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binding limit. We have 3N degrees of freedom in

the system of N masses, and we introduce a 3N-
dimensional column vector

I
1 o) which has zeros

everywhere save for a single entry of unity at that
position which corresponds to motion in the
Cartesian direction n of the atom at site l. If
D is the dynamical matrix in the 3N && 3N space
spanned by the set

I
1 a), then we have

U, , (1, »", z) = (1n, 1 I3) .
D —z'I, (2.12)

U (1, 1;z)= tB, t'

z'-A, —

(2.13)

and similar expansions exist for the off-diagonal
terms with Px o., or I'o I. In the latter case, the
coefficient of the term in 1/z' may be seen to
vanish. By following the discussion of Haydock
et al." and using the analogy outlined above, we
can construct the coefficients A„and IB„„I'I»
n up to some finite value. One then must extra-
polate the continued-fraction expansion beyond
the finite number of terms produced this way. We
perform this extrapolation by a method different
than that used in Ref. 12 and which produces re-
sults of high quality.

There are two important observations for what
follows. First of all, infinitesimal translation
invariance of the vibrational potential energy tells
us that the frequency spectrum of the vibrations
of a stable configuration of masses (z,'~ 0 for all
s) extends down to zero frequency. Thus, in
contrast to the situation encountered in some

By comparing Eq. (2.12) with Eq. (1.1) of the

paper by Haydock, Heine, and Kelly, "we see
there is a one-to-one correspondence between
lattice dynamics and the tight-binding description
of electron energy levels of solids if we consider
a tight-binding problem with p orbitals associated
with each atomic site. In place of the tight-binding
Hamiltonian, we have the dynamical matrix D,
and in place of the electronic energy E we have
z'. Finally, U ~(1, 1';z) differs from the con-
ventional definition of the electron Green's function

by an overall sign. These remarks enable us to
take the method of continued fractions as developed
in the electronic structure literature directly
over to the problem of surface lattice dynamics.

To recall the general structure of the continued-
fraction method, consider first. the diagonal ele-
ments U (1, 1;z) used to form the spectral den-
sity for calculating the mean-square displacement.
In our ease, this maybe written

electronic structure calculations, we know the
lower bound. to the frequency spectrum must be
identically zero.

Also, there is a sum rule obeyed by p, a(1, 1'; ~).
From Eq. (2.8b) combined with Eq. (2.5), we have

dp
(2.14)

We shall use this as a check on our numerical
calculations of p 8(1, 1', u&) by the continued-frac-
tion method.

The physical implication of this sum rule we use is
as follows. If P (1) is the momentum of the atom
at site l, then when k~T» 6+~, with co~ the maxi-
mum vibrational frequency of the lattice, we have

,'ksT —du&p (1, 1; to),
2M

(2.ls)

so for the special case n=P, l = l', satisfaction
of the sum rule in Eq. (2.8) ensures that the ex-
pectation value on the left-hand side of Eq. (2.9)
assumes the value required by the equipartition
theorem of classical statistical mechanics. We
now turn to a discussion of the method of calculat-
ing U, 8(1, 1'; z) by the method of continued frac-
tions.

III. COMPUTER DETERMINATION
OF THE COEFFICIENTS A„AND8

It is not a trivial problem to compute the co-
efficients A„and B„needed in the continued-frac-
tion method. While the calculation parallels that
used in the electronic structure problem, at first
sight the matrix mu)tiplications needed appear too
lengthy to be done on the computer available to us
(an SDS Sigma 7). We were, however, able to
reduce the multiplications to a manageable form.
Since our reduction is an essential feature of the
calculation, and since it has not been discussed
before, to the best of our knowledge, we report
on it here in some detail.

We first consider the reduction when the A„
and B„required to calculate p„(1,1; e) are to be
calculated. Later we shall generalize to the case
p 8(1, 1'; rd), where c»WP, 141'. The heart of the
calculation lies in finding an ordered and nor-
malized set of basis functions (IM)), of which the
first II& = llo&»»=0, and A, =(1 ID l1) From
this starting point subsequent coefficients may
be determined from the recursion relation, with
D the dynamical matrix,

~...I&+ I) =L1 I» II. I& » A~-I&) -(3.1-)

The actual procedure by means of which the A„
and B„aredeveloped from this relation is care-
fully described by Haydoek, Heine, and Kelly. "
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The important point to note for our purpose is
that the time-consuming part of the iteration is in
the multiplication of D~N). If we cannot simplify
this problem, then the multiplication could involve
(roughly) multiplying a 3n && 3n matrix with a
column vector of size 3n. Here n is the number
of atoms we use, and as we shall see later it must
be several thousand for a sufficient number of co-
efficients A„and8„to be generated. Thus we deal
with a, matrix of order 10' elements, and we need
to perform about 10' multiplications to determine
D /N).

The multiplications needed can be reduced con-
siderably provided we can exploit two features of
the problem. First, note that we do not allow
every atom to interact with every other atom. In
fact, we allow the tungsten atom to interact with
only its first three neighbors (26 atoms for a bcc
lattice). This choice was based in part on the
fact that in the bulk of the crystal the model gives
a frequency distribution which is very similar to
that obtained with an eight-neighbor model, " and
in part on the fact that our preliminary studies
showed that a two-neighbor model gave dispersion
relations in off-symmetry directions very sensi-
tive to the choice of force constants. We believe
the three-neighbor model provides a good descrip-
tion of tungsten lattice dynamics in the bulk, yet
involves few enough neighbors that the continued-
fraction method can be undertaken. Force con-
stants of Chen and Brockhouse" were used to
construct the dynamical matrix. With the three-
neighbor model only 27 of the elements charac-
terized by 1' in D 6(1, 1') are nonzero for a given
choice of l. Secondly, note that for the N+1th
iteration there are n„x3x 1 elements of the
vector ~N). Since each of these will interact with
only 27 (or less) atoms we could, in principle,
only perform 3 && (number of neighbors) && 3 & n„
multiplications in a given iteration. This number
should be compared with 3 && n & 3 & n, estimated
as the worst case, where n is the total number of
atoms we wish to work with.

To exploit these ideas we construct a nonsquare
matrix D; whose rows are the atom numbers and
whose columns correspond to the 27 interactions
(including self-interactions) which any one atom
can have with the surrounding atoms. As el.ements
of the matrix we use the atom numbers of the
neighbors, or zero if no neighbor exists, such as
can occur at the surface of a crystal for example.

The atoms are numbered as follows. We start
by assigning 1 to the atom (1) whose autocorrela-
tion we are interested in. We generate the 26
neighbors systematically, starting with the nearest
neighbor in the positive octant, and proceeding.
We number the atoms 2, 3, . .. , 27. We call these

atoms the second shell of atoms. We then proceed
to find the neighbors of these 26 atoms, doing
each atom in turn. Whenever an atom not pre-
viously encountered occurs, it is assigned a new
number. Numbers of atoms in the shells of the
bulk are 1, 26, 122, 298, 554, 890, 1396, 1802, . . . ,
while the number starting with a surface atom in
the (100) plane are 1, 17, 67, 161,293, 465, 677, 969,
1221, . . . . Total atoms for the shells shown are
4999 and 3833, respectively.

Since we develop the elements of the given row
of the matrix systematically, we may associate
with each column the dynamical matrix D

8

(column) appropriate to the neighbor chosen.
Thus to obtain an element of the matrix B„„~N+ 1)
we multiply each of these 27 3 && 3 matrices of a
row of D', with the 3 && 1 column vectors identified
on the elements of the matrix D', . One 3 &1 ele-
ment of B„„IN+ I) requires 3 x 3 x 27 multiplica-
tions. In fact, there may be less multiplication
since, for example, surface atoms have less than
27 neighbors.

In constructing all elements of B~„~iN+1) we
then must multiply ~N) by the first N+1 shells
of atoms. Further, atom shells do not interact
with the atoms associated with the nonzero ele-
ments of N. While this does not cut out all zero-
element multiplication, it is an improvement over
multiplying by all n atoms of the matrix D;. We
find, for example, that for shells of 8 levels,
3 && 3 & 2 & 27 && n multiplications are required.
This is a considerable improvement over the
3 x 3&&n' & 8 we would expect from the crudest
method with n =4999.

Actual computer CPU times for a typical case
are as follows. Four minutes were required to
produce D', in the bulk with 8 shells. Seven
minutes were then required to iterate through to
A, and B,. The last iteration took two minutes of
c.p. u. time. Incidentally, to manipulate the large
array D'„with its 27& 3197 elements, we used a
FORTRAN library routine called PAGE which will
handle very large arrays without assigning large
amounts of space in the source programs.

We proceed along similar lines if we wish to
determine the coefficients needed for p &(1, 1'; m)
when P 4 o and l t l'. In this case we first con-
struct the matrix D;. This is determined by
starting the atom-numbering system with a pair
of atoms at l and l' rather than a single atom at
1. We then obtain a resolvent (R, ) by starting the
iteration with ~lj = (1/~2(~1, uj+ ~I', pj) and a
second resolvent (R ) with the starting basis vector
(I/M2)(~ I, o'j —

~
I', pj). The final resolvent density

is then given by —,'(R, —R ), and the theory of this
is described in Ref. 12.

Since only a finite number of coefficients A„and
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B„canbe calculated exactly with the consequence
that only a finite cluster of atoms centered about
the site of interest is sampled, some method of
extrapolating the continued-fraction expansion to
infinity is required. This may be done in various
ways, and the ultimate accuracy of the results is
influenced by how this is done.

Formally, given A, through A„and B, through

B„,» the continued fraction may be terminated by
introducing an effective self-energy T(z') so that

U, (1, 1;z) =

840

r
780

720 .
3 4 5 6 7 8 9

N NUMBER OF TERMS

(3 2)

where the coefficient B„„is obtained from the
Rth shell. As discussed in Ref. 12, if the co-
efficients (A„,B„)are calculated for n sufficiently
large that they attain the limiting values A„and
B„to sufficient accuracy, then a closed formula
for T(z') is readily obtained.

If we set T(z') equal to zero, then the density
of states is a sequence of weighted delta functions.
These can be smoothed by giving to z a finite
imaginary part to move the poles off the real axis.
In effect, each delta function is converted to a
Lorentzian of finite width. We found this approach
works much less well than use of an appropriate
form for T(z').

We proceed to find an approximation to A„as
follows. By setting T(z') equal to zero, an ef-
fective phonon bandwidth can be defined as the
difference uP„—~', with ~,„and~ the position of
the highest- and lowest-frequency poles in the
approximate form for the continued fraction con-
structed from A, through AN, and B, through B~.
We find this effective bandwidth converges well
as N increases. We illustrate this for bulk tung-
sten in Fig. 1, where we plot the square of the
effective bandwidth just defined against N. As
N -~, this effective square of the bandwidth must
converge to 4B„,which should also equal 2A„,
because the phonon spectrum extends down to
zero frequency. From plots such as Fig. 1, we

thus obtain estimates of both A„andB„.In fact,
we find always that for N & 5, the estimated A„
and B„change by less than ten percent as N is
increased. Given such values of A„andB„,we
then calculate T(z') through use of the procedure
of Haydock et al."

Er ror s in A„andB„ofa few per cent seem to
have little serious qualitative influence on the
results. For example, we found that the sum rule
in Eq. (2.14) was obeyed to one part in one thousand
for the terminations used. Only if we shifted A„
deliberately well away from its asymptotic values

FIG. 1. We plot the effective phonon bandwidth, as
defined in Sec. III of the text, as a function of the num-
ber of iterations N in the continued-fraction method.
The figure applies to the bulk of tungsten.

was the sum rule violated by more than 0.5/q.

We give a test of the accuracy of our procedure
in Fig. 2. Chen" has calcul. ated the bulk phonon
density of states for tungsten by the Gilat-Rauben-
heimer method, which is a k-space summation
procedure. The force-constant model we are using
here is identical to that used by Chen, thus a
direct comparison of our calculations with Chen's
is possible. The dots in Fig. 2 are selected points
from Chen's calculation, and the solid line is our
bulk phonon density of states. The two calcula-
tions are in remarkable agreement. We have used
seven shells of atoms for the particular calcula-
tion, though results of comparable accuracy can
be found from only six shells. Thus, for all of
the calculations reported in Sec. IV, we have used
six shells. In our experience, there is no simple
quantitative procedure for deciding how many
shells are needed in the calculation. 'The im-
portant point is to establish whether adding
further shells alters the feature or features of
interest in any specific instance. In Sec. IV, we
turn to a discussion of vibratory motions of atoms
in and near a (100) surface of the model crystal.

LLJ

M

lK

I-
Cl

0.0 l.5 3.0 4.5 6 0 7.5
FREQUENCY i/(THz)

FIG. 2. A comparison between the- bulk phonon density
'

of states calculated by the continued-fraction method
(solid line) and by a direct k-space summation method
as carried out by Chen (dots).
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IV. STUDIES OF ATOMIC MOTION IN AND NEAR
THE SURFACE

In Fig. 3, we show the mean-square displace-
ment of surface and bulk tungsten atoms along
with the associated spectral densities. In Fig.
3(a) we show the mean-square displacement(u„'),
of a bulk tungsten atom as a function of tempera-
ture, while Fig. 3(b) gives the spectral density
p„„(1„,1„&c)for an atom deep in the bulk. As re-
marked earlier, p (l~, l. ,; v) is simply equal to
the bulk phonon density of states (Fig. 2) far from
the surface.

Figure 3(c) gives the normal component of the
mean-square displacement (u,'), for an atom in the
surface, while the associated spectral density is
displayed in Fig. 3(d). First of all, as found
commonly in such studies, the surface mean-
square displacement is substantially larger than

in the bulk. ' For our model, at a temperature of
400 K, we have (u„'),= (u,'), = (u,'), = 2.62 x 10-» cm2

while at the same temperature (u,'), = 5.63 x 10-"
cm'. These results agree well with earlier cal-
culations by Wallis and Cheng, "and also with re-
sults obtained earlier by Dobrzynski and Masri. "

(b)

N

E
g)

I
O

I-
LLj

LLj

CL
V)

Cl

UJ
K

2.'

LLI

X

LLJ

O
(h

0 IOO 200 300 0 6
TEMPERATURE (K) FREQUENCY P(THz)

FIG. 3. We show (a) the mean-square displacement
(u~) = (u~) = (ug) calculated for a bu1k tungsten atom com-
bined with (b) the bulk phonon density of states. We
compare this with (c) the mean-square displacement
(u~)~ of a surface atom normal to the surface and (d) its
associated spectral density, and also with (e) the mean-
square displacement component (ut) of a surface atom
parallel to the surface along with (f) its spectral density.
The numbers in the upper left corner are values of the
relevant mean-square displacements at 400 K, in units
of y0 19 cm2

All three studies used somewhat different models
of the lattice dynamics of the bulk material, and
the ratio (u2), /(u2), seems rather insensitive to the
model.

It is most instructive to examine the spectral
density p„(1„1,; v) for the surface atom as shown
in Fig. 3(d). The surface spectral density is
dominated by a single, prominent peak which lies
below both features in the bulk phonon density of
states. This peak has its origin in a Rayleigh sur-
face wave which propagates along the [100] direc-
tion. For the model, we have calculated the fre-
quency of the zone-boundary Bayleigh wave in
this direction to find 3.2P x 10" Hz, in excellent
accord with the prominent peak in Fig. 3(d). From
Eq. (2.9) combined with the sum rule in Eq. (2.14),
one sees that the enhanced mean-square displace-
ment in the surface requires spectral weight to
be shifted downward in p„(1„1,; &u); in the case
of motion normal to the surface, the bulk phonon
features have almost disappeared to leave the
single low-frequency structure from the Bayleigh
surface wave, and the physical mechanism
responsible for the enhanced mean-square dis-
placement is clear.

We show the temperature variation of (u'„), in
Fig 3(e) and the spectral density p„„(1„1,; v) in
Fig. 3(f). For motion parallel to the surface,
we have (u„'),= 4.33 x 10 " cm' at 400 K, a value
intermediate between the bulk value and that as-
sociated with motion parallel to the surface. The
spectral density p„„(l„l„v)contains prominent
structure in the frequency regime where the bulk
phonon density of states is largest. A feature
near the zone-boundary Bayleigh wave frequency
is evident, but the sum rule requires its inte-
grated strength to be very much smaller than that
in p„(1„1„tc). A consequence is that (u„'),is
substantially smaller than (u',),. Our value for
(u„'),is roughly ten percent smaller than that
obtained by Wallis and Cheng. We attribute this
to differences in the lattice-dynamical models
used in the work.

The results for the surface spectral densities
are consistent with a picture in which the "im-
portant" bulk phonons (those responsible for the
structure in the bulk phonon density of states)
have a normal component of displacement that
suffers a nearly 180' phase shift upon striking
the surface, producing an eigenvector with nearly
zero amplitude there. The parallel component is
reflected with no change of sign. We then require
a strong surface wave component in p„(1„1,; e)
and a much reduced one in p„„(l„1„&u)to maintain
the sum rule.

While our calculation is carried out for a model
of the W (100) surface and the experiment of lbach
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and Bruchmann cited in Sec. I has been carried out
on Ni (111), our calculation bears a striking re-
semblance to their data and the interpretation
these authors have offered of it. They find a
prominent peak in their near-specular EELS
spectrum of Ni (111)with frequency below the
maximum vibrational frequency of bulk Ni, and
with frequency only weakly influenced by adsorbed
overlayers of various kinds. 'They argue the fea-
ture is produced by a zone-boundary Rayleigh
wave of the substrate. Such modes can be ob-
served near the specular when the substrate is
covered by an ordered overlayer with a 2 x 2

structure. If the near-specular scattering is as-
sumed to be dipole scattering enhanced by ad-
sorption of strongly electronegative species in a
2 x 2 structure, then the theory of dipole scatter-
ing suggests that the normal component of atomic
displacement" should be responsible for the
scattering. Quite clearly, the spectral densities
displayed in Figs. 3(d) and 3(f) are consistent
with such an interpretation. Atomic motions
parallel to the surface have a rich and complex
spectral composition, while those normal to the
surface are dominated by the Rayleigh surface
waves near the zone boundary, as Ibach and
Bruchmann suggest. Calculations of the surface
spectral densities are currently underway for the
Ni (111) surface to see if similar results follow
for that surface also. We note that in a recent
perprint, Allan and Lopez have studied surface
vibrations of Ni (111)based on a lattice-dynami-
cal model deduced from a model electronic band
structure. " A discussion of their work and its
relation to the lattice-dynamical models such as
those used here will be deferred- until our study
of the Ni (111) is complete.

This is another implication of the result we wish
to mention. In a recent paper, Hahman and Mills"
have examined the coupling of electrons to sub-
strate phonons when the electrons are trapped in
image-potential bound states. The aim of the
analysis is to explore the influence of electron-
phonon coupling on LEED fine structures which
has been interpreted by McHae'0 as having origin
in long-lived image-potential-induced resonances.
Rahman and Mills assume that an electron outside
the crystal couples to substrate phonons via
modulation of the image potential by the ripple
produced in the surface by a phonon. In fact, they
considered only the rippled produced by Rayleigh
surface waves and ignored bulk phonon contri-
butions to it. We see here that the bulk phonons
indeed play a minor role in modifying the surface
profile, and the present calculation offers sup-
port for this one feature of the analysis of Rahman
and Mills.
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FIG. 4. The local spectral density p~(1, 1;cu) for atomic
motions normal to the surface as a function of distance
from the surface. We see that in the fourth layer below
the surface, p«(l, 1;~) has settled down to its bulk be-
havior.

In Fig. 4 we show the variation of p„(l,I; &o)

with distance from the surface. In both the
surface and first layer below it, we have substant-
ial deviations of the spectral density from bulk
behavior, although by the second layer below the
surface layer the spectral density is settling down
to its bulk value. As we see from Fig. 5,
p„„(l,I; &u) assumes a form rather similar to the
bulk even in the first layer below the surface.
The information in Figs. 3-5 may be loosely
summarized by the statement that the motion
normal to the surface is perturbed much more
strongly by the presence of the surface than the
parallel motion. This is evident from the pre-
viously established fact' that (u',),&(u„'),; the
spectral-density plots provide one with a picture
of the physical origin of this behavior.

We turn next to a discussion of correlations
between the motions of atoms in and near the
surface, i.e., to the behavior of the correlation
functions (u, (l)ua(l')), for I' x l. There are two
reasons why such correlation functions are of
interest. First of all, we can ask if the pattern
of atomic motions in the surface layer differs
qualitatively from those iri the bulk. We might
expect less correlation between the motion between
adjacent atoms in the surface than between a pair
of bulk atoms with similar relative position. This
may be so simply because surface atoms couple
to fewer neighbors than bulk atoms. Qualitative
pictures of the correlation between atomic mo-
tions, with attention to such questions, may prove
useful for a variety of reasons. We are also
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FIG. 5. The local spectral density p~(l, 1;~) for atom-
ic motions parallel to the surface as a function of dis-
tance from the surface. Even in the second layer
p~(1, 1;~) assumes a form very similar to the bulk pho-
non density of states.

interested in directing our attention to a proper
theory of thermal diffuse scattering, where multi-
ple scattering of electrons from the substrate is
included fully, as in the recent theory of large-
angle EELS. Correlation functions of the
above-mentioned form are an essential component
of the theory of thermal diffuse scattering. '

In Fig. 6(a), we show the correlation function
and the spectral density associated with the
correlation function (u, (1)u, (1')), for the neighbors
arranged as indicated in the inset. The sum rule
requires the area under the curve to vanish, so
the spectral density is oscillatory in character
in contrast to those associated with autocorrela-
tion functions which are necessarily positive
definite. The prominent positive peak lies near
but not coincident with the Rayleigh wave frequency
discussed earlier. We believe this comes from a
shear polarized surface wave we find at the two-
dimensional zone boundary in the [100J direction.
The frequency of this wave, which is a bit below
the Rayleigh wave at the zone boundary, agrees
well with the position of our calculated peak, and
such a shear polarized mode propagating along ~
would drive the two atoms in parallel. motion. A
complete study of the dispersion relation of the
surface modes for our model would prove a most
useful aid in interpreting the structures in the
spectral densities. We hope to turn to such a
study shor tly.

In Fig. 6(b), we show the spectral density of
(u„(1)u„(1'))„andin Fig. 6(c) we give that for
(u, (l)u, (1')), for the same pair of atoms chosen to

I I I I I
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FIG. 6. En (a) through (d), we show the spectral den-
sity which controls correlation functions of the form
(u N(I)u~(1')), for various combinations of 1,1' and c'. . In
(c) and (d) we give spectral densities for motion parallel
to the surface.

generate Fig. 6(a). The large sharp negative peak
in Fig. 6(c) comes from the zone-boundary Ray-
leigh wave, which sets nearest neighbors into
antiparallel motion. We believe the strong low-
frequency peak in (u„(1)u„(1')),comes from the
Rayleigh wave, which when propagating along
[100J drives the two atoms in parallel motion.
Right at the zone boundary, an analytic study
shows the Rayleigh wave to be z polarized. Thus,
this feature in the spectral density must have its
origin in a critical point in the dispersion relation
away from the zone boundary. Again, a study of
surface-wave dispersion curves for the model will.
prove useful.

We have attempted to interpret the structures in
the spectral densities to see to what extent a small
number of surface modes can be isolated and re-
garded as providing the dominant contribution to
the spectral densities. In essence, the question
is whether one can a,ccount for the mean-square
displacements and nearest-neighbor cor relations
in a semiquantitative fashion by this means. The
situation in fact appears complex, with a variety
of different modes, including bulk phonons, con-
tributing importantly. There are numerous papers
in the literature which calculate vibrational con-
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tributions to the free energy and surface entropy
through use of an Einstein model of surface vibra-
tions. " In essence, from the diagonal elements of
the dynamical matrix, effective Einstein fre-
quencies are determined and used in the evaluation
of the surface contributions to the thermodynamic
functions. One obtains by this method the leading
term of a moment expansion of the thermodynamic
potential. The series converges rather rapidly,
and by this means one obtains reliable semi-
quantitative estimates of model predictions of the
surface contributions to the thermodynamic pro-
perties. We see it is misleading to take the next
step and assume the Einstein frequencies so cal-
culated have any connection with the actual fre-
quency spectrum of atomic vibrations in the sur-
face.

Finally, we see in Fig. 6(d) that when we con-
sider second-nearest neighbors, the spectral
density contains rather complicated oscillatory
structure. This is expected, because if one writes
out the explicit form of (u (1)u8(l')) in a repre-
sentation that recognizes k, is a good quantum
number, then a factor of exp[ik„.(1„—1'„)]appears
in the integrand. As l„and 1'„areseparated, this
exponential factor oscillates more and more rapid-
ly when considered a function of k, . We believe
the present method cannot be extended beyond
second neighbors to obtain reliable results without
including a very large number of atoms in the
basic cluster. We have no reason to doubt the
second neighbor results, however. If one desires
to study correlations between atoms at larger
separations, one may need to use elasticity theory,
which can be joined to a lattice-dynamical picture
like the present method when the separation be-
tween 1 and 1' is small.

The last remark does not imply the continued-
fraction method is not useful in the theory of
thermal diffuse scattering, where correlations
beyond second neighbors are clearly required.
The theory of thermal diffuse scattering can be
cast in terms of Fourier transforms of the form

F„(k„;l„l', ) = Q exp[ik„.(1„-I;,)](u, (l)us(1')) .
l~

II

(4.1)

The continued-fraction method may be used to
calculate these directly from the Fourier-trans-
formed dynamical matrix

D 8(k„;l„l', ) = g exp[ik„(1„—I'„)]Dq(1, 1').

(4 2)

We have calculated selected correlation functions
of the form F ~(k„;l„l', ) by the continued-fraction

method for a simple analytically soluble model;
the continued-fraction method works remarkably
well to the point where the square-root singulari-
ties that occur in these quasi-one-dimensional
correlation functions" show up very nicely. We
shall describe such calculations in detail else-
where.

We turn next to the question raised earlier re-
garding a comparison between the degree of
correlation in the surface and the bulk. Consider
correlation in the x displacement between the
nearest-neighbor pair as shown in Fig 6(b. ). For
such a pair located in the surface layer, we find
(u, (1)u,(1'))/(u,'), = 0.40, while for a similar pair
located in (100) plane far into the bulk we find
(u„(1)u„(1'))/(u„'),= 0.27. Similarly, for the same
pair in the surface (u, (1)u,(1')),/(u), = 0.184, while
in the bulk (u, (1)u,(1')),/(u', )„=0.17. The calcula-
tions show that motions of nearby atoms in the
surface are correlated to very much the same
degree as in the bulk; indeed, the xx correlation
function cited above is actually substantially
larger.

We conclude by presenting the result of one final
inquiry into the nature of vibrational motion in the
surface. Consider an isolated planar molecule
made from four identical nuclei arranged on the
corners of a square. One normal mode of the
molecule will be the fully symmetric breathing
mode in which each atom moves outward along the
diagonal. If we examine four molecules which
form a square within the surface layer, we can
ask if the breathing motion can be approximated
by a single frequency, much as if it retained some
remnant of its molecular character after being
embedded in the surface. It has been suggested
that an answer to this question may be helpful in
understanding the mechanism that controls diffu-
sion of atoms into the bulk of crystals. '4

We may address this question by choosing four
atoms in the surface that form a square, and then
forming the normal coordinate Q =u„(1,)+
+u„(14),where u„(1,) is the component of atomic
displacement along the diagonal of the square,
chosen positive for outward motion. We then
calculate the spectraldensity .poo(co) associated
with the quantity (Q). This may be written as a
linear combination of nearest- and next-nearest-
neighbor correlation functions. 'The result is dis-
played in Fig. 7 along with the temperature varia-
tion of the average (Q'), which assumes the value
5.4 && 10 ' cm at 400 K. We see a rich variety of
structures in poz(&u); this quantity receives contri-
butions from a variety of short-wavelength sur-
face and bulk phonons, and there is no obvious
remnant of a quasi-molecular breathing vibration.

One may easily prove that poo(v) must be posi-
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FIG. 7. (a) The spectral density p(u) which contains
the frequency spectrum of the breathing vibrations of a
square of atoms embedded in the crystal surface, and

Q) the temperature variation of (Q ), where Q is the
normal coordinate of the square.

tive definite. One sees a small region in Fig. 6(a)
where this quantity becomes negative. This is an
error in our calculation. As we have seen, the
next-nearest-neighbor correlation functions os-
cillate rather dramatically, and one may introduce
some error by truncating the sequence of A.„'sand
B„'sas we have described above. It is hard to
remedy the problem without a substantial cost in

computer time, since more shells mustbe included
in the basic cluster. The error creeps in.at low

frequencies, where we have least confidence in

the method. The nonmonotonic behavior of (Q')
in Fig. 6(b) is caused by this unphysical negative

dip in poo(&c), incidentally. The integrated area
associated withthe region where poo(to) is negativeis
a small fraction of the total, and in this sense we
do not regard the problem as serious. We have
deliberately displayed the curve with the problem
clearly present to provide the reader with an
appreciation of the limitations in the method.

The aim of this paper has been to explore ap-
plication of the method of continued fractions to
the problem of surface lattice dynamics and also
to provide physical insight into the nature of
atomic motions in surface. We are pleased with
the results, and we plan to apply the technique
to the study of vibrations at and near localized
defects on the surface, such as isolated adsor-
bates and steps. Here we believe the continued-
fraction method offers a distinct advantage over
the slab methods described in Sec. I.
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