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Starting from a simple model for the lattice vibrations in a molecular crystal, I develop the transport theory for
noninteracting electrons in a tight-binding band scattered by one- and two-phonon processes. The matrix elements
for scattering by acoustic phonons, by librons, and by internal-mode phonons are obtained in the usual way from a
simple Hamiltonian. For the one-phonon (1p) processes it is shown that a relaxation time exists and the Boltzmann
equation is easily solved. With this solution formal expressions are obtained for conductivity o and thermopower Q.
These are evaluated for the acoustic and libron cases for degenerate material in order to display the specific
dependences on bandwidth, Fermi energy, phonon frequency, temperature, etc. Approximate expressions are also
obtained for o and Q for two-phonon (2p) processes. The formalism is then applied to calculate o and Q
numerically for tetrathiofulvalene-tetracyanoquinodimethane (TTF-TCNQ) for which the basic model should be
reasonably valid in the temperature range ~ 100 < T < 300 K. It is shown that the requirement that the Fermi
level be the same for TTF and TCNQ, while the lattice constant and bandwidth change with temperature leads to
the charge transfer’s decreasing ~ 20% from 60 to 300 K. The internal modes, for which the frequencies and
coupling constants are fairly well known, are found to account for one-quarter of the resistivity at 300 K. The
coupling constants for the other 1p processes required to match the observed resistivity versus 7 are of the order of
those deduced theoretically and experimentally for the LA mode, and therefore seem reasonable. The bandwidths
that give good fits for o and Q, and are consistent with most other experiments, are 0.5 eV for TCNQ, half that for
TTF. Similar fits are obtained by including some 2p processes, up to 1/3 of the total scattering. Calculations are
carried out also for tetraselenufulvalene-tetracyanoquinodimethane (TSeF-TCNQ). The large pressure dependence
of o at 300 K for TSeF-TCNQ, ~ 18%/kbar, is well explained by the pressure-variation of the bandwidth and
acoustic-mode frequencies, plus some smaller effects. The additional 10%/kbar observed for TTF-TCNQ may be
largely due to greater changes for TTF due to its small bandwidth. In contrast to all of the above, the proponents of
the “two-libron” theory of transport for TTF-TCNQ claim that 1p scattering is negligible in the range

~ 100 < T < 300 K, 2p processes being predominant. These claims are examined and found quite unconvincing.
Allowing for the uncertainty in the coupling to LA and TA phonons, I find that the contribution of 2p scattering
must be less than 50% at room temperature and smaller, of course, below; it may be negligible at all temperatures.
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I. INTRODUCTION

After large numbers of experiments and much
ferment, a model of tetrathiofulvalene-tetra-
cyanoquinodimethane (TTF-TCNQ) above the
Peierls transition that is widely, if not universal-
ly, accepted has emerged. Collective transport,
early espoused by some as explaining many phen-
omena in the entire range from the Peierls tran-
sition temperature T, =53 K to room temperature,’
has been abandoned as a model above ~100 K, or
at the most 150 K. Under x rays the fluctuations
are barely visible at 150 K, even less so above,
and the coherence length at 150 K is quite small.
Consistent with this there has been an accumula-
tion of evidence that coupling between the chains
is sufficiently strong to prevent T, being depressed
much below the mean-field value.? There remains
a possibility that fluctuating charge-density waves
contribute to transport below ~100 K or perhaps
150 K. Recent experimental results®‘®’ showing a
dip in conductivity at temperatures below 150 K
around the pressure where commensurability is
achieved®®’ have been interpreted as evidence for
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such collective transport.

Another important question has been the role of
U, the Coulomb repulsion for a second electron on
the same site. Magnetic-susceptibility measure-
ments, among others, have been interpreted as
showing “that U is comparable to or larger than
the bandwidth, at least on one stack.”* Recent cal-
culations by Bloch®'?’ demonstrate that, for ma-
terials where charge transfer is not close to com-
plete, screening by the conduction electrons may
make U relatively unimportant. Examples of com-
pounds where many types of evidence indicate that
this screening is taking place are hexamethylene-
tetraselenafulvalene-tetracyanoquinodimethane
(HMTSF-TCNQ) and tetraselenafulvalene-tetra-
cyanoquinodimethane (TSeF-TCNQ). TTF-TCNQ
is notaclear-cut case, however, inthatxrays show
4k fluctuations,’®) interpreted by a number of
authors as the effect of intermediate or large U.
Since the spacing and charge transfer on the TCNQ
chain are very close to those for the TCNQ chain
in TSeF-TCNQ, it is reasonable to conclude that
U is not important on that chain but may be sig-
nificant on the TTF chain.’‘®? Consistent with that,
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there is evidence, to be discussed, that the band-
width is considerably smaller for TTF, making the
effect of U more important. However, the con-
tribution of the TTF chain to the conductivity is
less than that of the TCNQ chain, of the order of
%, as will be seen. I conclude that a reasonable
model for transport in the range 100 or 150 to

300 K is based on single-particle scattering in a
tight-binding band.

Since p for TTF-TCNQ as well as many analo-
gous compounds was found experimentally to vary
with temperature T as AT*3+ B, B being neglig-
ible for many samples above 100 or 150 K, initial
efforts to account for the resistivity concentrated
on mechanisms that could produce the T%*® depen-
dence. Three such mechanisms were proposed:
(1) electron-electron scattering,® (2) two-libron
scattering,” and (3) scattering by phonons of mole-
cular (internal mode) vibrations.® As regards
the first mechanism, it was soon realized that
scattering of electrons by electrons on the same
chain could not remove momentum from the elec-
tron distribution.”*® To give rise to resistivity,
the scattering would have to be by electrons or
holes on the other chain, No detailed theory of
such a process has been presented. A major ar-
gument against this mechanism is the fact that
many compounds in which it is well documented
that conduction is by a single chain, either TTF
or TCNQ, have resistivity comparable to that of
TTF-TCNQ. The two-libron theory asserts that
two-phonon scattering is predominant. This the-
ory will be discussed further subsequently. The
third theory could account well for the magnitude
and temperature dependence of p, using fairly
well known values of frequency and coupling con-
stants for the molecular modes, provided the
bandwidths of TCNQ and TTF were taken as 3 and
1 eV, respectively., These values were objected to
as smaller than indicated by various experiments
and theories. The conclusive argument brought
against this theory, however, was that it could
not account for the large pressure dependence of
p, a decrease of ~25%/kbar at 300 K. If the data
on pressure dependence are used to deduce volume
dependence, and correction is made for the sizable
thermal expansion of TTF-TCNQ, it is concluded
that p at constant volume, p, is much closer to
linear in 7T than quadratic.®’'® On this basis it was
proposed that scattering by all phonons, not only
those based on molecular vibrations, is signifi-
cant,!

It is the major part of the program of the present
paper to calculate the transport coefficients aris-
ing from all one-phonon (1p) and two-phonon (2p)
scattering processes for noninteracting electrons
in a quasi-one-dimensional tight-binding band.

This will be carried out in Sec. II. In Sec. III the
theory will be compared, as well as can be done,
with experimental data for TTF-TCNQ. Although
there is a large body of data, there are still too
many parameters poorly known or unknown to do a
conclusive calculation, It will be shown, however,
that resistivity and thermopower can be fit in the
range 100 to 300 K with values of the various pa-
rameters that are reasonable and consistent with
the results of most other experiments, including
pressure experiments. Section IV will be devoted
to some remarks on the two-libron theory.

II. THEORY OF PHONON SCATTERING
IN QUASI-ONE-DIMENSIONAL MATERIALS

Using a model for the chains similar to what is
found for TTF-TCNQ and its analogs, we first de-
scribe the types of lattice vibrations. Since the
vibrations for these compounds are complicated,
we simplify them in some respects for the cal-
culations of this section. The matrix elements for
the different types of phonon scattering are then
derived from the usual one-dimensional Hamilton-
ian for noninteracting electrons. A relaxation time
is shown to exist for the 1p processes. The Boltz-
mann equation is solved for these and formal ex-
pressions for the conductivity ¢ and thermopower
@ are written down. These must be evaluated nu-
merically when phonons based on molecular modes
are included. For the elastic scattering cases,
however, expressions are obtained for ¢ and @
displaying clearly the dependences on bandwidth,
phonon frequency, charge transfer, etc. In the
case of 2p scattering, the Boltzmann equation is
not solved but approximate expressions are ob-
tained for o and @ from the momentum relaxation
time.

A. Model of the lattice vibrations

Since, as indicated earlier, the lattice vibration
spectrum is quite complicated in the organic crys-
tals considered, we calculate for a simplified
model in order to gain more physical insight. We
therefore perform the calculations for the case of |
one molecule per unit cell. The molecules are as-
sumed to be planar and stacked at an angle to the
chain direction, as shown in Fig. 1. The lattice
vibrations are conveniently divided into external
and internal modes. The latter are based on the
molecular vibrations and there are 3m —6 of them,
m being the number of atoms in a molecule. The
remaining six modes arise from the three trans-
lational and three rotational degrees of freedom.
In a lattice of high endugh symmetry'? the trans-
lational and rotational modes do not mix with each
other at the center of the Brillouin zone (g =0) and
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FIG. 1. Coordinate system and model chain of planar
molecules showing tilt angle 6, lattice constant b, and
rotation axes for the librations. ¢ and ¢ (|| @) corres-
pond to the long and short axes of the molecule, res-
pectively, and 7 to the axis perpendicular to the plane
of the molecule.

perhaps at other high symmetry points, but in
general do mix elsewhere. In the theoretical de-
velopment of this section it will be assumed that
there are six distinct branches, three based on
translations and three on rotations, that do not
mix anywhere in the zone. Each of the rotations,
or librations, is assumed to take place about one
of the three inertial axes, indicated on the top
molecule in Fig. 1, although this is not in general
true. These branches are optical, i.e., their
frequencies do not go to zero in the limit that ¢-0.
With the stacking axis the high-conductivity direc-
tion, the important acoustic modes for scattering
the electrons are those that propagate along the
stacking axis, taken as b in Fig. 1. These consist
of longitudinal (LA) modes with displacements
along the b axis and two transverse (TA) modes
with displacements that we take to be in the direc-
tions indicated c¢* and @ in Fig. 1, since neutron
scattering indicates that the TA vibrations are
primarily in these directions in TTF-TCNQ.'*
The quanta of the acoustic branches will be called
translons, in analogy to those of the rotational
branches being called librons.

B. Matrix elements for phonon scattering

To deduce the coupling of the electrons or holes
to the lattice vibrations, we start from the usual
Hamiltonian for noninteracting electrons on a chain
of N identical molecules,'®

N G
H= Zefaltaj+ Z Z (b:,an,n"'%)ﬁwq,n
i=1 n=1 q

N
+ D (tyale;+He), (2.1)

i,i=1

where a} and q; are the creation and annihilation
operators, respectively, for an electron on the jth
molecule, t,; the overlap integral, and b} , and
b,,n the creation and annihilation operators, re-

spectively, for a phonon with wave vector g and
frequency w, ,. The subscript # indicates the
branch, of which there are G in all. We assume,
as usual, that all conduction electrons (or holes)
are in the same (nondegenerate) molecular orbital.
In the spirit of the tight-binding approximation,

we shall consider only overlap between nearest
neighbors.

There are two obvious sources of coupling be-
tween the electrons and lattice vibrations. First,
the overlap or transfer integral is a function of the
spacing and relative orientation of the adjacent
molecules j and j+1. This couples the electrons
to the intermolecular lattice vibrations. Thetrans-
fer integral may also be affected by the internal
vibrations but this effect would seem to be small.
Second, the energy €; of the electron on the jth
site is affected by the internal vibrations at the
site j, coupling the electrons to those vibrations.'®
In addition, €; includes a contribution of the crys-
tal potential at the site and this is modulated by
the intermolecular vibrations. The matrix ele-
ment arising from this latter source was shown
for anthracene to be small compared to that aris-
ing from modulation of the transfer integral.’® It
is likely to be larger in the crystals under con-
sideration here due to the charge transfer., Al-
though it is straightforward to obtain the expres-
sion for this contribution, we do not include it
since it brings in one more unknown parameter,
possibly of little importance.

To calculate the coupling constant arising from
the modulation of the transfer integral by the inter-
molecular vibrations, we make use of the fact that

" the vibration amplitudes are small and expand ¢;

in a Taylor series’®:

2
(2.2)
Here u; represents the displacement of the ith
molecule from its thermal equilibrium position.
(st /du), stands for the rate of change of ¢,;; with
the distance between nearest neighbors, the sub-
script 0 indicating evaluation at the equilibrium
value of that distance. {, is the usual transfer
integral, evaluated for the molecules in their
equilibrium positions, i.e.,

£o= = f S*(F+B) H(F)d*,

where ¢(F+b) and ¢(F) represent orbitals centered
at adjacent lattice sites. The expression (2.2) can
be specialized for the case of acoustic modes by
taking'”

(2.3)

. . 73 1z )
o 2 e(W) ¢! Ri(by,n bl ),
(2.4)

+q,n
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where &, , is the polarization vector of the vibra-
tion with wave vector ¢ in the (acoustic) branch #,
M the mass of a molecule, and R, the coordinate
of the jth molecule. We insert (2.2) and (2.4) into
(2.1) and make the usual Fourier expansions for
a} and a; in terms of the operators a% and af, that
create and annibilate particles in the Bloch state
of wave vector k. After some straightforward
manipulation, we obtain from the term of (2.2)
linear in 1 the perturbing Hamiltonian for the in-
teraction of the electrons with acoustic phonons of
the branch #:

H,1=N-1/2Egl,nalz-i-qak(bq,n"'btq n) (2'5)
a,k

g1, » being the coupling constant for one-phonon (1p)
processes. For acoustic scattering this constant
may be written'®

A ﬁ e .
Sit,n =21 3u —Z-MZ’——‘- [sm(k +q)b—Sll'lkb] .
ayn

(2.6)

This form for g, , and the resulting matrix ele-
ment had been obtained earlier by Friedman.'® If
we had calculated the coupling to acoustic modes
‘arising from ¢; there would be an additional term
in Eq. (2.6) of similar form and proportional to
(o€; /ou,),. Since we are not explicitly including
this term, it is understood that (8¢ /3u,), includes
a contribution of unknown size, arising from

(o€ /auy,),

With the coupling constant in the form (2.6), the
matrix element derived from (2.5) is a function of
the final state wave vector, k+g, complicating in-
tegration of the Boltzmann equation. Fortunately,
since the materials of concern are degenerate in
the temperature range we deal with, and acoustic-
mode scattering is essentially elastic, scattering
may be considered to take place from +k to Fk.
Incorporating this into (2.6) we may write

. [ 8¢, 7 vz
= 2.
&it,n il(aun )0 <2Mw2k',,) sinkbd, (2.7)

where we have introduced the bandwidth €,, which
equals 4f/. Thus the matrix element is written as
a function of the initial state only.

A similar development may be carried out for the
linear perturbing term in the Hamiltonian due to
the librational modes. This leads again to the ex-
pression (2.5), with the coupling constant

—g; (22 mO\YE . .
81,n 7 (39,,)0 (-2—@:) [sm(k +q) b- smkb] ’

(2.8)

6 being the angle of libration and 7 the moment of
inertia of the molecule appropriate to the particu-

lar libration. For degenerate material this may
also be approximated by the form

3¢, 7 vz
o) (e

We consider now the effect of the term of (2.2)
quadratic in #. Using Eq. (2.4) and the Fourier
expansions for af and a; we obtain the perturbing
potential for interaction with the branch #,

H;=N N7 Z gz,nak+a+a'ak(ba.n+b-q, )(ba’.n+b-a’ n)’

kya,a

(2.10)

the electron interaction now being with two pho-
nons having wave vectors g and g'. For the acous-
tic modes the coupling constant is found to be

_1 8260 I3
82 =7 0 2M (wq, , @

while for the librons it is”

)1/2 f2(k, q, q') ’

(2.11)

1 (2% n ,
g21=_4:‘(‘8620) 2 (@ BRRE fz(k;q,q)-

a,n W’ n

(2.12)
In these expressions,
fo(k,q,q")=cos(k+q+q') b —cos(k+q) b
—cos(E+q') b +coskb. (2.13)

In principle, g and ¢’ could come from different
branches, 7 and #’. In that case (8%¢, /5u2) would
be replaced by (8%¢, Hu,du,), etc., in (2.11), with
the corresponding replacements in (2.12).

It is clear that the drivatives of €, (or #) with
respect to the various possible displacements
angular or linear, play an important role in the
theory. In what follows we shall call them de-
formation potentials, since they play a somewhat
similar role to the deformation potentials used in
semiconductors and metals."

To obtain the coupling to internal vibrations we
expand €; in terms of Q,(j ), normal coordinate
for the nth internal vibration on the jth molecule,
e.g.,'

€ =€+ (3(9—(1]‘)‘) Q. (7)

1 07€; ) .
<m) Qui)Qu) ¥+,
(2.14)

where €;, is the electron energy at the jth site
(molecular orbital energy plus effect of the crys-
tal potential) in the absence of internal vibration.
It is convenient to use dimensionless @,’s, ob-
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tained by multiplying the usual normal coordinate
by (w,/7)*2.** We now make the Fourier expan-
sion

Q) =N2 Y iR (g),

where @,(q) is the dimensionless normal coordi-
nate for the nth phonon branch [corresponding to
the internal vibration Q,(j)] at wave vector q.
Using

Qu(q) =27"3(b,, ,+0%,. ),

we obtain from the term in the expansion (2.14)
linear in @, a perturbing potential in the form
(2.5). The coupling constant for this case is given
by20

(2.15)

(2.16)

J€;
g2 (———i—> . 2.17a
gll ' P Q"(] ) o ( )
It is convenient to write this in the form
gli,n::gnﬁwn, (2.17b)

where g, is the dimensionless coupling constant
defined and calculated by Lipari ef al.'® As dis-
cussed in that reference, the only normal modes
coupled to the electrons by terms linear in the

Q,’s are those with the symmetry of the molecule
(a, for TCNQ, for example). This limits the modes
that can interact with the electrons to 10 for TCNQ
and 7 for TTF. We do not consider the contribution
of higher order terms; two-phonon processes are
unlikely for the temperature range of interest for
the high-energy phonons of the internal-mode
branches.

The quantity required for the calculation of the
scattering time due to any of the processes above
is the absolute square of the matrix element of H’
for that process between the initial and final states
of the system. For any of the 1p processes, from
Eq. (2.5), this is given by

Ke'|HY [ 2 =N gy, 012

n, absorption
n,+1 emission ,
(2.18)
where g, ,, is given by the expressions (2.6), (2.8),
or (2.17) and the upper sign in the § function is for
absorption, the lower for emission. The possibil -
ity of umklapp processes will be neglected here
since, as will be discussed, they do not appear
important for the materials of concern in this tem-
perature range. For the 2p absorption process we
obtain from Eq. (2.10),

Kr'lHY, L R) 2 =N g5, 012
nq na,
X6(k' - Fq')X ’
(k' ~kq 7) {nq+1}{nq,+1}
(2.19)

where one factor is chosen from each pair of

Xﬁ(k’—k:Fq)X{

braces depending on whether the corresponding
phonon is absorbed or emitted, and the signs in
the argument of the 6 function chosen accordingly
to satisfy conservation of crystal momentum. The
quantity g, , is given by (2.11) or (2.12) and (2.13).
A significant deduction can be made from (2.18)
and the expressions for g, ,: An acoustic mode
for which (8¢/du,), vanishes, or a libration for
which (3t /a6,), vanishes, will not give rise to 1p
scattering. It can be seen from Fig. 1 that, by
symmetry, the TA(a) mode is an example of the
former, while the 1 and ¢ rotations are examples
of the latter. These modes, as well as all the
others, are expected to give rise to 2p scattering.

C. Relaxation times for scattering

For dc fields the Boltzmann equation is the
statement that in the steady state the rate of change
of the distribution f due to applied fields is bal-
anced by (8f/8t),, the rate of change of f due to
collisions. For a small applied electric field we
assume, as usual, a solution of the Boltzmann
equation in the form

F=rol€) +f (€, E)’ F1<fo

where f,(€) is the thermal equilibrium distribution,
fD:{exp[(e_€F)/kBT]+1}-1‘ (2.21)

The function f, is linear in the electric field and
an odd function of the velocity of the carriers.

To calculate the rate of change of f due to col-
lisions we introduce P(k, k'), the probability of
scattering per unit time from an initial state & to
an empty final state in unit length of momentum
space around 2. We assume perturbation theory
to be valid, leaving its justification for the ma-
terials of interest to be discussed later. By the
golden rule, then,

P(k—k")=@n/m) (k' |H'|R)*p(%"),
where p(k’) is the number of final states per unit
length of k space. With this, we may write

of (R)\ _ , /
( o )c—f{f(k )P(R'=R)[1-f (k)]

~fR)P(~E)[1=-f("]}dr",
(2.23)

where k' varies from -7/b to +7/b. To evaluate
(2.23) we substitute for f the expression (2.20).
The group of terms obtained by replacing f by f,,
i.e.,

[ o) P~ R [1 18]

~fo®)P(e~F')[1-fo(R)]} dR’

clearly vanishes because it represents the rate of

(2.20)

(2.22)

(2.24)
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change of f, due to collisions. Of the remaining
terms for the 1p processes we have discussed,
those with f,(#')P(k~%’) or f,(k') P(k'~E) in the
integrand also vanish. This is so because f,(%’)

is odd in the velocity ¢/, thus in k’, and for all

the 1p processes considered the matrix elements,
and therefore P(k=F’), are independent of the final
state 2’. Thus the only terms left are those in-
volving f,(k), and the collision term may be written

as
(a];gk) )cz_ f1(R) £ (k) (T_lm_+ ; )

T T
-(2.25)

where the relaxation times 7., and 7, are given by

T;=f{pem,abs (=E")[1=F,(&"]

ems abs

+P gos,em (B~ R) fo(R')} dE' . (2.26)
The first term of 1/7., (1/7,,) actually represents
the rate of scattering out of # by emission (absorp-
tion), while the second term arises from the change
in the transitions into %2 from %’ due to the change
f1(®) in the occupation probability of the state %.
Tem and 7, may be written in different form by
making use of the relation derived from the van-
ishing of (2.24), or more specifically the vanishing

of the integrand in (2.24). This leads to
J

T

em, abs nq,”

For the internal modes, scattering with emission
is possible to either -’ or +2’, by means of pho-
nons k'+k or —(k' —k), respectively, provided €,

=€, -Nw,, ,. For scattering by an internal mode »
we therefore obtain®

1 2
= (g0, (1, 1)

Tem H(e -Fiw,)
* lle-riw,)[€ - (e ~=Ttw,)]} /2

where g, , has been taken from Eq. (2.17b). The

function H(€ ~%w,)=1 provided €>%w,, 0 other-

wise. It is included here (and a similar function

later in 7, ) to ensure that the final state lies

within the band. By a similar procedure we find®
1 2 . Hle, - (e +Rw,)]

Tos 'ﬁ—(gnh_w,,) Ny n e iw,) [€g — (€ + hw“)]}l/z

(e

(2.32)

(2.33)

2 nq,,,+1 - '
LI |g‘;;_"| { }fﬁ(ek,-ekt Twy, ) [€pr(€g —€4r)] 2 (l——f—qgﬂ)dek,.

Pabs(k,”’k) - fo(k) l—fo(k,)
P, (=F) f, (&) 1-f(k)

With (2.27), Eq. (2.26) may be rewritten as

7?:I=fpem,abs (k-—k’)(_lf'i%%%)dk,.

(2.27)

(2.28)

For elastic scattering f,(%’) =f,(k) and the factor
in large parentheses is unity.

In evaluating the 7’s it is convenient, since P,
and Py, contain a 6 function involving €, and ¢,
to replace p(k’)dk’ by p(€,)de,. For the one-
dimensional case p(%z)=1/2r for states of one spin
direction. With € given by the usual one-dimen-
sional tight-binding expression

€=(¢,/2)(1 - coskd), (2.29)
we obtain
dk 1 1
A T COwn) L

for the density of states at 2z with one spin direc-
tion. We use the notation p,(€) here because this
is smaller by a factor 4 than the p(€) ordinarily
used, which includes both the states at +% and -2
and the two spins.

With Egs. (2.22), (2.18), and (2.30)used in (2.28),
we obtain for the single-phonon scattering pro-
cesses

1-fo(€) (2.31)

T
The variation with e/e0 of 7., and 7Ts is shown in
Figs. 2(a) and 2(b) for a set of parameters suitable
for internal modes in TCNQ. It is seen that, in
accordance with Egs. (2.32) and (2.33), 7en, —0 at
€=7w,, while T,ps -0 at e=¢,-%w,. This occurs
because of the singularities in the density of final
states at €=0 and ¢,, respectively. It is not ex-
pected to be literally true, however, because the
small lifetime for an electron in levels with e~ 7w
or €~¢, —fiw, will causebroadening of these levels.
Use of (2.32) and (2.33) would nevertheless not be
expected to cause a significant error in calculating

‘the conductivity, for example, unless perhaps the

Fermi energy happened to coincide with one of the
levels concerned. Thedips get increasingly narrow
as € increases from 0 for 7.m, or decreases from
€, for 7, , because of the increasing number of
phonons with which the electron can interact. The
interplay between that number of phonons and the
density -of -final-states factor is what determines
the overall skewed bell shape of these 7’s as a
function of €. We note that the 7’s of (2.32) and
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FIG. 2. Tem (a) and 744 (b) of Egs. (2.32) and (2.33),
respectively, plotted for T =300 K, €,=6000 K, €
=1200 K, and internal-mode frequencies and coupling
constants of Table I for TCNQ.

(2.33) are valid also for nondegenerate material,
being somewhat simpler for that case since the
factor in large parentheses may be taken as unity,
filling of the states being unimportant in limiting
transitions. These 7’s have been used in calcula-
tions for NMP-TCNQ (Ref. 21) and complex TCNQ
salts.?

In the case of acoustic-mode scattering, which
we have noted is essentially elastic, for an elec-
tron at +%, (k5 being the Fermi wave vector) only
backward scattering affects the conductivity. From
Egs. (2.31) and (2.7), using again the fact that the
scattering is elastic, we obtain for the 1¢ case

1 - (aeo >2 sinkb ., {nq+l, (2.34)
_— e o n .

T em, 183 abs  1# AUy Jo MEyWyy, , q-

Here we have used Eq. (2.29) to eliminate

[e(e, - €)]¥2. Equation (2.34) may be put in an-
other form®® by making use of the dispersion re-
lation for a linear vibrating chain in the harmonic
approximation,'’

W,, =W, Sinkd, (2.35)

where w,, related to the force constant and M,
is the maximum frequency of the branch. With
this, combining absorption and emission terms
we get

1 (o, )-2 1
T“ —(au,{ [0} MGQCUO," (znq+1)' (2-36)

When equipartition is valid,

2, + 122k T/ Tiwyy p - ‘ (2.37)

In that case 7,, may be written as

1 (o€, \* kT 1
T _<8u,,>0 ﬁng’" [ele, =] 7%’ (2.38)

a convenient form because it displays explicitly the
€ dependence of 7. Unlike the case of internal
mode scattering, (2.36) and (2.38) may not be valid
for nondegenerate material because the approxi-
mation of elastic scattering may be poor.

* For scattering by a single libron the situation is
quite similar to that for scattering by a single
translon. When the approximations of elastic scat-
tering and equipartition are valid we may write the
relaxation time for this case in the form

1 2 (8¢, \* sinkd
(ae,,) Tew? ko T (2.39)

T, &

where we have dropped the subscript 22 on w since
the libron branches are expected to be fairly flat,
i.e., dispersionless, at least for our simple model .
For that reason, Eq. (2.35) does not apply and 7,;
cannot be written in a form analogous to (2.38) for
T

For the 2p processes the dependence on %’ of the
collision term cannot be eliminated, and a relax-
ation time in the sense of Eq. (2.25) does not exist.
To estimate the conductivity for this case it is con-
venient to calculate a momentum relaxation time,
to be denoted by 7,,. This time differs from the
mean free tlme between collisions by the factor
(1 -cosx)™, x being the angle between k and &’.
Since only backward collisions are significant in
this case, (1 -cosy)™ =%. We may then take

=2 EZ;P(k-—k'), (2.40)

where P(k—~FE’) is given by (2.22), with (2.19) and
(2.11) or (2.12) specifying the matrix element for
this case. If we again neglect the phonon energy
compared to that of the electron, scattering can
only take an electron from +% to k2. To make the
argument of the & function in (2.19) vanish, then,
requires that ‘

q'=-q-2k. (2.41)

This condition eliminates the summation over ¢’
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in (2.40). With ¢’ given by (2.41) the quantity
fo(R, q, q") defined in (2.13) becomes

fs(®, a,q")=2[coskd - cos(k +q) b] .

When the summation over ¢ is changed into an in-
tegration we obtain for the case that both phonons

are absorbed,
1 2\ Nb BT \2 [2R*T/0 f2
oot [, e
i)am PO ) L, w2
(2.43)

(2.42)

Top 2m

where p,(€) is the density of states of one spin at
L or -k [given by (2.30)], f, is given by (2.42), and

2
" (—8——2"—) translons,
0

8NM \ou
G= - . (2.44)
9%€, .
SNT ( 307 )0 librons .

The quantities #, and z, in the matrix element have
been replaced by #T/#%w, and kT/7iw,, respective-
ly. Also, the integration limits have been set in
(2.43) so that the phonons and the electron stay
within the first Brillouin zone. For the libron
case, w, and w, are constants, equal to each other
in fact if both librons are from the same branch.
Integration of (2.43) is then straightforward and
yields 7,, for the case that ¢ and ¢’ are absorbed.
It is readily seen that the other three processes—
absorption of g-and emission of —q’, emission of
—q and absorption of ¢/, and emission of ¢ and ¢’ —
lead to the same result as (2.43). Combining all
four processes, we obtain for the momentum re-
laxation time due to scattering by two librons from
the nth branch®

_1_=<azeo>2 (kBT >2 F,(kb)
Toy 862 ), \Iw? nle(e, —€)] 2
where

F,(kb) =[(7 —=2b)(1 +2 cos’kb) — 3 sin2kb] /47 .
(2.46)

(2.45)

For the translon case the analogous function to
F,(kzb) will be different due to the dependence of
w, on q.

D. The transport coefficients

It is straightforward to solve the one-dimension-
al Boltzmann equation under the assumption that a
relaxation time 7 exists, which we have shown to
be the case for the 1p processes. To terms linear
in the electric field intensity ﬁ, making use of Eq.
(2.20), we have

(), =B vaf =—eB-30r,/00, (@47

ot )z

where e is the magnitude of the charge on the elec-
tron. For the one-dimensional case the velocity,
from Eq. (2.29), is given by

v=(b/%)[e(e, - €)]V?=(e,b/2%) sinkb.  (2.48)

With the use of Eq. (2.25) for the collision terms

we obtain the solution for low electric fields:
f.=—eE - T1(af, /0€) . (2.49)

The current density and energy flux are then given
by

i=%e 2_f T (2.50)
k
and
TN (€ €)fiF, (2.51)

k

where N is t}le number of chains/cm? and the sum-
mation over k is to be taken over all states (both
spins) per unit length of chain, It is convenient to
convert the summation into an integration over e.

- +m/ €0
ZF(k)=2f IbbF(k)p(k)dk=f F(e)ple)de,
k - 0

(2.52)
where p(€) represents the density of states at +%
and -k and with both spin directions, being 4p,(€)
given by Eq. (2.30). Using Eqs. (2.49) and (2.52) we
then obtain from (2.50)

oz(j/E)=-f°a<e)(afo/ae)de,

(2.53)
where
o (€) =MNe?v?1p(e). (2.54)

To calculate the mobility u from (2.53) it is nec-
essary to divide o by e times the carrier concen-
tration M, where n is the number of carriers per
unit chain length. Using Eqgs. (2.52) and (2.30) we
obtain

n=3 fo=(2/1) [ 1) [eleo - O] de..
k 4}

(2.55)

Note that, despite the use of Fermi-Dirac statis-
tics, carrier concentration is in general not con-
stant in a two-chain conductor but varies with tem-
perature because charge transfer changes as €,
and the bandwidths change with temperature. This
will be discussed further in Sec. IITA,

The thermopower @ may be evaluated from the
Kelvin relation

Q=Z{)/jT, (2.563)
w/jbeingthe Peltier heat. With Egs. (2.49)-(2.52),
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(2.56a) for the thermopower of one type of chain
becomes

Q= 1 foeo (€ - €z) v®7p(€)(3f , /0€)d €
" eT foeo v*1p(€)(of , /o€)d €

. (2.56b)

For a material with two types of chain, having
individual thermopowers @, and @, and conductivi-
ties 0, and o,, the combined thermopower is the
weighted average,

Q=(Q,0,+Q,0,)/(0,+0,). (2.57)

When the scattering process is elastic, as is
reasonable to assume for translon and libron scat-
tering in degenerate material, integration of the
expressions for ¢ and @ may be simplified by con-
centrating on properties at the Fermi energy. This
will be carried out in the next section. However,
when internal-mode scattering is operative, either
alone or in combination with elastic processes, it
is necessary to integrate (2.53) and (2.56) numeri-
cally. To do this, it is convenient to replace
(8f o /9€) by —fo(1 —f,)/ks T, obtained from Eq.
(2.21), and introduce the dimensionless variable
y=¢€/€,. The integrals are then conveniently eval-
uated by Gaussian-type numerical integration.

E. Transport coefficients for the cases of elastic scattering

Considerable insight may be gained by studying
translon or libron scattering alone for the degen-
erate case. In the preceding section it was found
that the integrals that must be evaluated to obtain
o and @ are of the form

€
K== [ " €o(e)of, /oe)de, (2.58)
V]
o (€) being the quantity defined in Eq. (2.54). To
evaluate K, we take advantage of the fact that
(8f, /9€) is nonvanishing only in the neighborhood
of € =€, to make a Taylor-series expansion of the
coefficient of (3f,/8€) around €. This leads to
the result, to second-order terms in #T/€g,>®
7T2 dz

K,=€ro(ep) + —G—(kBT)zd?[e"o(e)] p (2.59)
To first order in T we have then, from (2.53) and
(2.54),

o =[%e**rp(e)] ., (2.60)

To obtain ¢ for 1p acoustic scattering we use Eq.

(2.34) for 7 and assume equipartition, Eq. (2.37).

Inserting Eq. (2.48) for v and p(€) =4p,(€), we may
write for ¢, due to scattering by the nth acoustic

branch,

Nne?pM kaF,nEO

Ot ,n h—_7_—3<° 51 ) %, T (2.61)

Similarly, we obtain for 1lp libron scattering

_ Te’bI whep,n €3
T1t.n” (o€, /06,2 T

We see that, under equipartition, ¢ for the 1p pro-
cesses is proportional to 77! and to the square of
the frequency of the phonon with wave vector 2kj.
Also ¢ is proportional to the square of the band-
width,2®

For the 2p case the solution (2.49) of Boltzmann
equation is not valid since a relaxation time does
not exist. One should nevertheless obtaina reason-
able approximation to ¢ for two-libron scattering
by inserting the momentum relaxation time, Eq.
(2.45) for that case, in Eq. (2.60). This leads to

Ne®bI*wiel sin®kpb
4 1F,(kpb) (8%, /8622 (Ry T °

where F,(kzb) is defined in (2.46). As expected,
because two phonons are involved, this o is pro-
portional to w* and T™%, as well as to €2.

It is informative to write down what the conduc-
tivity would be for internal phonon scattering in
the limit Zw,-0. Inserting into Eq. (2.60) 7 for
the internal modes obtained by letting Eqs. (2.32)
and (2,.33) go to that limit, we obtain

HNe’bel sinkpb
int >0 2n(ghw)® (2n,+1) *

(2.62)

0o = (2. 63)

(2.64)

g

Since krb depends little on ¢, o, in this limit is
clearly proportional to €2. This remains essenti-
ally true when %Zw is not assumed small compared
to €.

Consider now the thermopower for the case of
elastic scattering. When @, given by Eq. (2.56),
is expressed in terms of K,, we obtain

Q=(eT)" (K,/K,~€zp). (2.65)

Using (2.59) for K, we obtain a useful general ex-
pression for @, valid to lowest order in ks T/€y,

_m BT (dlno(e))
=73 "¢ de /e, (2.66)
With Eq. (2.54) inserted for o(€), @ becomes
_wzkgT<1 d , ., 1ar
Q=5 5 7 WP+ T 42 . (2.67)

When v and p are expressed in terms of €, we ob-
tain for the first term

€ —2€5

1
(vp de ac p)>€F‘ 2 € (€ -€p) °

For 1p acoustic-mode scattering, with 7 given by
Eq. (2.38), where the energy dependence is clearly
displayed, we find

[71:(%>LF ) (vlp e p))

(2.68)

(2.69)
€F
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Thus the term in d7/de makes precisely the same
contribution to @ for this case as the first term,
the so-called “band” term, giving

kT 1-2¢./€,
(ep/€)1 - €zp/€)) *

Since €;/€, is determined by the charge transfer,
which does not vary a great deal with temperature,
Q for this case depends essentially on T and ",
It is easily seen that this expression for @ still
holds when there is scattering by more than one
type of acoustic phonon. Also, it is valid for the
case of internal phonon scattering in the limit
7Zw-0, It will be seen, however, when we discuss
the results of numerical integration for @, that
when Zw is not assumed vanishingly small, the in-
ternal modes may make quite a different contribu-
tion to Q.

The case of one-libron scattering is an interest-
ing one. Here T is given by Eq. (2.39), where it is
seen that its energy dependence is given by

(2.70)

Q=L Lo
3 e g

that for the translon case, just canceling the band
term and giving @,;=0. In other words, if there
were only one-libron scattering present @ would
vanish because o(€) is independent of € for this
case. Comparing the 7’s for the 1f and 1] cases,
Egs. (2.34) and (2.39), respectively, we see that
what makes the 1¢ case different from this one is
the dispersion of the acoustic phonons; Worp isa
function of € for the acoustic phonons but for the
librons it is not because we have assumed them
dispersionless. Actually, the libron branches can
be expected to have some dispersion so @,, may be
finite though small.

We can also get an estimate of @ for the two-
libron case by inserting Eq. (2.45) in the expres-
sion (2.67) for @. This leads to

B 2 Ry 1 d
sz‘Qu—T—e‘kBT<m)—7€-Fz(kb)>e ’
F

(sinkzb)™", which is proportional to [e(e, — €)] 772, (2.71)
The resulting [(1/7)d7/d€] ¢ is the negative of where @, is given by Eq. (2.70) and
]
( 1 —d—(F,(kb)) ___1+2 cos’kpb +2(m .—ka)sin2ka+5c052ka ’ (2.72)
F,(kb) de . 2me, sinkpb F (kD)

F,(kb) being given by (2.46a). Again, @ increases
linearly with T, as anticipated from Eq. (2.66),
but the dependences on €, and ¢, are clearly dif-
ferent from those for the 1p cases.

III. APPLICATION TO TTF-TCNQ

Many properties of TTF-TCNQ must be known or
calculated in order to determine the transport from
the formalism of Sec, II. We consider first the de-
termination of the Fermi energy. The requirement
that the Fermi level be the same on the two types
of stacks leads to the prediction of a not inconsid-
erable change in charge transfer with temperature,
calculated in Sec. IITA. In Sec. III B we consider
briefly how the lattice vibrations for TTF-TCNQ
differ from those of the model set up in Sec. ITA.
The implications of this for ¢ due to phonon scat-
tering in TTF-TCNQ are considered in the next
section. Here the choice of the various param-
eters for numerical calculations is discussed, and
results given. This is followed by a discussion of
the results of the application of the theory to TTF-
TCNQ. Finally there is a brief section on the ex-
planation of the pressure dependence of ¢ within
the framework of this theory.

A. Determination of the charge transfer and ey

From neutron scattering experiments,'® 2%, has
been identified as 0.295p* at 7~ 60 K, correspond-

I
ing to a charge transfer p =0.59. An increase in
temperature above 60 K must, as noted earlier,
cause the Fermi level and therefore p to change
both due to the change in temperature and the re-
sulting change in volume. The latter effect has
been directly demonstrated in pressure experi-
ments.?”*?® The temperature variation of these
quantities can be calculated along the same lines
as used to calculate their variation with pressure.®
For a two-chain quasi-one-dimensional conduc-
tor the charge transfer, equal to the product of
electron (or hole) concentration and the lattice con-
stant », may be written, by transforming (2.55),

p=nb=pb = %Lofo(y)[y(l -y)]72dy, (3.1)

where y=€/€,. In the form (2.21) for f,, €5
(=yr€,) represents the distance between the Fermi
level and the band edge, the latter taken as the
bottom of the band for electron conduction and the
top for hole conduction. In the limit T -0 the in-
tegral in (3.1) can be evaluated explicitly to give

p=1-(2/m)sin™ (1 - 2y,). (3.2)

Thus, if there were no Peierls transition and p
were 0.59 at T=0, we would conclude from (3.2)
that yz =0.2 for both bands at T =0, independent
of their bandwidths. Knowing that p=0.59 at 60 K
for each of the bands,'® and assuming values for
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the two bandwidths at this temperature, one can
determine the y;’s for the two bands, y3(60) and
y5(60), respectively, by evaluating (3.1) numeri-
cally for each band. (This is conveniently done by
evaluating the integral for different y;’s until the
result p =0.59 obtained.) At 60 K both y,’s are
found to be quite close to 0.2, with very little de-
pendence on the bandwidths. The condition that
the Fermi level must be the same for the two
bands is then used to establish the relative posi-
tion of the band centers. Given the rates of change
of the bandwidths with lattice expansion, which be-
gins to be visible at 60 K, bandwidths can be cal-
culated for each T greater than 60 from

€(T) = €,(60) - (a¢, /2b) [6(T) - 5(60)] . (3.3)

The correct values of y5(T) and y3(T) must satisfy
the condition that any shift of the Fermi level on
one chain (measured from the band center) must be
accompanied by the same shift on the other chain.
In practice one calculates #b and pb from Eq. (3.1),
given the calculated bandwidths, using pairs of
9E(T) and y&(T) that keep the Fermi energies of
the two bands aligned. The correct pair of yE(T)
and y3(T) is the pair that leads to nd = pb, which
then equals p(T).

The calculations just described have been car-
ried out for TTF-TCNQ for various values of the
bandwidths and their rates of change with expan-
sion. The values of b(T) for Eq. (3.3) were taken
from x-ray measurements.?® In Fig. 3 are shown
the results for various values of 8¢, /8b and room
temperature bandwidths of 0.5 and 0.25 eV for
TCNQ and TTF, respectively. Change in ¢, of
TTF from 0.25 to 0.4 eV, however, affected the
results by only a few percent at the highest tem-
peratures and less below. Values of 3¢, /8b
(= 49¢/3p) calculated for TCNQ are in the range
0.68 (Ref. 30) to 0.6 eV/A,%! thus in between the
two larger values used for the figure. It is useful
to compare 3¢, /b also with the values deduced
from pressure measurements. With the room-

060 T T T 7T T T T T T T T
0.58
0.56
054

CHARGE TRANSFER

0.52 ; 4
0.84ev/A
050} e
0.58- J
046 . ]
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T(K)

FIG. 3. Calculated variation of charge transfer with
temperature for three different values of d€,/8b .

temperature compressibility of 0.47%/kbar (Ref.
32) and 5=3.819 A, ¢, /0b=-0.84 eV/A corre-
sponds to 8¢, /8P =0,015 eV /kbar or (1/€,)@€,/oP)
=3%/kbar for €,=0.5 eV. The expected value of
the rate of bandwidth change with pressure at 300
K based on the theoretical calculations of 8¢/9b
mentioned above, is between 2 and 3%/kbar.®’ 33

In excellent agreement with this, the observed
variation of p with P at very low temperatures,*’
where the compressibility is known to be a factor
2 smaller than at 300 K,?” has been accounted for
with (1/¢,)(3€, /9P) in the range 1% to 1.5%.°
Somewhat in disagreement is the value deduced by
Welber et al. from optical data.’* Determining the
plasma energy Zwp to be 1.2 €V by use of a Drude
model, they calculate from the shift of the reflec-
tivity with pressure that the rate of change of band-
width is less than 1%/kbar. However, the use of a
Drude model for determining wp is questionable;

it has been found, for example, that, while deu-
teron irradiation reduces the dc conductivity at

300 K by nearly a factor 2, there is no accompany-
ing change in the position or shape of the plasma
edge.®® The energy at which the dielectric constant
goes through zero has been determined by electron-
energy-loss experiments to be 0.75 eV.*® For en-
ergies in this neighborhood, up to 1 eV at least,
the shift with pressure is greater than at 1.2 eV.3*
Thus we feel that the estimate of less than 1% /kbar
(Ref. 34) is not reliable and the correct 3¢, /ab at
room temperature is ~0.,7 eV/f\, in agreement
with the calculated values. It is expected then

that the correct variation of p with T lies between
the two lower curves of Fig. 3. If a¢,/8b is some-
what smaller for TTF than TCNQ, as is suggested
by some of the theoretical calculations, it should
lie closer to the middle curve.

B. Lattice vibrations of TTF-TCNQ

With four molecules per unit cell in TTF-TCNQ
there are 24 external mode branches rather than
the six considered in the simplified model. At ¢=0
these break down into three acoustic branches and
21 optical branches.?” Both at ¢=0 and away from
it group theory allows all the optical branches to
be a mixture of translations and librations of the
individual molecules. Stated differently, the equa-
tions of motion cannot be separated into transla-
tions and librations for a molecular crystal with
such low symmetry and high unit cell complex-
ity.'2*37 The proportions of the mixture are ex-
pected to be a function of the location in the Bril-
louin zone. An example of mixing of branches is
provided by TA(a*) and TA(c*). According to neu-
tron scattering data'® these two branches appear to
cross at room temperature around 2k,. Since they
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belong to the same representation, the actual sit-
uation must be that there are two mixed branches
formed which repel each other, As additional evi-
dence for this, perhaps, one of these two branches
shows a somewhat unusual dispersion. The LA
branch, on the other hand, shows the expected dis-
persion [see Eq. (2.35)] and it appears reasonable
to assume that it is not much affected by mixing.
Little information is available on the external op-
tical branches from neutron scattering, although
one, with considerable dispersion, has recently
been seen.*® However, low temperature far-infra-
red absorption based on a bolometric technique
has provided some additional information.?® In
particular, it is found that the ¢ librons, corre-
sponding to rotation about the long axis of the mol-
ecule, are strongly mixed with translations and
have frequencies ranging from 122 to 179 K, much
higher than earlier estimates of the libron frequen-
cies.

Although mixing can in principle occur between
internal modes and external modes of comparable
frequency, the frequencies of most of the internal
modes for the TTF and TCNQ molecules are so
high that this effect is in all likelihood negligible.
In any case, no evidence for mixing of the totally
symmetric @, modes was found in Ref. 39, although
the lowest lying a, mode of TTF was found strongly
mixed. We therefore use for the g, modes the mea-
sured molecular frequencies, given in Table I.

C. Calculated o and Q for TTF-TCNQ

The mixing of the TA(c*) and TA(a*) branches,
and the facts that the libron branches are very un-
likely to have the symmetry assumed in Sec, II

TABLE I. Frequencies and coupling constants for in-
ternal phonons.

TCNQ TTF
Tw? Taw?
() g° (K) I's
213 1.54 353 0.16
485 0.70 684 1.33
882 0.20 1059 0.49
1043 0.24 1574 0.16
1407 0.20 2184 0.62
1721 0.22 2238 0.23
2002 0.20 4436 0.03
2324 0.49
3174 0.13
4392 ~0

2N. O. Lipari, M. J. Rice, C. B. Duke, R. Bozio,
A. Girlando, and C. Pecile Int. J. Quantum Chem.
Symp. 11, 583 (1977).

by, J. Rice, L. Pietronero, and P. Briiesch, Solid
State Commun. 21, 757 (1977).

and are in general mixtures of translations and
rotations, combine to blur the distinctions between
branches so far as the possibility of 1p or 2p pro-
cesses is concerned. Thus 1p scattering should
be possible from most, if not all, branches. This
probably does not result in a large increase in 1p
scattering over what might have been expected with
the simplified model, since the mixing of branches
produces also a mixing of the derivatives 8¢, /3 u,,
8¢, /96,, ete., i.e., the deformation potentials. It
does make it more difficult, however, to calculate
or otherwise determine these quantities, particu-
larly so in the absence of detailed knowledge about
much of the lattice-mode spectrum.

For the LA branch, if we neglect possible mix-
ing, since the dispersion obeys (2.35), and con-
tribution of the internal modes, the required de-
formation potential is (8¢/8u,),. Band-structure
calculations, as noted in Sec. IIIA, have produced
values for (8¢/0u,), of =0.17 eV/A (Ref. 30) and
-0.15 eV/A (Ref. 31) for TCNQ. Also, as dis-
cussed in IIT A, the observed low-temperature
variation of charge transfer with pressure is in
good agreement with these values. We therefore
took the deformation potential constant for the LA
branch to be 0.2 eV/A. Since not much is known
about deformation potentials for the TA(c*) mode
and all the other external modes that contribute
to 1p scattering, these were all lumped together,
with a deformation potential denoted (81 /0 g4,
that was treated as aparameter in the calculations.
For the internal modes the frequencies and cou-
pling constants were those listed in Table I.

The bandwidth for TCNQ was taken as 0.5 eV or
6000 K, a value which is generally agreed to be in
accord with experiment, Although the TTF band-
width is thought to be smaller, there is no agree-
ment on its value., It was therefore taken to be a
parameter in the calculations, with values ranging
from 3000 to 4500 K.

As indicated in the Introduction the volume de-
pendence of ¢ is quite large in TTF-TCNQ. Al-
though the volume dependence of some of the quan-
tities that enter into ¢ is known, it is unknown for
some of the others. The calculations were done
therefore for constant volume. ¢ was evaluated
numerically from Eqgs. (2.53) and (2.54) and @ from
Eq. (2.56). Inserted for T was the reciprocal of the
sum of the reciprocals of the individual 7’s includ-
ed. For the 1f processes 7 was taken from Eq.
(2.36). The quantity w, was taken as 8.6 MeV for
LA phonons, 5.5 MeV for TA(c*) phonons.’ Equi-
partition was not assumed for any of the modes.
The energy 7wy, for LA phonons was taken as 85
K, for TA(c*) phonons 57 K."*!* The remaining
numerical values required, as well as those al-
ready specified, are listed in Table II. When 2p
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TABLE II. Values used for calculations on TTF-TCNQ.

(0¢/8u)a —0.20 eV/A M 204 amu

By (LA) 85 K b 3.819x1078 cm

Tiwy (TA) 57K n 8.79% 10'3/cm?

7wy (LA) 8.6 meV €(TTF) 3000—4500 K

wy(TA) 55meV  §(TCNQ) 6000K

(0t/ bug) 0.24 eV/A  (3t/Bu ) —0.20 eV/A
(case I) (case II)

processes were included, since neither the de-
formation potential nor Iw? are known, these were
lumped together with F,(kzb) and treated as a pa-
rameter.

A set of results (case I) including only 1p pro-
cesses is shown in Fig. 4. The deformation poten-
tial constants were assumed to be the same for
TTF as for TCNQ, and €,(TTF) was taken as 3000
K. To achieve a value of ¢ at 300 K in the range
800 (Ref. 40) to 900 ohm™ cm™ with the values of
the other parameters chosen required (8¢ /8ux)
=-0.24 eV/A. Since this is of the same order of
magnitude as (3¢/3u,), it appears to be a reason-
able value. If the TA(c*) motion were as described
in Fig. 1 and Sec. IIA, it would have a sizable
longitudinal component of motion due to the tilt of
the molecules. This in itself would make its de-
formation potential of the order of that for the LA

/z(lO4 ohm cm)

0 4080 120 0 200 240 280
T(K)

FIG. 4. Calculated resistivity at constant volume p,
including only 1p processes (case I) with the parameters
of Tables I and II, and breakdown into external- and in-
ternal-mode scattering.

vibration. In addition, this motion causes a change
in registry of adjacent molecules which should have
a comparable effect on the transfer integral. Thus
it is clearly expected that the pure TA(c*) motion
have a deformation potential comparable to that of
LA, With the mixing of different motions, the
scattering effect may be spread out over different
branches, as discussed, but the net effect should
still be comparable. In addition, some 1/ scatter-
ing effect should add in here also. Thus the finding
that (8¢ /5u,4) is comparable to (8¢/3u,) gives sup-
port to the idea that 1p processes account for most
of the resistivity in this temperature range.

As expected, p due to the external modes varies
linearly with T except for the lowest temperatures
where departure from equipartition, for the LA
phonons primarily, is not totally negligible. The
variation of n, with temperature accounts, of
course, for the strong temperature dependence
of p,.,. The total resistivity p, varies quasilin-
early with 7, the variation being close to linear
at high temperatures and getting steeper at low
temperatures, qualitatively in agreement with the
deductions of Friend et al.'® and Cooper.® If p, is
characterized as proportional to T>‘, the average
A for the case of Fig. 4 is 1,23, while that of
Friend ef al. is 1.29. However, they have under-
estimated the value of A since they assumed that p
is affected only by b-axis length changes, whereas
it is almost as much affected by changes in the
transverse dimensions.*’ A larger value of A could
be obtained by incorporating higher energy phonons,
such as the mixed ¢ branch librons® mentioned in
Sec. IIIB, or by introducing 2p scattering. The re-
sults of a calculation doing the latter will be de-
scribed shortly, after a discussion of the separate
contributions of the TTF and TCNQ chains.

In Fig. 5 is shown the breakdown of ¢, of Fig. 4
into the contributions of TTF and TCNQ. It is
seen that, although the ratio varies somewhat with
temperature, (0o/0z)>4 over the entire range, It
increases at the higher temperatures because of
the strong coupling of TTF to the internal mode at
683 K. The factor 4 ratio is due to the factor 2
ratio assumed in the bandwidths, since o x€Z,
That o is considerably less than o4 is deduced
from two types of data: (1) The Hall constant R
over a wide temperature range is close to what
one would expect if only the TCNQ chain were con-
ducting®; (2) the thermopower at room temper-
ature has a relatively large negative value and
decreases linearly with T.*®* Of course, a ratio
(oQ/cF)E4 could result instead from the deforma-
tion potentials for TTF being twice as large as for
TCNQ. It has been found, in fact, that both ¢ and
Q can be fit equally well with €,(TTF)=4500, for
example, instead of 3000, with correspondingly
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FIG. 5. Separate contributions to o at constant volume
of the TTF and TCNQ chains for the calculation with
1p processes only (case I).

larger values of the deformation potentials. How-
ever, such theoretical estimates as there are have
the deformation potential constants smaller for
TTF than TCNQ rather than larger, lending sup-
port to the smaller values of €,(TTF). Additional
support comes from other sources, such as the
magnitude of the susceptibility, x. If x is not con-
siderably enhanced by the effect of large U, which
is the likely situation according to the discussion
in the Introduction, the smaller €, helps to account
for its magnitude.** Theonly disagreement with an
€, of 3000 K for TTF comes from the decomposi-
tion of EPR data,*® which suggests that €, of TTF
is quite close to €, of TCNQ. There are, however,
serious questions as to the accuracy of the de-
composition; these are discussed elsewhere,*®

It is of interest to determine the scattering times
and mean free paths to which the ¢’s of Fig. 5 cor-
respond. With the room temperature transfer taken
as 0.50, on the basis of the discussion in Sec. IIIA,
the calculated mobilities for TCNQ and TTF at
300 K are 4 cm?/V sec and 1 cm?/V sec, respec-
tively. A bandwidth of 0.5 eV for TCNQ then leads,
with the use of Eq. (2.60), to 7(ez)=5X107"° sec
and, with v =1,2X10" cm/sec, a mean free path [
at 300 K of 1.6 lattice constants. It is interesting
to note that the effective mass at €, is twice the
free-electron mass. For TTF at 300 K with ¢,
=0.25 eV, 7 is half as large, v, half as large, and
! a quarter as large, or ~ one-half a lattice con-
stant. Certainly the use of simple first-order
perturbation theory to calculate ¢ is not well just-
ified for TTF at 300 K. Also, there are the com-
plications of level shifts and the resultant band

distortions produced by the self energy®® which are
expected to be significant for TTF at 300 K be-
cause of the small bandwidth. However, with de-
creasing temperature T and I grow as T23, the
bandwidth increases, decreasing the effect of U,
and the self-energy effects decrease, so the justi-
fication for using the golden rule exists at lower
temperatures. In that sense, use of the foregoing
theory at room temperature constitutes an extra-
polation, but one that can hardly cause much error
in the calculated ¢ since o is considerably smal-
ler than oy,.

It is worthwhile to estimate the maximum amount
that 2p scattering processes could contribute at
room temperature. This will also serve to sum-
marize a good deal of the preceding discussion of
results. The estimate willbe confined tothe TCNQ
chain since that accounts for most of the conduc-
tivity. Also, instead of working with the total o,
we shall, in the interest of greater insight, cal-
culate u for each scattering process separately
(from o for that process divided by pdle/b) and
combine the reciprocals of the separate (’s to ob-
tain a total p. For the internal modes, numerical
calculation gives i, =15 cm?/V sec. Since the
observed L=4 cm?/V sec for TCNQ, the internal
modes contribute ~% of the resistivity. For the
LA and TA modes p may be calculated from Eq.
(2.61). With (8¢ /ou),, = -0.2 eV/A and the other
parameters as given in Table II we obtain ;=20
cm?/V sec. The smallest value of (8¢/5u);, that
can fit the pressure data, according to the discus-
sion of Sec. IMIA, is -0.15 eV /A [corresponding to
(1/¢,) (3¢, /8b)~2%/kbar]. For this value i, , =35
cm?/V sec. A minimum value of the deformation
potential for the TA(c*) vibration may be obtained
by assuming that only that component of the mo-
tion contributes that decreases the distance be-
tween adjacent molecules. This gives (8 /o0u);ycx,
= (0t /ou),, (tan34°), 34° being the tilt angle. The
effect on o,; of the smaller deformation potential
is just cancelled by the effect of the lower frequen-
cy of the TA vibrations, with the result that i, .x,
calculated with this low value of deformation po-
tential equals y,,. If these u’s are taken as 20
cm?/V sec, corresponding to the higher deforma-
tion potential for LA modes, combination with y;,,
leads to =6 cm?/V sec for all three. Comparison
with the observed u of 4 cm?/V sec leads to the
conclusion that 3 of the scattering is still unac-
counted for. For the low value of the LA defor-
mation potential the combined u would be 8 cm?/

V sec, according to which 3 of the scattering is
still unaccounted for. We have, however, certain-
ly underestimated the TA(c*) scattering and com-
pletely neglected 17 scattering, including what
comes from the mixing of the libron branches with
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translations, as found for the ¢ librons. Thus the
part that is unaccounted for and might be due to 2p
processes is certainly less than 3. According to
our present knowledge, there is no property that
requires that there be any 2p scattering at 300 K;
it could be negligible.

To show, nevertheless, what the effects are on
o and @ of incorporating some 2p external-mode
scattering we have included some typical calcula-
tions (case II), shown in Fig. 6. The amount of 2p
scattering was chosen (arbitrarily) to contribute
~% of the total resistivity. To account for the re-
mainder of the resistivity by 1p scattering was
found to require the parameter (8¢/8u,4)=—0.20
eV/A, coincidentally the same as the deforma-
tion potential for LA scattering. This equality
still leaves the TA(c*) scattering predominant,
however, since the lower TA phonon frequency
means there are more of these phonons to scatter.
As in the case of Fig. 4, p, is fairly close to lin-
ear at high temperatures but gets steeper with de-
creasing T. On the average p,<T"* of this case.
The individual ¢’s, shown in Fig. 7, are little
changed except for varying somewhat more steeply
with T, '

The results for the thermopower calculated from

p(15% ohm cm)

1 1 1 L 1 1 1
0 40 80 120 160 200 240
T(K)

1 1

1
280

FIG. 6. Calculated p, versus temperature with 1p
and 2p scattering (case II), the latter chosen arbitrarily
to contribute ~% of p, , for the parameters of Tables I
and II. The lower curves give the breakdown into the

different scattering processes.
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FIG. 7. Separate contributions to o at constant vol-
ume of the TTF and TCNQ chains for the calculation
with 1p and 2p processes (case II).

Egs. (2.56) and (2.57) with the parameters of casel
are shown in Fig. 8. Almost identical results are
obtained for case II, at least in the approximation
that F,(kpb) defined in Eq. (2.46) is taken constant.
None of the scattering has been assigned to 17
processes which, as noted earlier, make a differ-
ent and probably smaller contribution to @ from
the 1¢ processes since their dispersion is differ-
ent, The curve shown is for €,(TTF)=3000 but,
as indicated earlier, an almost identical curve can
be obtained for €,(TTF)=4500 if the deformation
potentials are adjusted upward suitably.

It is of interest to consider the contribution to
Q@ of the two chains. Since the 1f scattering con-
tribution to @ is predominant according to our
model, @ for the individual chains should be given
fairly well by Eq. (2.70). This should certainly be
the case at 100 K, for example, where the small

THERMOPOWER ( 1LV/K)

1 L i 1
58 100 150 200 250 300
T(K)

-320

FIG. 8. Measured thermopower (solid line, taken
from Ref. 43) and calculated thermopower (parameters
of case I) versus temperature.
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degree of excitation of the internal modes makes
their scattering relatively unimportant. At 100 K
@ calculated from (2.70) for TCNQ, with €,=0.5
eV, (ep/€,)=0.2, is —17.5 pV/K, while @ cal-
culated including the internal modes is -15 pV/K.
Similarly for TTF, with €,=0.25 eV, @ calculated
from (2.70) is +35 wV /K while the value including
internal modes is +29 uV/K. At 300 K this close
similarity continues to hold for TCNQ, the two
values being -53 and -48 uV/K, respectively. It
does not hold as well for TTF, however, where
the corresponding values are +106 and +61 pV/K,
respectively. The difference stems from the fact
that the internal modes that interact most strongly
with TCNQ have low enough energy that they are
close to satisfying equipartition at 300 K, while
this is not true for TTF, as indicated earlier.

It is reasonable that @ should be considerably
less dependent on pressure or volume than ¢. The
individual @’s depend on volume only through €,
and €,/€,, neither of which is strongly V depen-
dent. The ¢’s, which are more V dependent, ac-
cording to the pressure experiments, occur in
numerator and denominator so that a major por-
tion of the V dependence should cancel out. It is
therefore not entirely unreasonable to compare the
calculated @ vs T with @ vs T measured at ambi-
ent pressure, As can be seen in Fig. 8, the agree-
ment is not bad. It could have been improved, un-
doubtedly, by further adjustments in parameters
but that would not prove anything more.

D. Calculated o and Q for TSeF-TCNQ

Similar calculations were carried out for TSeF-
TCNQ, which has.the same lattice structure as
TTF-TCNQ and somewhat larger conductivity.*’
So far as transport is concerned, the big differ-
ence between TTF- and TSeF-TCNQ is that, in
the temperature range we are concerned with, @
for the latter is small and positive.*® It rises
gradually from 3 to 4 £V/K as the temperature
decreases from 300 to 120 K and then a little more
rapidly to a peak of 7 to 8 uV/K before dropping
precipitously at ~40 K, close to the Peierls tran-
sition.*® Since the lattice constant along the stack-
ing direction is slightly larger than that for TTF-
TCNQ, it is expected that €, for the TCNQ chain
in TSeF-TCNQ is slightly smaller; it was taken
rather arbitrarily as 5640 K. From a number of
kinds of data,***¢ ¢, for TSeF is expected to be
substantially larger than €, for TTF, If the ratio
of TSeF to TCNQ bandwidths is chosen as it was
by Etemad et al.,*® €, of TSeF comes out ~6000 K.
Calculations were done for this value as well as
7000 K. The frequencies w,,, were taken the same
for TSeF-TCNQ as for TTF-TCNQ since the effect
of the larger mass of Se is offset by the charge

transfer being larger in TSeF-TCNQ, 0.63 vs 0.59.
It has been estimated that, due to the larger mass,
the frequencies for the internal modes should be
~10% smaller for TSeF than TTF, but the effect of
these modes is small enough overall so that the
correction was not considered worth making.
Unfortunately there is no good estimate for the
/intrinsic conductivity of TSeF-TCNQ. Since val-
ues of ~800 ohm™ cm™ have been measured, that
is a lower limit. Extensive efforts to obtain purer,
more perfect crystals have not been made for this
material as for TTF-TCNQ. If the deformation
potential constants for both chains were to have
the values listed in Table II, an increase in €, of
the donor chain from 3000 to 6000 K would in-
crease its contribution to ¢ by a factor 4. Since,
as seen earlier, TTF provided only % of the con-
ductivity of TTF-TCNQ, this increase in the donor
chain contribution would make o of TSeF-TCNQ
1.5 times ¢ of TTF-TCNQ (allowing for a 10% de-
crease due to the decrease in TCNQ bandwidth).
The intrinsic ¢ of TSeF-TCNQ would then be ~1200
ohm™ em™. It will not be that high, however, if,
as argued by Schultz,% the deformation potential
for acoustic modes is larger for TSeF than TTF.
With an uncertainty of perhaps a factor 1.5 in
the intrinsic o, the detailed numerical values ob-
tained to fit a given o are not particularly signifi-
cant. As for the case of TTF-TCNQ there is no
problem in fitting o for any value in the range that
the intrinsic value must lie in, with reasonable
parameters, and the resulting resistivity is quasi-
linear in T, as was found experimentally also for
TSeF-TCNQ.%' One useful conclusion does emerge
from this exercise, however. Whatever the value
of ¢, for bandwidths of 6000 and 5640 K it is pos-
sible to obtain @ small and positive, varying little
with temperature above the Peierls transition
temperature, provided the deformation potential
constants are chosen smaller for TSeF than for
TCNQ. If they are actually larger, then the band-
width of TSeF must be substantially larger than
that of TCNQ, i.e., the ratio must be greater than
6000: 5640, A larger bandwidth for TSeF is con-
sistent with the low value of magnetic susceptibil-
ity at room temperature, ~% that of TTF-TCNQ.%

E. Pressure dependence

We consider in this section how to account for
the strong pressure dependence of ¢ in these ma-
terials, 25—-28%kbar for TTF-TCNQ,* ~18%/kbar
for TSeF-TCNQ," at 300 K. One quantity that
clearly gives rise to pressure dependence is the
bandwidth, which may be taken to vary 2.5%/kbar
according to the discussion of Sec. IITA. With o
having been shown proportional to €2 for all the
processes we consider, this leads to an increase
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in ¢ of 5% /kbar. External phonon frequencies
vary considerably with pressure in organic crys-
tals, typically 4% to 6%/kbar in anthracene,
naphthalene,® and pyrene,® with the larger per-
centage applying to the lower frequencies. It has
been argued that TTF-TCNQ should not be com-
pared to these materials because of the charge
transfer and its metallic nature. However, the
elastic and anharmonic properties exhibited by
TTF-TCNQ are entirely usual for a molecular
crystal, Its compressibility and expansivity,

and their anisotropies, are quite comparable to
those of anthracene, naphthalene, and pyrene.®’
Further, according to neutron scattering data,™
for g~2k,, w of the TA(a*) phonon increases by
~20% as T decreases from 295 to 84 K, With the
known compressibility, this temperature decrease
is equivalent to ~5 kbars of pressure. Thus w for
TA(a*) increases ~4%/kbar and it is reasonable
to expect such behavior at room temperature for
other external modes with comparable frequencies.
For 1p scattering, where o < w?, this gives an in-
crease of ~8%/kbar, while for 2p scattering, with
o < w?, there would be an increase of ~16%/kbar,
Additional small contributions from the charge
transfer, b, and internal-mode frequencies add
up to a few % /kbar. Thus one can account quite
well for the full 18%/kbar observed for TSeF-
TCNQ with perhaps a small amount of 2p scatter-
ing. The origin of the additional 7% to 10% ob-
served for TTF-TCNQ is not clear. Possibly
there is a greater percentage of 2p processes in
TTF-TCNQ, although this is quite unlikely to ac-
count for all of the difference. Some of the differ-
ence could well arise from the smaller bandwidth
of TTF. Evidence that pressure decreases the
ratio oy /0 comes from the rapid decrease of
the Hall constant under pressure*? as well as the
decrease of 1Q| under pressure.® Note that for the
same value of 9¢, /du the percentage changes in
€,(TTF) and oy are larger because €,(TTF)
<€,(TCNQ). One may speculate that the increase
in €, of TTF under pressure has an enhanced ef-
fect on its contribution to ¢ due to increasing co-
herence of transport on this chain, or due to de-
crease in the effect of U, which, as mentioned
earlier, may not be negligible in such a narrow
band.

IV. TWO-LIBRON THEORY

As discussed earlier, of the theories that have
been advanced to account for transport in TTF-
TCNQ at temperatures well above the Peierls tran-
sition, the only one still a serious contender be-
side the theory presented in this paper is the two-
libron theory. That theory is similar to the pres-

ent one in being based on band transport of weakly
interacting electrons that are scattered by phonons.
The major difference is that the only scattering
process considered effective is two-phonon scat-
tering, whereas in the theory of this paper one-
phonon scattering is taken to be predominant.

The two-libron theory first appeared before it
was appreciated that the T2 dependence of p is
in large part due to volume expansion rather than
“intrinsic” T dependence arising from the scat-
tering mechanism. Assuming that the librational
motion takes place about inertial axes, as was
illustrated in Fig. 1, and recognizing that the ma-
trix elements for 1p processes would vanish for
the nn and ¢ rotations, the proponents of this the-
ory postulated that the scattering was due to one
or other of these branches. When it was subse-
quently pointed out that the resistivity at constant
volume is quasilinear,®’® the two-libron theory
adherents took the position that, since p,; < T?/w?,
a substantial increase in w at constant volume oc-
curs to cancel out the excess T dependence of p,; .
This was backed up with a calculation of w based
on the assumption that it is determined by a force
constant derived from a Lennard-Jones potential
with a single intermolecular distance parameter.®®
From this calculation they concluded® that for T
rising from 60 to 300 X, w would increase 20% at
constant volume, while it decreases 25% at am-
bient pressure. The net change in w thenas T
goes from 60 to 300 K would be a decrease of 5%.%
This is in disagreement with the finding, mentioned
in Sec. III, that w for the TA(e*) mode decreases
~20%. Further, it is in disagreement with the be-
havior of anthracene, naphthalene, and pyrene,
for which the change in w at constant volume is
much less than that at constant pressure.”” To
counter the latter argument, Weger et al. (WGK),®
agreeing that TTF-TCNQ should be compared with
these organics, claimed that the comparison
should be made at 10-12 kbar of pressure, where
the compressibility of TTF-TCNQ matches that of
anthracene and naphthalene. This argument is
totally unconvincing. The measured ratio of ex-
pansivity to compressibility for TTF-TCNQ equals
that for pyrene at ambient pressuve.” Thus it
would be even more appropriate to compare TTF-
TCNQ with pyrene at ambient, which, as noted
above, shows a much smaller change in w with T
at constant volume than is required to account for
the quasilinear p, .

As has been demonstrated in the body of this
paper, scattering by 1p processes can account
for ¢ for ~100<T<300 K with quite reasonable
values of the deformation potentials and other
parameters. It is therefore necessary for the
two-libron theory adherents to explain how 1p
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processes can be ineffective in scattering. In
earlier work,®® they postulated that this is the
case because the interaction between carriers
and 2%k phonons is so strong that momentum lost
by carriers to these phonons is returned to the
carriers before it can be dissipated in phonon-
phonon scattering. More recently,® for 7>150 K
they hypothesize that the relative ineffectiveness
of 1p processes is due to their weaker coupling to
the carriers. They estimate that at 300 Kthe scat-
tering frequency for a 1p process is 3X10'/sec
while that for a 2p process is 3X10'%/sec.®® The
scattering times, which are the reciprocals of
these frequencies,. are then 3X107*° and 3X107¢
sec, respectively. Insertion of the latter time in-
to the Uncertainty Principle gives an uncertainty
in energy of 2 eV, several times the bandwidth;
this estimate for the 2p scattering rate is clearly
much too large. The estimated 1p scattering time,
on the other hand, is in good agreement with the
value obtained in Sec. III C. It thus helps support
the thesis that 1p scattering is predominant, rather
than the reverse.

Finally, the ¢ librons, as noted earlier, have
been found to have much higher frequencies, in
the range 85-125 cm™, than the 40-70 cm™ ex-
pected.®®: % This would greatly decrease their
scattering effect in 2p processes, where o < w?,

V. SUMMARY AND CONCLUSIONS

Based on a simplified model in which one type of
molecular motion—a translation or a rotation—is
associated with each external branch, scattering
rates for one- and two-phonon processes have been
determined for electrons ina quasi-one-dimension-
al tight-binding band. A relaxation time 7() is
shown to exist for scattering by one translon, one
libron, or one internal-mode phonon. For elastic
scattering 7(k) involves simply the rate of scatter-
ing out of 2, but for inelastic scattering, in the de-
generate case, there is also a factor arising from
the Pauli Principle. For internal modes the ma-
trix element is independent of carrier energy,
leading to 7 inversely proportional to the density
of final states. This latter factor causes 7 for
both emission and absorption to be a strongly vary-
ing function, going to zero at the energies for
which a 1p process will take an electron to a band-
edge state. For the 1f and 1/ cases the electronic
part | g|? of the square of the matrix element is
proportional to v%/ Wy the latter factor coming
from the amplitude of oscillation of the molecules.
Phonon abundance (i.e., #, or #,+1) under equi-
partition contributes another factor of 1/ War,, to
the matrix element. For the 1# case with the usual
dispersion, Warp & Urs the matrix element is again

energy independent and the sole energy dependence
of 7,; comes from the inverse of the density of
final states. Since the translon scattering has been
assumed elastic, this means 7,; <v; and goes to
zero only for € =0 or €=¢,. For the 1/ case, on
the other hand, dispersion is probably small and
w,, does not cancel out the € dependence of vy, If
the dispersion is neglected, 7., v or, in other
words, there is a constant mean free path for 1/
scattering. For the elastic scattering 1p cases
the expressions for ¢ and @, obtained from the
solution of the Boltzmann equation, can be inte-
grated explicitly. It is found that ¢ is proportion-
al to €}, as it is also for the internal-mode case,
and to w3, - It is inversely proportional to the
square of the appropriate deformation potential
and also to T. For the 2] case o < w?e2/T? and

' depends also on kb in a complicated way. As in

the three-dimensional case, @ is found propor-
tional to a sum of energy derivatives of log(v?p)
(band term) and logr. The two terms are equal
and add in the 1¢ case, but subtract in the dis-
persionless 17 case, leaving @ =0 for that case.
In the former case @ depends only on T/ €, and
€x/€,. :

In TTF-TCNQ, as distinguished from the simp-
lified model, it is not possible (except perhaps for
high symmetry points of the Brillouin zone) to
associate any particular external branch of the
lattice vibration spectrum with either translations
or rotations, much less with translations or ro-
tations associated with a particular axis. As a
consequence it is not possible to say definitely that
any particular branch gives rise to only 1p or 2p
processes. In fact the TA(a*) and TA(c*) branches
appear to be mixed, which means that both would
give rise to both processes. On the assumption
that mixing effects are not important for the LA
branch, which does show the expected dispersion,
its deformation potential was taken as that obtained
from band-structure calculations and some exper-
iments. It is then possible, given the intrinsic
resistivity, to determine the deformation potential
for 1p scattering from all other branches lumped
together. The latter deformation potential is
found to be of the order of that taken for LA, 0,2
eV/A. That and the observed quasilinear tem-
perature dependence of p, give strong support to
the thesis that 1p scattering can account for most
of the resistivity of TTF-TCNQ in the range 100
or 150 to 300 K. Using the minimum values of
deformation potentials for LA and TA modes con-
sistent with pressure experiments I conclude that
these modes plus the internal modes account for at
least  the scattering at 300 K. To fitthermopower
as well as conductivity requires opcyg = 40prp. With
deformation potentials taken the same for the two
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chains this requires a 2:1 ratio of bandwidths.

To get a smaller ratio of bandwidths would require
larger deformation potentials for TTF than TCNQ,
whereas such evidence as there is points to the
reverse., With such a small ¢ for TTF, the use of
simple perturbation theory is not well justified at
room temperature, but the justification improves
with decreasing temperature.

Conductivity and thermopower of TSeF-TCNQ
can be fitted with similar deformation potentials.
It is noteworthy that, to obtain the observed small
and positive @, if coupling to acoustic modes is
larger for TSeF than for TTF, as has been sug-
gested by Schultz, the bandwidth of TSeF must be
more than twice that of TTF. This could help
explain the small susceptibility observed for TSeF-
TCNQ. The pressure dependence of the conduc-

tivity of TSeF-TCNQ is well accounted for by
changes in bandwidth and in the frequencies of the
external modes, plus some smaller effects. The
larger pressure dependence observed for TTF-
TCNQ, it is suggested, is attributable to changes
associated with the very narrow TTF band.
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