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Low-field magnetoacoustic dispersion in metals
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Magnetoacoustic dispersion and attenuation for a free-electron metal are shown to be proportional, respectively, to
the imaginary and real parts of a complex resistivity tensor. In general, they do not have the same magnetic field
dependence, contrary to previous predictions. The stronger oscillations of the dispersion in copper in the low-field
region found by other workers and also in the data presented here can be explained by considering the asymptotic
expressions for the resistivity tensor for ql p 1 and ql/co, r & 1.

I. INTRODUCTION

Rodriguez' showed that the oscillations in the
velocity of sound in pure metals at low tempera-
tures are closely related to the geometric oscilla-
tions in attenuation usually referred to Bs mag-
netoacoustic oscillations. For ql » 1 and a,r» 1 he
found that the velocity oscillations have the same
magnetic field dependence as those in the attenua-
tion in the free-electron model. Here q = 2w/A. is
the sound wave vector, / is the electron mean free
path, ~, is the electron cyclotron frequency, and 7

is the electron relaxation time.
Experimental results" differ from Rodriguez 's

calculations in two respects: (i) the experimen-
tally determined velocity changes tend to have
more and stronger oscillations at low fields, and
(ii) the line shapes of the velocity peaks are gen-
erally sharper than predicted. Be3ttie' explained
the first discrepancy for small values of ql. We
will show the reason for the same discrepancy for
q$» 1.

Starting with Rodriguez's formalism we find that
magnetoacoustic dispersion and attenuation are
proportional, respectively, to the imaginary and
real parts of a resistivity tensor R which do not
necessarily have the same magnetic field depen-
dence. We give an asymptotic expression for the
velocity which is valid for weak fields when ql » 1,
and show that it explains the earlier experimental
observations' as well as some additional data for
copper reported here.

II. THEORY

A. Derivation of the dispersion equation

We use the formalism given by Rodriguez' and
the expressions for the field-dependent conductiv-
ity given by Cohen, Harrison, and Harrison' (CHH).
It is assumed that a metal consists of a free-elec-
tron gas of density n plus a uniform positive back-
ground of n/z ions per unit volume, where z is the
number of electrons per ion. We choose the x axis

parallel to q and the z axis parallel to 8, the
applied magnetic field.

Starting from the equation of motion for ions as
given by Rodriguez, and assuming perfect screen-
ing of the ion current by the electrons, we find
the following dispersion relation:

and

&; = (zm/~v, &)S;; (2)

(3)

to first order in S;,. and T,-, .
According to CHH,

S;, = ao Re(R;;)-1

and

(4)

T, , =a, Im(R, ,),
where

R„„=(a,„+a„',/o„) '+ h,

R„=(a„)'.
Here ao=ne'T/m and 4= iq l2/3ao(1 —i~r)~v

'The 0;.; 's are expressed as infinite series in
CHH. For example,

30'0o„„=,', (1 —i~T)XX q2E2

xi 1 —(1 i&a~) P x
„&+i(neo, —~)7 &

'

(6)

where the subscript i represents the direction of
ion motion, e is the sound frequency, v; is the
field-independent sound velocity, m is the electron
mass, M is the ion mass, and S;; and T, , are, re-
spectively, the real and imaginary parts of the
magnetoresistivity tensor R.

Using the relations o', = 2Imq; and v; = cu/Req;,
we obtain
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where

p~/2
&'„(Xsin8) sin& deg„(X)=

~o

and X q I/~, T. When
~

(u,T/(1 i—~T)
~

' » 1, only the
n= 0 term makes a significant contribution to the

o;,-'s and one can show that

7,

5-

— (S, , +1),
i 2R

where the + is for longitudinal waves (i =x) and
the —for transverse waves (i=y or z). This is
the result obtained by Rodriguez. Comparison of
Eqs. (2) and (9) indicates that the velocity shift has
the same functional dependence on magnetic field
as the attenuation when this approximation is valid.

Beattie4 pointed out that this approximation
breaks down at low fields for ql = 1. He computed
n and dv„/v„ for several small values of q/, keep-
ing the first 20 terms in Eq. (7). The resulting
curves are in good agreement with the experimen-
tal results for copper under these conditions. He
also computed these functions for large ql, still
keeping just 20 terms. He concluded that the dis-
persion and attenuation had the same field depen-
dence for q/» 1."Oscillations in the velocity ex-
tend to lower fields than do those in the attenua-
tion. Beattie's calculations failed in this regime
because he truncated the series for the 0;&'s at
n=20. It turns out that the number of terms re-
quired for good convergence is proportional to
X=ql/&u, T, hence many more terms must be kept
for high ql and low fields. In Fig. 1 we show the
results of calculations for ql = 110 where conver-
gence has been achieved. It is clear that the veloc-
ity oscillations extend to lower fields than those
of the attenuation for this case. A physical inter-
pretati. on of this result is made easier if we look
at the asymptotic behavior of Eqs. (2) and (3) for
ql»1, X»1.

B. Asymptotic results for longitudinal waves

Rather good asymptotic expressions for the cr,-,.'s
were obtained by Gavenda and Chang' (GC) for
ql » 1,X» 1. For longitudinal waves, the normal-
ized resistivity is given, in this limit, by

{M/zm)(b vx/vx)

0
(M/zm) v„T (a —uo)

25
I
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8 (G)

~00

FIG. 1. Normalized velocity and attenuation of longi-
tudinal sound as functions of applied magnetic field, cal-
culated from Eqs. (2) and (3) for a free-electron model
with electron density equal to that of copper. ql =110,
& = (27).) 52 MHz, ez/e„= 300, and eo is the attenuation at
B=O (X-~). The velocity curve has been displaced up-
ward for clarity.

(7 i 'l'
v =~+

V„z 3(1 —g(dT)(dT
(10)

rhv„/v„= (zm/2M)(q'l'/3&uT)imG(X),

where

G (X)
gn(X)

„1+f(n~, —~)T

We have also used the fact that ~G(X) ~«1.
In the limit ql » 1,X» 1, GC showed that

G(X) = '
(coth

('-'"')'
2ql (

(12)

(13)

+ (vX) ' 'csch sin(2X ~/4 ~.&dT )

(14)

Substitution of Eq. (14) into Eqs. (11) and (12)
yields the asymptotic expressions for attenuation
and velocity:

Substitution of Eq. (10) into Eqs. (2) and (3) yields

o.„/q„= (zm!M)(q'I2/3mT)ReG(X)

and

cich ( ) cosh( )+(cX) 'i'ccc(—)cic(hh' -) /cic'(—~+sich'( ) (15)

sin —cos —+ rX ' 'cosh sin 2X-- sin' —+sinh'

where e~ is the electron Fermi velocity.
'There are two different sets of oscillations de-

scribed by these equations. 'Terms containing
sin(2X —w/4) give "geometric" resonances when
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FIG. 3. Measured velocity and attenuation of longitudi-
nal sound in copper at a temperature of 4 K and frequen-
cy of 52 MHz for q ~~ [101) and B

~~ [010]. Arrows indicate
where geometric oscillations begin.
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FIG. 2. Oscillation amplitudes for attenuation (A ) and
velocity (A„) of longitudinal sound calculated from Eqs.
(15) and (16) assuming v&/v„= 300.

III. ADDITIONAL EXPERIMENTAL EVIDENCE.

In the process of studying velocity changes near

the extremal diameter of the electron orbits is an
integral multiple of the sound wavelength. 'Terms
containing sin(mu&~a, ) or cos(v&u/(u, ) are related to
acoustic cyclotron resonance' (ACR). For ACR to
be observable, one must have ~v'& 1, a condition
which is not satisfied in most magnetoacoustic
experiments. However, the ACR terms play a
vital role in the rate at which geometric oscilla-
tions decay as X-~.

For typical magnetoacoustic experiments in pure
specimens, ql = 100 and (dr = 0.3. Examination of
Eqs. (15) and (16) reveals that the amplitude of the
geometric oscillations in attenuation goes as
e '~ "~'cos(mu&/(u, ) for X &q/, while that of the ve-
locity oscillations goes as e '~ "c'sin(v&u/(u, ). The
former expression can also be written as
e ' "~' cos(v&ur/~, r). The exponential factor
damps out the oscillations for w/&u, r & 1. For ~T
= 0.3, the cos term will be going to zero, while the
sin term in the velocity oscillations is still in-
creasing. This explains the fact that velocity
oscillations are observed to lower field values
than attenuation oscillations in high q/ specimens.
Figure 2 shows the relative amplitudes for several
values of ql. Note that the amplitude of the attenu-
ation oscillations begins to rise again at large
values of X for q/=150. This agrees with obser-
vations in high-purity cadmium.

open-orbit resonances in copper, "we also noted
evidence for enhanced geometric oscillations in
the velocity of sound at low fields. An example is
shown in Fig. 3. Not only do the velocity oscilla-
tions extend to somewhat lower fields, but they
decay at a slower rate than do the attenuation
oscillations, in accordance with the predictions of
the previous section.

The fact that the oscillations are not truly sinu-
soidal is evidence that the free-electron model
is not adequate to describe in detail the line shapes
for a real metal. However, it appears to explain
adequately the field dependence of the oscillation
amplitudes.

These measurements were made on a copper
single crystal having a resistivity ratio of 35 000
with 52-MHz longitudinal waves propagating along
[101]. The two-phase CW resonances technique
employed is described in Ref. 10. 'The geometric
oscillations come from belly orbits, since B II [010].

IV. SUMMARY AND CONCLUSIONS

Discrepancies between experimental data- and
earlier calculations of magnetoacoustic oscilla-
tions in attenuation and dispersion have been shown
to be the result of invalid approximations. Asymp-
totic expressions for the magnetic field dependence
of attenuation and velocity are given for ql » 1,
ql/v, r» 1. From these it. is evident that the am-
plitudes of geometric oscillations do not simply
fall off exponentially at low fields in high-ql speci-
mens; the effects of acoustic cyclotron resonance
must be taken into account.
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