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By solving the Christoffel equations, general closed-form expressions are obtained for the phase and group
velocities and displacement eigenvectors of arbitrarily directed acoustic waves in elastically anisotropic solids. The
relationship of these general results to expressions that hold in symmetry directions is shown, and applications to
phonon focusing and the determination of acoustic axes and extrema of the phase velocity are discussed. Methods
for extracting the elastic constants and orientation of a crystal from measured sound velocities are outlined.

I. INTRODUCTION

The propagation of acoustic waves in elastically
anisotropic solids is governed by a set of three
linear equations known as the Christoffel equa-
tions. The characteristic equation relates the
velocity v, the direction of the wave, and the
elastic constants of the medium, and is cubic in
v%. These equations occupy a pre-eminent posi-
tion in the field of crystal acoustics, and their
solution is required for a wide variety of purposes
from ultrasonic and light-scattering experiments
to calculations on phonon focusing and other ther-
modynamic effects.

Considerable simplification to the equations
comes about when the wave normal lies along a
crystal symmetry direction. In general, the
secular equation for these directions factors into
a term which is linear in v? and one which is
quadratic, Simple expressions for the velocities
thus result, and in many cases these are easily
reversed to obtain the elastic constants from
measured velocities. This aspect of the problem
is dealt with briefly in Kittel’s “Introduction to
Solid -State Physics,”! and, even in specialist
monographs on crystal acoustics,“'4 there is a
heavy emphasis on the symmetry directions.
However, there are many situations in which the
solution of the characteristic equation is required
for arbitrary crystallographic directions. Al-
though a number of general relationships between
the phase and group velocities and displacement
eigenvectors have been uncovered, it has been the
practice in the past to leave the ‘solution of the
characteristic equation for arbitrary directions
to numerical® or appro;‘{imationa,l6 methods. The
hexagonal system is a special case, since its
characteristic equation can always be factored,’
and the solution for the cubic system has recently
been discussed by this author.?

The general method of solution presented here,
which yields closed-form expressions for the
phase velocity and related quantities, has many
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advantages both from a computational point of
view and also because of the perspective on acous-
tic anisotropy that it provides. Some of the areas
of current interest where this method could be of
immediate use are ballistic heat-pulse prop-
agation®!? and other phonon-focusing effects,!!
relaxation of paramagnetic“ and paraelectric
centers,'® charge-density waves,' vibrational
effects on x rays,!® second sound,'® Akhiezer
damping of sound waves,!” and the measurement

of elastic constants using nonaligned crystals.!®

In fact, there are potential applications in virtually
any effect connected with long-wavelength phonons
or acoustic waves in crystals.

The main thrust of this paper hinges around
three invariants 7, G, and H of the Christoffel
matrix. In Sec. II the equations of motion are
briefly reviewed and the implicit relationship
between the velocity and these three invariants
is established. The role crystal symmetry plays
in shaping the precise form of 7', G, and H is
discussed here and in more detail in the Appendix.
In Sec. III the trigonometric method is used for
solving the characteristic equation for vz, and the
solution is discussed in the context of acoustic
anisotropy, special directions, the group velocity,
and phonon focusing. Section IV deals with the
solution of the Christoffel equations when the wave
vector lies in a symmetry direction. This aspect
of the problem has been discussed by a number of
authors, and the intentionhere is merely to present
the essential results in a simple and concise form
and show their relationship to the general solution.
Finally, in Sec. V methods are described for de-
termining the orientation and elastic constants
of crystals from velocities measured in arbitrary
crystallographic directions.

II. EQUATIONS OF MOTION

The equations of motion for elastically aniso-
tropic solids have been reviewed by a number of
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authors.?® We will confine our attention here

to ideal Hooke’s Law behavior, neglecting body
forces, body torques, dissipative processes, and
nonlinear or dispersive phenomena. A disturbance
in such a medium is represented by a set of po-

U, satisfying the conditions
(Crtsmklkm—pwzé,-s)Us=0. (2)

On dividing through by k%, Eq. (2) takes on the

sition- and time-dependent particle displacements form )
u,(x;,t) which are related by the equations (T,s —p?0,)Us=0, (3)
o%u. 0%u . .
p=F=Coma—, (1) where v =w/k is the phase velocity and T,
ot 0x,0% ,,

=C,;smN; Ny is the Christoffel matrix which de-
pends, through the wave normal n=(x;), on the
direction of k but not on its magnitude. Using the
contracted Voigt notation for the elastic con-
stants,!® the Christoffel coefficients are, in the
most general case, given by?

where p is the density of the medium and C,;;,,
are the second-order elastic constants. A plane
monochromatic wave u,=U, exp[i(k;x; — w?)] is

a solution to the above equations, subject to the
frequency w, wave vector k=(k;), and amplitudes
J

Ty =Cyyni +Ceni +Cs5m +2C55mymy +2C ;ymymy +2C gy my
Ty =Cogni +Copml +Cyymf +2C o mymy +2C ygmymy +2Cogmymy
Ty3=Cssni +Cyqmj +Cyynf +2Cy, mymy +2Cy5nymy +2C 5mymy (4)
Ty3 =Ty =Cygni +Cpynj +Cyymf +(Cay +Cyghnyny +(Cas+Cy5)mymy +(Co5 +Cyelnymy
Ty3=T3 =Cy5ni +Cygn5 +Cy5m} +(Cy6+Cyshmamy +(Cy3 +Cosdngny +(C1q +Coehnymy

Typ =Ty =Cyeni +Cognmj +C g5 +(Cos +Cyehngng +(Cyy +Ciehmgny +(Cp +Celnyny .

From the form of Eq. (3) we see that ﬁ:(Us) must
be an eigenvector of I',; and that pvz, the cor-
responding eigenvalue, is determined by the char-
acteristic equation

|T,s = pv?8,5| =0. (5)

This is a cubic equation for pv2 which, because

of the symmetry of I',; with respect to interchange
of » and s, has three real roots. The requirement
for crystal stability ensures that T',; is a positive
definite matrix and hence the three eigenvalues
are positive.

The cubic equation is converted into a more
convenient form for solution by carrying out a
linear transformation that eliminates the quadratic
term. On making the replacement

3p112:S +T, (6)
where
T=T,, )

is the trace of I', one arrives at the following
equation for S:

lArs—Sérsl =0, (8)
where
Aps= 3rrs =Td,s. (9)

The éigenvectors are unaffected by this operation.
On expanding the determinant in Eq. (8) the fol-
lowing cubic equation for S results:

]
S3—3GS -2H=0. (10)

The coefficient of the quadratic term is equal to
the trace of A, which is zero, while the other
two coefficients are given by

3G =A% + A33+ A%y — M2 Ass — AgsAry — ApiAaz s
(11)
and
2H = |A|= Mgy AsaAgs +2A12 0235 — AgiAZs
— AgeAd = AggAls . (12)

The quantities T, G, and H play a central role
in the developments that follow. They are in-
variants of the Christoffel tensor (matrix) or, more
precisely, T is the first invariant of I while - 3G
and 2H are the second and third invariants, re-
spectively, of A. This terminology refers to the
fact that the three quantities are unaltered by an
orthogonal transformation of the coordinate system
that the elastic constants and wave normal are
referred to. It is apparent from their generating
equations that T, G, and H are homogeneous func-
tions of degree 1, 2, and 3, respectively, in the
elastic constants C;; and of degree 2, 4, and 6,
respectively, in the components of n.

A. Symmetry considerations

Equation (10) has three real roots S;, Sy, and
S, which, through Eq. (6), yield the three velo-
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cities vy, v,, and v,. An important representation
for the three invariants, provided by these quan-
tities, is*

T =p(} +v; +0}) , (13)

3G = = (SySy +5:S; +555,) , (14)
and

2H =5,5,S, . (15)

Since the three velocities and hence S;, Sy, and
S, are crystal properties, they are unaltered when
any crystal symmetry operation is applied either
to the medium or to the measurement. It fol-
lows from the last three equations that, as func-
tions of the wave direction or normal H, T, G,
and H must therefore be invariant under the sym-
metry operations of a crystal. The Christoffel
coefficients T',; do not individually exhibit this
property, but in the way they are combined in
Eqgs. (7), (11), and (12), functions with the crystal
symmetry result. Inversional symmetry ispresent
in the equations of motion even for those crystals
which do not possess a center of inversion. This
is obvious from the fact that the T, are quadratic
functions of the components of n. The appropriate
crystal classification scheme is therefore by Laue
groups. The Appendix contains a fuller discussion
of the effects of crystal symmetry and the form
that A, T, G, and H take under the various Laue
groups.

B. Piezoelectric coupling

In piezoelectric media, i.e., crystals which
lack a center of inversion, there is a coupling
between the strain field and the electric field,
and as a result an acoustic wave is accompanied
by a disturbance in the electromagnetic field.
This effect can be described in terms of a piezo-
electrical stiffening of the elastic constants 220
In place of the tensor elastic constants C,;;,, in
the Christoffel equations, one uses a set of quan-
tities
€ri1pMp€smelly

Clism= CE__+
rism (%snans) ’

rlsm
where CE,,,, is the elastic-stiffness tensor at
constant electric field, ¢;;, is the piezoelectric
stress tensor, and e}, 5 is the permittivity tensor
at constant strain, These new stiffnesses are no
longer material constants since they depend on
the direction n of the wave as well. Moreover,
nonvanishing components of C,,,,, may occur even
where crystal symmetry dictates that the cor-
responding components of C%,,,, are zero. Never-
theless, one can still form the functions 7', G,
and H, which determine the velocities, and these

functions still reflect the Laue-group symmetry
and are homogeneous in the components of 1.

III. GENERAL SOLUTION
A. Phase velocities

In most calculations concerned with acoustic
waves in crystals the phase velocities play a
vital role. Once the phase velocities are known
as a function of direction, there are straight-
forward procedures for obtaining the displacement
eigenvectors, group velocities, and other quan-
tities of interest. For general directions in hexa-
gonal crystals and for symmetry directions in
other crystals the problem of calculating the phase
velocities is simplified by the fact that the char-
acteristic equation can be factored, and a number
of velocity expressions have been derived that
serve for these special cases. Waterman® has
developed perturbation formulas applicable to
near-symmetry directions, which are useful in
treating beam-divergence effects in ultrasonics.
Except for crystals of cubic and hexagonal sym-
metry, there do not appear before now to have
been any published exact analytic velocity expres-
sions that apply to arbitrary crystallographic
directions.

The practice in the past has been mainly to use
numerical methods applied to specific crystals.®
In the case of cubic crystals Orth® has developed
a Taylor-series expansion for the velocity, and
wide use has been made,” in thermodynamic cal-
culations, of finite sums of Kubic harmonics to
represent certain functions of the velocities.
Other methods of approximation have been dis-
cussed by Fedorov.*

Since the velocity equation is a cubic, its so-
lution can be expressed in terms of radicals.
There is, however, much advantage to be gained
by employing the trigonometric23 form of solution.
This has been done recently for cubic crystals
by this author,g- and we generalize the method here
to all crystals. Since the quadratic term is ab-
sent, the roots of Eq. (10) are given simply by

S;=2G""? cos(v + §mj) (i=0,1,2), (16)
where
) =%tarccos(H/G3'?), 1)

and hence from Eq. (16),
3pv =T +2GY % cos(v + 27j). (18)

Three velocities are generated as the polarization
index j takes on the values 0, 1, and 2. Equations
(17) and (18) together with the expressions for

T, G, and H given in the Appendix constitute an
exact general closed-form solution for the ve-



locity. Physical requirements, as pointed out in
the Sec. II, dictate that for any direction n there
are three positive values of »%. The three roots
of Eq. (10) are therefore all real and hence the
discriminant 108(G® - H?) is positive.?® It follows
that G is necessarily positive and |H/G*/?| <1 so
that 9 is real. For H positive 0<¢ <m/6 while
for H negative 7/6<y<m/3.

A convenient way of representing the three
velocities is shown in Fig. 1. Because of the
limits on ¢ and the fact that T and 2G'/? are
necessarily positive, v, is always the largest
velocity, v the smallest, and v, the intermediate
one. This allows the identification, as a rule,
of vy as the quasilongitudinal, v; as the slow
quasitransverse, and v, as the fast quasitrans-
verse velocities. Tellurium dioxide’ and the
pseudocrystalline material spruce wood® provide
rare exceptions to this rule. In these rare cases
the classification of modes as longitudinal or
transverse can lead to inconsistencies, but the
assignment of the velocities v;, v;, and v, in the
way described above is free of any ambiguities.
As far as symmetry planes are concerned, where
there is a crossover between a pure T and a
mixed-mode velocity curve, the label v is attached
to the mode which happens to be slowest in any
particular direction and not to the character of the
mode.

In the isotropic limit, T and 2G'/? are constants
and 3 =0 so that the three velocities are inde-
pendent of direction, and the two transverse ve-
locities are identical. For the majority of crys-
tals ¢, while depending on direction, remains
small and there is still a clear distinction between
the quasilongitudinal velocity on one hand and the
two quasitransverse velocities on the other. It is
only for exceptionally anisotropic crystals that ¢
ever exceeds 7/6. .

A direction in a crystal in which the two trans-
verse velocities are equal is defined as an acoustic
axis. Such directions are determined by the con-
dition $ =0, i.e., H/G*’?=1, A T and L mode
coincide in velocity when p=7/3, i.e., H/G%/*
= -1, The condition for degeneracy of either kind
is therefore H® =G3.

Since vi is a homogeneous function of degree 1
in the elastic constants, the solution may also be

1
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FIG. 1. “Phasor” diagram for representing the three
values of pvﬁ. The circle is centered a distance éT
along the py? axis, and has radius %G‘ 2,

written in the form

3
-é‘;—v§=T(,+2c;3”cos(w+§frj), (19)

d=%arccos(H,/G'?), (20)

where C, is any one of, or a suitable combination
of, elastic constants and Ty, G,, and H, are
homogeneous functions of degree zero in the elas-
tic constants. In this way the solution can be made
to effectively depend on one fewer elastic pa-
rameter than before. For example, drawing on
results from the Appendix, it is convenient in the
case of cubic symmetry to take Cy=C,=Cy; =C 4.
Setting C3 =K /C, we find that

C
T0=52Ln2, (21)
Go=n*=3C4(2-C,)P, (22)
and

Hy=n® = $C3(2-C,)Pr* + H-C}(3-2C;)Q.  (23)

These results show that the relative variation of
% with direction depends only on the single pa-
rameter C3=(Cy; =Cy3 —2C4)/(Cy; =C44), Which
can be used to characterize the elastic anisotropy
of a cubic crystal. At the same time, C,;/3p is
the mean-square velocity and C,/p is a measure
of the separation between the L and T squared
velocities.

B. Displacement eigenvectors

With the velocities determined, the displace-
ment eigenvectors may be found by means of Egs.
(3) and (9) and are

(24)

Up iUp U= et o =
AERIESBT S Ay ta]  S;—Aptol  S;-Agtas’
where
1/2 172 1/2
ay= (A12A13_ , Q= (.‘/!LZAZL s and az3= M
Agg Ags Ar
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Only the ratios of the components of U are de-
termined in this way. If one or more of the off-
diagonal elements of A are zero, then the a’s
cannot be defined. The most likely reason for
this happening is that § lies in a symmetry di-
rection. In this case U may be determined by the
methods described in Sec. IV.

The eigenvectors are independent of the trace
T of T',; and are unaffected by a scale change which
alters all the elastic constants in the same prop-
ortion. Thus in the case of cubic symmetry one
finds that

3 . " . "
T;-3C3n; " T;~=3Cyny T;-3Cyni’

(25)

Ujy:Up:Ugp=

where
T;=1+2G} % cos(s + 2mj) .

As can be seen from this result, the only one of
the three elastic constants that influences the
eigenvectors is the anisotropy parameter C;. This
notable property of C; is not shared by the widely
used Zener anisotropy factor’ n=2C,,/(Cy; =Cj,).

C. Ray or group velocity

The ray velocity is an important physical attri-
bute of any acoustic wave. This is the velocity at
which energy is transported in the wave and it is
required for interpreting phenomena in ultrasonics
and phonon transport, etc. Except in special
circumstances the ray velocity does not coincide
either in magnitude or in direction with the phase
velocity.

The group velocity is the velocity of the modu-
lation envelope of a wave packet composed of
waves of slightly differing values of k-and w, and
is given by

- - a(ﬂ ;

Vi=Vio ), Vie=gpt, (26)

a

while the ray velocity is obtained from the acoustic
Poynting vector. However, in the absence of
dissipation the distinction between these two ve-
locities disappears, and Eq. (26) provides a con-
venient computational route for obtaining this ve-
locity.

Using the fact that »; is a homogeneous function
of degree 1 in the components of n and that w;
=kv;, Eq. (26) is readily converted to*

dv, 1 0
m—d e i
Vie= 50" 20, om, 27
Since 3pvi =T +8;, it follows that
1 /eT . 8S, .
L= + —L].
Vla 6[)1}j <anu ana) (28)

On differentiating Eq. (16) one obtains

98, S; 3G . 26'%sin(p+ 2j)
anu 2%G anu 3(1 _G"3H2)ff2

% (G-3/2 oH sG/2y _aﬁ)
a @ nOi
o (29)
A simpler but equivalent expression for 3S;/dn,
results if implicit differentiation is used in con-

junction with the equation

QS;,ny,n9,n3) = S% = 3GS; —2H=0. (30)
By this route one obtains

3S; 3G . 2 oH

—i_ (s. e = 2 _ . i

oy (, e |3 ana)/(s, ©) (31)

The differentiation of 7', G, and H with respect
to n, is straightforward using the expressions for
these quantities provided in the Appendix.

The calculation of the group velocity is in some
cases simplified by the use of spherical polar
coordinates. The wave vector is specified here
by k=(k,6,¢), and using the fact that w,=ky,
=kv;(6,4), the radial and angular components of
V; are given by

Vie= 5t=v;, (26a)
1 dw, v
= = Ki_ “Zi
Vie=% 26~ 99 ° (26b)
and
1 8w, 1 ap,
L — 6
Vie= T sing 09 (26c)

sind 9¢ °

These can be projected onto the Cartesian axes
to give

V;1=v;sinf cos¢ + %%Lcose cos¢ - %% _Ss_llf_:l%_ ,
(27a)
V3 =v,sing sing + %Lcosg sing + %_E%ﬁ_ ’
(2'70)
and
Vi3=v;€086 — 22-"-sim? . (27¢)

26

The group velocity can also be described in terms
of spherical coordinates, i.e., V;=(V;,0;,®;),
where

Vi=(Vii+ Vi + Vi), (28a)
tane; = (Vi + V)2 /v 4, (28b)
and

tan®; =V ;,/V;q . (28¢)
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The differentiation of v; with respect to 6 and ¢
is done in the same way as for »n,, making use of
the appropriate expressions provided in the Ap-
pendix.

D. Extrema of the phase velocity

In order to find the extremal values of the phase
velocity v;(ny,ny,n3) subject to the constraint
n? =nf +n§ +n§ =1 we use the method of Lagrange
multipliers which immediately leads to the set

of three simultaneous equations

v

= 2
o, a=1,2,3 (32)

= U‘ nd 3
where p is an undetermined multiplier. The above
equations express the individual components of the
equation

V,=ph . (33)

The extrema of v; thus correspond to directions

in which the group velocity is parallel to n and
therefore coincides with the phase velocity.
Conical points require separate treatment due

to the fact that two of the velocities are degenerate
and dv/9n, is not well defined.

Disregarding solutions that require special val-
ues for the elastic constants, one has in the case
of cubic symmetric the following extremal direc-
tions:

(i) [100] directions for all three modes;

(ii) [110] directions for all three modes;

(iii) pure T mode for n perpendicular to any
[100] direction;

(iv) L mode in any [111] direction, the pure T
modes form conical points in these directions;

(v) directions of the form

2~-C
ni=ni=31-nd)= 8——5—03-
3

for the quasi-T mode.

This again highlights the role played by C,. These
conclusions are in agreement with the correspond-
ing results of Levelut.?®

E. Phonon focusing

A general feature of elastically anisotropic
solids is that thermal-phonon group velocities
tend to aggregate more around some directions
than others. This effect,knownas phononfocusing,
can exert a considerable influence on the boundary-
limited conduction of heat!! and the ballistic prop-
agation of heat pulses® through crystals. Recent
experiments by Hensel and Dynes?® and Northrop
and Wolfe*” have brought to light remarkable di-
rectional anisotropy in the phonon flux emanating

from a localized heat source in Ge. Behavior no
less complex is to be expected in many, if not
most, crystals.

The effect is conveniently treated as follows.
A distribution of phonons of polarization j and
wave vectors contained within a cone of solid
angle 6%, about the direction n propagate with
group velocities spread over a solid angle 6%,
about the direction of V (n) A measure of the
associated enhancement of the phonon flux in the
direction of V;, or phonon focusing in this di-
rection, is the phonon amplification factor

A=

=St (34)

This quantity depends on the curvature of the in-
verse velocity surface and thus requires second
derivatives of v; for its evaluation. Maris'® has
established an expression for A; that can be put

in the following form:

4 L[/~ VN _[- V)] =
Aj1= —ij [(n‘ . —EEL)X<1’12 : “ﬁ)} Vil (35)

where ﬁ, and ﬁz are any two unit vectors which
are perpendicular to each other and to n. A
number of derivatives of the form

W 1 ( 92T 8%, )

+ VjanB
g 6py; \Onydng 9n,dn,

Yy

(36)

are encountered in this expression. The second
term in the above equation may be obtained through
implicit differentiation using Eq. (30). The result
is

2
2s, _( 5, 25. 95, 05, BG 23S, 36

_._.L_L+__.L

on,ong o, Omg On, Onmg Omg o,
2% L2 o%H 2
*Si Gnadn, T 3 Onuom ) (55 =6).
(37)

Philip and Viswanathan®® have pointed out that in
terms of spherical coordinates, A; is given by
(the modulus signs are this author’s)

Aj'=|J,sin@,;/sing | , (352)
where
30;8;,) 090, 3%, 00, 29, (35D)

i 3(e,9) 96 09 _ op 28

is the Jacobian of the transformation relating
the variables (©,,®;) and (8,¢). The calculation
of A; by this method entails the evaluation of the
second derivatives of v; with respect to 6 and ¢,
which is done in the same way as the differen-
tiation with respect to n, and n,.

The presence of folds in one or more sheets
of the ray surface, a common feature in many
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crystals, can result in the phonon flux in a given
direction consisting of more than just one com-
ponent for each polarization. All of these com-
ponents will, in general, be associated with dif-
ferent wave normals and will be traveling at dif-
ferent speeds. Thus with suitable time resolution
one can expect to observe the various components
of a propagating heat pulse separating into in-
dividual pulses.

The edges of the folds in the ray surface are
associated with points on the inverse velocity
surface where the Gaussian curvature is zero.
These points give rise to singularities in the
phonon-amplification factor. Because the detector
will necessarily have a finite angular resolution
one would, of course, expect to observe peaks
rather than singularities. A useful way of por-
traying the combined phonon amplification is shown
in Fig. 2, in which the j =1 and the j =2 modes
of Ge are represented. These diagrams have been
generated by taking a uniform net of wave-vector
directions [ separated by 0.5° for Figs. 2(a) and
2(b) and by 0.25° for Fig. 2(c)], calculating the
directions of the associated group velocities, and
plotting these in a polar projection. Only the re-
sults for the irreducible sector defined by
n, > n,=n,= 0 are displayed in order to avoid
repetition. It should be pointed out that many of
the ray vectors lying in this sector are associated
with wave vectors located outside this sector.

Several features of these diagrams are worth
discussing. The folding edges of the ray surface
show up clearly as lines of accumulation of the
directional points, and correspond to the lines
of infinite phonon amplification calculated by
Northrop and Wolfe.?” All the main features in the
experimental integrated TA phonon-intensity
pattern of Ge obtained by these authors are re-
flected in Fig. 2. The features marked 1, 2, 3,

4, and 5 in Fig. 2 correspond, in the experimental
data of Hensel and Dynes,?® respectively, to peaks
in the phonon intensity 5° and 7° from [001], 2°
from [011], and +5.5° on either side of the [111]
direction. The j=1 andj=2 inverse velocity
surfaces make contact in the [111] direction giving
rise to a circular cone of internal refraction,

and this accounts for the region around this di-
rection for the j =2 mode which is devoid of ray
vectors.

IV. SOLUTION IN SYMMETRY DIRECTIONS

The application of the results of the preceding
section to symmetry directions is not entirely
straightforward. A stumbling block in the form
of vanishing denominators is in some cases en-
countered. While steps can be taken to overcome

0 10 20 30 40
0 (degrees)

0 10 20 30 )
6 (degrees)

6 (degrees)

FIG. 2. Combined phonon amplification for each of the
transverse modes of Ge, calculated using the elastic
constants (Ref. 27) Cy1:Cy9:Cy4=1.0:0.38:0.52. (a)j=1
mode and (b) j=2 mode. (c) Region near 6=0 in (a) en-
larged.

these obstacles, it is more convenient to use a
different approach right from the start.

In the past most treatments of acoustic waves
in crystals have dwelled heavily on the symmetry
directions, and the principal results in this area
have been reviewed in the books by Fedorov,!
Musgrave,’ and Auld.? The approach outlined
below contains some novel elements and serves
to complement the results of the preceding sec-
tion.
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Concerning acoustic waves, the key element that
is present for any symmetry direction is the
mirror plane. In the context of Laue groups, all
threefold, fourfold, and sixfold axes lie in sym-
metry planes and twofold axes lie either in or
perpendicular to symmetry planes. These may
be simulated mirror planes, as in the case of the
groups TII and RII. By analyzing the most gen-
eral situation in which a mirror plane can occur,
which corresponds to monoclinic symmetry, we
will derive expressions for the phase velocity
and other quantities which can be specialized to
any symmetry direction in any crystal,

We will suppose the mirror plane to be per-
pendicular to the x; direction. For n lying in the
plane, one of the modes has its displacement vec-
tor perpendicular to this plane, while the other
two modes have their displacements in the plane.
The same consideration applies when nis per-
pendicular to a mirror plane. Because this eigen-
vector which is parallel to the x; direction must
satisfy Eq. (2) it follows that I'j3=T,;=0, and the
characteristic equation is, therefore,

Ty —-pv® Ty 0

Ty, Ty-po 0 |=0. (38)

0 0 Ty~ pv®
Expanding the determinant one obtains

(pv* = Ty3) [ 020" = po*(T'yq + Tyy) + Ty Ty = T3] =0.

' (39)
The factor which is linear in pv2 yields the root
pvy=Ts;, (40)

while the quadratic factor provides the other two
roots:

200}, =Tyy + Tpp [ (Tyy = Tpp)* +4T%]1/2.  (41)

These results are consistent with the general ve-
locity expressions discussed in the preceding

2 . .
pvg=C ;5 cos’¢ +Cyy sine + 2C 45 cos¢ sing ,

section, although the numbering is different. This
can be seen as follows: With A3 and A,; being
zero, and using the fact that A,, =0, the equation
determining ¢ takes on the form

cos3y= 4cos’) -3 cosy

, %{\33(A%1A22 - 2})
[3(A3s + Afz = Ay Aga)P"®

(42a)

:H/Galzz

This cubic equation for cosi) readily factors to
yield

cosy = -2-%?%- , (42b)

and therefore

[(Ayy = Agp)* +4n%]"
2(3f/2)G172 )

or another two roots for which ¢ differs from the
above value by +27. Any of the three roots, in
conjunction with Eq. (18), leads to Eqgs. (40) and
(41).

_. The associated jiSplacement eigenvectors are
U, =(0,0,1) and U, ,=(p,q,0), where

siny = (42¢)

2 _r
%_: pvl]?,l 1 (43)
2

All three are pure modes when n lies along a
rotational axis in the mirror plane.

In the symmetry plane the Christoffel coeffi-
cients for the monoclinic group are

2 2

Ty =Cyyny +Cgny +2C gnyny ,

Ty =Cggn} +Coan +2Cy5my 1y, (44)
2 2

Ty3=Cysn{ +Cyyny +2C5ny 1y,
2 2

Tyy=Cygny +Coqnz +(C12 +Coelnyny,

so that in terms of the azimuthal angle ¢ where
ny=cos¢ and n, =sing we have that

(45)
2pvf,2 =(Cyy +Cgg) 08?9 +(Cyy +C ) sinep +2(C g+ Cyq) cose sing
#{[(Cyq = Cgg) €08 + (C g5 =Cap) sin’e +2(C 1 —C ) OS¢ sing]?
+4[C 4 cos’ +Cygsing +(Cyy +Cg) cosg sing]2} /2, (46)

and

4 _ pv} g —(Cyy cos’e +C g sin’p +2C,, cosg sing)

P~ [Cygcos’e +Cygsin’p +(Cy +Cg) cOSP sind] *
(46a)

For n perpendicular tothe symmetry plane, -i.e.,

—
in the x5 direction, we have I'yy =Cy;, Ty =Cyy,
T33=C33, and I'j; =C; so that

pvy=Cys, (47)
2p0},3=(Cyy +Cy5) #[(C5 =C ) + 4Ci5]”2 , (48)

and
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2
=Lz e (49)

These results are simplified somewhat if the
freedom to rotate the x; and x, axes in the sym-
metry plane is used to eliminate 045.4

For n lying in the symmetry plane, but not along
a threefold axis, the group velocity also lies in
this plane. The conical-refraction effects that
take place along threefold axes have been dealt
with elsewhere! and will not be discussed here.
With the x; component of V thus determined, the
other two components may be obtained using Eq.
(27). In this way for the pure 7 mode v, we ob-
tain

1 oT
V., = —33 =
Oct 2p1)0 ana (a 1’2) . (50)

For the other two modes we obtain the group ve-
locity by implicit differentiation on the velocity
equation

Q=p%} - pv(Tyy +Ty) + Ty Ty =T%=0. (51)
The result is

o= [ ()] ()]

— £i(3/0mg)(Lyy + T) +(2/0g)(T = Ty Tyy)
2pv;(2pv5 =Ty = Tyy)

(52)
(@=1,2; j=1,2).

Along twofold, fourfold and sixfold axes the group
]

rC33 C,3 C13
Ciz [3(Cyy +C1p) +Cog] [2(Cyy +Cyp) = Coggl
» _|Cis [2(Cyy +Cyp) =Coggl [3(Cyy +Cy3) +Col

i

0 0 0
0 0 0
Lo 0 0

and it is these transformed constants that one
enters into the monoclinic results.

The tetragonal results may be adapted for cubic
symmetry by setting C33=Cyy, Ci3=Cy,, and Cg
=Cy. There are no further inequivalent sym-
metry planes to consider.

In trigonal symmetry there are three equivalent
symmetry planes, one of which is conventionally
taken to be the (100) plane. For these planes and
their perpendiculars one modifies the monoclinic
results by carrying out the abreviated subscript
interchange 1 -3 and 4 -6 and making use of the
fact that C3; =0, Cy =Cyy, Cy3=Cy3, Cg5=Cyy,

and phase velocities coincide, and the same is
true for the L mode along a threefold axis.

The expressions derived above apply not only
to monoclinic but in fact to any crystal system
which contains a (001) mirror plane, and they are
also easily adapted for other planes. The effect
of additional symmetry elements is to simplify the
elastic constant matrix by eliminating certain of
the constants and introducing relationships between
others.

Orthorhombic symmetry is distinguished from
monoclinic by having C 5 =C,3=Cy;=C3,=0. The
There are two additional mirror planes, the (100)
and (010). To adapt the expressions for the (100)
plane is simply a matter of interchanging the x;
and x; axes which in the abbreviated subscript
notation means interchanging 1=11-+—33=3,
4=23-21=6, while 2=22 and 5=31 are unaltered.
Thus, for instance, Cyy~Cj;, andCg~Cy,, etc.
If, following this, the x, and x; axes are inter-
changed, i.e., 2=22+-33=3 and 6=12 13
=5, then expressions pertaining to the (010) plane
result.

The corresponding results for tetragonal sym-
metry are obtained from orthorhombic symmetry
by setting Cy =Cyy, Cy3=Cy3, and C55=C,y. In
addition there are two equivalent mirror planes
perpendicular to the [110] and [110] directions.
The transformation here is not effected simply
by an interchange of subscripts. A rotation of
coordinate axes so that x5 is perpendicular to one
of these planes and x; lies along the fourfold axis
transforms the elastic constant matrix to

0 0 0

0 0 0

0 0 0
2(Cyy=Cyp) 0 0 ’

0 Cyu O

0 0 Cu)

f
Cys==Cyy=Cyy, and Cgg=3(Cyy —Cyy).

The hexagonal results are realized by setting
Cy4=0 in the trigonal results. Because of the
rotational invariance of the equations of motion
about the x; axis, the resulting expressions apply
to any plane containing the x; axis.

V. DETERMINATION OF CRYSTAL ORIENTATION
AND ELASTIC CONSTANTS FROM MEASURED
PHASE VELOCITIES

A variety of experimental techniques such as
ultrasonics and Brillouin scattering employ
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acoustic waves to probe the elastic properties

of crystals. The data provided by these techniques
are, in the first instance, a set of measured ve-
locities, and from this the elastic constants have
to be determined. The algebra involved in ex-
tracting this information is greatly simplified if
the waves are chosen to lie in crystal symmetry
directions. In the past most investigators have

in fact relied predominantly on measurements
taken in these directions. The practical dis-
advantage of being limited in this way is that the
crystals being investigated have to be faceted and
aligned in special ways which is not always con-
venient or indeed even feasible. This is partic-
ularly true when the crystalline phases being
studied exist only under extreme conditions of
temperature or pressure. Fast-ion conductors?
and inert-gas crystals'® are two situations that
might be cited.

A set of measured sound velocities in one or
more arbitrary directions in a crystal contains
information both on the elastic constants and on
the location of these directions with respect to the
crystallographic axes. One can use this infor-
mation to determine the orientation of a crystal
if the elastic constants are known, or to deter-
mine the elastic constants if the orientation is
known, or even to determine both.

The orientation of a crystal is fully determined
when two distinct directions in that crystal are
identified. If the elastic constants are known,
then from a measurement of the three phase ve-
locities in some direction it is possible, within
certain limits, to determine the location of that
direction with respect to the crystallographic
axes. The identification of this direction is most
easily carried out by calculating T, G, and H by
means of Egs. (13), (14), and (15) and then making
use of the expressions for these quantities given
in the Appendix.

In the case of the tetragonal group 71 the value
of T determines n§ =cos?9. Since the polar angle
0 is confined to the interval 0 < 6 <7, there are
two possible values of § which are the complements
of each other. On substituting for cos?6 and sin®g
in the expression for either G or H, cos4¢ is
determined. This means that there are eight pos-
sible values of ¢ in the interval 0< ¢ <2m. Over-
all, therefore, one arrives at 16 possible di-
rections. For the holohedral point group 4/mmm
these are all equivalent directions, but for the
other point groups in this categroy, they separate
into two nonequivalent sets, each consisting of
eight equivalent directions and which are related
by inversion. There are no purely mechanical
means to distinguish between these two sets. By
referring the elastic constants to the special

9

axes for which C;=0, the above method can also
be applied to the group TI. The 16 directions
obtained form two distinguishable sets of eight
equivalent directions. The correct set is deter-
mined when measurements in a second direction
are done. However, in the case of the point groups
4 and 4 there remains the ambiguity associated
with inversion.

For the rhombohedral group RI, T again yields
two complementary values of 6, or correspondingly,
two equal and opposite values of cosf. On sub-
stituting into G one obtains the values of cosf sin3¢.
The positive value of cosf leads to six values of
¢ while the negative value of cosf leads to another
sixvalues, whichare displaced by 7/3 with respect
to the former set. There are thus 12 possible
directions. For the holohedral point group 3m
there are all equivalent directions, but for the
other two point groups in this categroy the am-
biguity of inversion remains. Applied to the
rhombohedral group RII this method leads to two
distinguishable sets of six equivalent directions.
The ambiguity of inversion affects the point group
3.

In the case of the hexagonal system, only the
direction of the x; axis can be determined and
not that of the other two axes.

For cubic system, T is independent of direction
while G yields the value of P=n%n% +nink +nin?,
and on substitution into H one obtains the value
of @ =n#ni. The normalization of n yields a
third quantity 1=n} +#3 +#x%. It is apparent from
the structure of these three quantities that n%,

n%, and 7% are the three roots® of the cubic equa-
tion #* —x* + Px —Q =0. Since the three roots can
be permuted in six ways among n3, n3, n2, and n,,
ny, and n; can each be positive or negative, there
are 6X2X2X2 =48 possible directions. These
are equivalent directions for the holohedral point
group m3m, but for the other cubic point groups
they separate into two or four sets, which are
indistinguishable as far as the second-order elas-
tic tensor is concerned.

For the orthorhombic group O, the expresion
for T and the normalization condition n* =1 can be
used to eliminate two of the components of n from
the expression for G. This results in a quadratic
equation for the squared third component. One
of the roots must be eliminated on the basis of its
sign or compatibility with H. In this way one
arrives at two equal and opposite values for each
component of n and there are thus eight possible
directions. These are equivalent directions for
the point group mmm but separate into two sets,
related by inversion, for the other two orthor-
hombic groups. The complexity of T, G, and H
for the monoclinic and triclinic systems does not



1756 A. G. EVERY . 22

favor the same simple approach as above, but in
principle it should still be possible to determine
the crystal orientation.

The determination of elastic constants from ve-
locity data associated with selected symmetry di-
rections has been discussed by a number of
authors.’! The evaluation can either be done using
the velocity expressions given in Sec. IV or, where
all three velocities in a given direction are known,
from the three invariants of the Christoffel ma-
trix. By judiciously selecting the directions of
measurement the effect of various elastic con-
stants can be suppressed and the algebra con-
siderably simplified. In some cases ambiguities
arise that can only be resolved by considerations
of particle displacements®® or thermodynamic
constraints.*® This concerns the sign of ¢ for the
group 71 and the fact that for the group O, the
sign of bybyb; can be determined but not the signs
of by, by, and b; individually.

Where the measured velocities are associated
with arbitrary nonsymmetry crystallographic
directions, except in the case of the hexagonal
system, there are no simple “short-cuts” in
determining the elastic constants. In the first
place, these velocities depend on all the elastic
constants so a step-by-step determination of
individual C;;’s is not possible. An even more
serious obstacle is the high degree of the equa-
tions that occur. In the case of cubic symmetry
an equation of degree 6 has to be solved in order
to determine C,. Head® has convincingly demon-
strated in a recent publication that sextic equa-
tions of this sort are unlikely to be solvable in the
classical Galoisian sense, and numerical methods
are therefore necessary for extracting their roots.
This problem persists through the lower-symmetry
systems.

Since an explicit expression for the velocities
has been obtained, it is a relatively simple matter
to employ one of the standard fitting procedures
to determine the elastic constants and any other
unknown parameters there are. Where the number
of measured velocities v, is equal to the number of
unknown parameters, and the approximate values
u'® of the parameters are known, one can gen-
erate a succession of improved values u.™ by
means of the iteration equation

1) 31)(71)
vim) A+ () = ) Tﬁ— =v,, (53)
: My
where v,"” and its derivatives are obtained using
Eq. (18) and the values p," of the parameters.
Where the number of measured velocities exceeds
the number of unknown parameters, a least-
squares —fitting procedure is appropriate. Where
all three velocities are measured in each direction

there is the choice of fitting either to the velocities
or to the three invariants 7, G, and H.

As an illustration we will calculate the elastic
constants and orientation of a xenon crystal (crys-
tal 1) studied by Gornall and Stoicheff.’® The
reader is referred to their paper for a description
of the Brillouin scattering measurements carried
out on this cubic crystal and for all other relevant
details. The x-ray diffraction method that was
used to determine the orientation of the crystal
led to uncertainties of <+2° in the Euler angles
relating the crystallographic axes to the labora-
tory reference frame, and this was estimated to
influence the determination of the elastic constants
by as much as £15%. In contrast to this, the un-
certainties in the Brillouin frequency shifts were
all less than 1% and in many cases less than 0.1%.
There is thus good reason here for treating the
Euler angles as parameters rather than using the
measured values of the these angles.

Using the program MINUIT developed by James
and Roos,*® we have carried out a least-squares
fit with equal weighting give to all scattering data.
Six parameters were employed, viz., C,,, C,,,
C., 0, X, and ¢,. The angles 6 and X were the
two Euler angles that were fixed in the measure-
ments and all recorded values of ¢ were presumed
to need incrementing by an amount ¢,. The range
of 6, x, and ¢, over which the search was con-
ducted was confined only sufficiently to avoid

TABLE I. Experimental and calculated Brillouin spec-
tra for xenon based on crystal 1 data provided by Gornall
and Stoicheff (Ref. 18). The shifts »{ have been calcu-
lated with the Euler angles treated as parameters and
the shifts »® with these angles fixed at their measured
values.

¢; Polarization Observed Calculated Calculated

(deg) index j v; (GHz) V(,-l) (GHz) ng) (GHz)
169 0 3.463 3.460 3.444
179 0 3.517 3.514 3.504
189 0 3.545 3.547 3.542
199 0 3.555 3.552 3.553
209 0 3.530 3.532 3.538
219 0 3.492 3.494 3.503
229 0 3.454 3.452 3.460
239 0 3.415 3.422 3.426
169 1 1.583 1.577 1.598
179 1 1.493 1.474 1.490
189 1 1.383 1.411 1.415
199 1 1.426 1.418 1.410
209 1 1.488 1.484 1.469
219 1 1.552 1.556 1.545
229 1 1.568 1.568 1.564
239 1 1.515 1.519 1.519
229 2 1.959 1.947 1.945
239 2 2.027 2.036 2.039
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equivalent orientations. The best fit obtained

was with C,=3.026, C ,=1.942, and C ,=1.443

in units of 10 dyn/cm? and 6=26.0°, x =124.3°,
and ¢,=0.1°, all three of the angles being within
the bounds determined by x-ray diffraction. The
calculated Brillouin frequency shifts V{” are given
in the fourth column of Table I. The rms deviation
between these and the observed frequency shifts

v; is 0.009 GHz. For comparison, the fifth col-
umn of Table I contains the best fit v/ obtained
when the angles were fixed at their mean mea~-
sured values, viz., 6=26° x=123° and ¢,=0°.
With the fitted values of the elastic constants C,,
=2.980, C,,=1.911 and C,,=1.472 in units of 10"

dyn/cm? the rms deviation at 0.013 GHz is sig-
nificantly larger than before.

For crystals belonging to the Laue groups T1II
and RII, the angle ¢, defined in the Appendix
would naturally be featured as one of the param-
eters in an analysis of the sort described above.
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APPENDIX

We consider here the form that A, T, G, and H take for the different crystal Laue groups. The defin-
ing equations for these quantities are combined with the expressions for the Christoffel coefficients so
that the results are expressed directly in terms of the elastic constants and the wave direction n. In this
way T, G, and H are clearly seen to have the Laue group symmetry. Where not otherwise specified, the
coordinate axes may be taken to be located in the conventional way with respect to the crystallographic
directions.

Factors of n®=n2+n2+nZ, where they occur, preserve the homogeneity of 7, G, and H when these func-
tions are expressed in terms of the components of i, but are replaced by 1 when angular coordinates 6
and ¢ are employed.

1. First tetragonal group 71 (classes 422, 4mm, 42m, and 4/mmm)

There are six independent nonzero elastic constants C ,=C,,, C,;, C,,=C., Cy, C ., and C,,=C,,. We
will also make use of the combinations a=C,; -C ,, b=3(C ,+Cy), c=3(C,+C,,), d=2C,, -C,,-C e
=2Cg=C), =C,,, [=20,,-C,, =C4, §=3(C,; =C,, = 2C;,), h=3(C,;+C),), A =c’+3af, A,=e®~df, A,

=a(f2%+2ed) —ec?, and A,=2(c?-ah). In terms of these constants one readily establishes that

T=(Cy +Cu+ Coo)ni+nd) + (Cyy+ 2C )2, (A1)
dn®+ en — an? bnn, cnyny,
A= bnn, en?+dn? - an? cn g (A2)
cnn, cng, i+ i+ 2ank
3G =3a%3+Ami(nZ+nd)+A,(ni+n2)? —ghnn?, (A3)
and
2H = 2a°n$+ aA ni(n?+ n2) + Agni(ni+ n2)?+ def(n?+n2)*+ gfhn’nin®+ n2) — gA nnn? . (A4)

These results may be expressed in terms of
spherical polar coordinates 6 and ¢. Since n,
=sinfcos¢, n,=sinfsing, and n, =cosfd we have
that

T=(C,,+C +Cy) sin?6+ (Cyy+ 2C ) cos?8
(A5)
3G = 3a*cos*0+ A, cos?dsin®0+ A, sin’d
-3ghsin*6(1 - cos4e) , (AB)

and

|
2H = 2a% cos®0+ aA, cos*0sin®6+ A, cos?6 sin*6

+def sin®0+ ggfh sin®6(1 — cosd )

- 5gA, sin’0 cos?6(1 — cos4dp) . (AT)

The fourfold symmetry about the x, axis and the
various symmetry planes of this tetragonal group
are evident in these results. It is worth noting
that the azimuthal angle ¢ occurs in relatively few
of the terms, all of which contain g as a factor.
The condition g= 0 therefore renders the equations
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of motion transversely isotropic, i.e., invariant
under rotations about the x, axis.

2. Second tetragonal group T1I (classes 4, 4, and 4/m)

The four symmetry planes containing the x, axis
are absent from this group, and there is one fur-
ther independent elastic constant C,;=~C,,. The
natural orientation of the x, and x, axes in the re-
maining plane is no longer prescribed by sym-
metry and this freedom of choice can be used to
eliminate C,;.* The angle ¢, through which the

axes have to be rotated about the x, direction in
order to remove C ; from the elastic constant
matrix is given by

4C

tan4<¢>0=Cll T % (A8)

66

This does not alter the fact that seven parameters
are still needed to fully characterize the second-
order elastic tensor, but it does allow the results
of the preceding subsection to be applied unaltered
to this group as well.

3. First rhombohedral group RI (classes 32, 3m, and 3m)

There are six independent elastic constants C;;=C,,, Cy, C1,,C ;=C,5, C,=C, and C,,=-C,,=C

56

while C¢,=3(C,, —C,,). We also make use of the constants a, b, ¢, d, e, and f defined previously and
B,=c?+3af+36C%,, B,=e®—df+9C},, By=a(c*+3af —=12C2,), B,=a(f*+ 2ed) — ec®+ 9(a — 4f+ 4¢)C?,, B,=2ab
~c(a+c), and B,= ce +fb —9C%,. For this group T is the same as before, i.e.,

T =T » (A9)
while
2nn;  2ngn, 2nn,
A=ANiimg +3C, | 200, =2n,m; (R2-n2d) ) , (A10)
2nm, (n?-nd) 0
3G =3an5+ B3l +n2) + B, +n2)? = 6C, (b +cIng, i — 3n2) , (A11)
3G =34? cos®0 +B, cos®0 sin®0 + B, sin*0 +6C,, (b +c) cosb sin®0 sin3¢ , » (A12)

and

2H=2a%5 + By +n2) + Bpnin? +n2)? +def (% +n2)® + 6C ,Bnin, w3 — 3n?)
+6C Bongn, (g +n3) 03 — 3n3) — 94 CY, [n, (] - 3n3)|* - 9¢C3, [n,0nf — 3n]) 7, (A13)

2H = 2a®cos®8+ B, cos*dsin*6+ B, cos?0sin?+ def sin®9 - 6C |, B, cos®dsin®0 sin3¢

14775

-6C,,Bscosfsin®0sin3¢ — 9dC3%, sin®fcos?3¢ — 9eC?, sin®0sin3¢ . (A14)

1476

The threefold symmetry about the x, axis and the
presence of the three symmetry planes containing
the x, axis as well as the absence of a perpendicu-
lar symmetry plane are evident in these results.
Those terms into which ¢ enters contain C,, as a
factor, and therefore C,,=0 is the condition for
transverse isotropy.

4. Second rhombohedral group RII (classes 3 and 3)

The symmetry planes are missing from this
group and as a consequence there is an additional
independent elastic constant C ;= -C, = —-C,.
There is also flexibility in choosing the orienta-
tion of the x, and x, axes.? A rotation about the
x5 axis by an angle ¢, given by

tang,= "C15/qu (A15)

will eliminate this additional constant and the re-
sults of the preceding subsection becomes appli-
cable to this group.

5. Hexagonal groups HI and HII (all hexagonal classes)

The elastic constant matrix for both these groups
is the same and corresponds to the matrix for the
T1 group with Cy=3(C,, =C,,), i.e., g=0 or to that
for the RI group with C,,=0. The characteristic
equation is thus independent of ¢, and as is well
known, it can be factored to yield velocities which
depend only on the polar coordinate 6.

6. Cubic groups CT and CII (all cubic classes)

There are only three independent elastic con-
stants C,,=C,,= Casy Cuu= Cs5=Cyg, and C12=Cls
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=C,,. This can be treated as a special case of
tetragonal symmetry. We adapt the TI results by
setting C,=C,+2C,,, a=d/2=-e=—f=C,=C,
-C,, &/3=K=C,,-C,,~-2C,,, b=c=3(C,-K),
and 2=3(2C, - K). Interms of C,, C,, and K we
have

T=Cpn?, (A16)

C,(3n%-n®) 3(C,-Knn, 3(C,~Kmnn,
A=| 3(C,-Kmmn, C,(3nZ-n® 3(C,-K)nm,
3(C,—Kmm, 3(C,—Knn, C,(3n2-n?

’

(A1T)

G=C%*-3K(2C,-K)P, (A18)
and
H=C¥®-3C,K(2C, - K)Pn®+% K*(3C, - 2K)Q,
((A19)
where

P=nn2+nini+nin?=sin*6sin’p cos®¢ + cos®6 sin’6
and
Q=n’nn2=sin*6cos?0 sin®¢ cos?¢ .

The condition for elastic isotropy is that K=C,,
-C,,-2C,=0. When this is satisfied, T, G, and
H are all constants and furthermore G*=H2,

7. Orthorhombic group O (classes 222, mm2, and mmm)

There are nine nonzero elastic constants C C

117

227 337

Cus Cssy Coey Crpy Cugy and C,,. We also make

44 557 667 12y

use of the combinations b,=3(C,,+C,,), b,=3(C;+C), b,=3(C,+Cy), d,=2C,, -C,, -Cy,, €,=2C -C,
=Cys, [1=2055=C |, =Cgq, d,=2C55—Cy, =Cyy, €,=2C,, =C = Cy, f,=2C,,=Cpy =Cyg, dy=2C =Cy3 =C,
e,=2C, -C,,-C,, and f;=2C,;, - C,, —C;. In the case of this group we have

T=(C, +Cu+Ce)ni+ (Cppt Cyy+ C) 2+ (Cyy + C y+ C ) M2, (A20)
dni+dpi+ dn bgn,n, b,
A= b n, eni+eni+t en bmgn, , (A21)
bnn, b ngng Find+ fons+ fans,
3= (d dy = e fnnd+ Bonit+ O3+ bined (a22)
and
2H =d; e, fyninni+ 2b,b,bninin: — bd;nininf — bie;ninin’ - b2 finining . (A23)

8. Monoclinic group M (classes 2, m, and 2/m)

For this group there are 13 independent nonzero
elastic constants. Taking the x, direction to be
along the diad axis, the eight vanishing elastic
constants are C,,, C,,, C,,, C,, C
C.s. Rotation of the x, and x, axes in the sym-
metry plane can be used to eliminate one of the
remaining constants. Because of the low degree
of symmetry there is little advantage to be gained
from developing the expanded forms of T, G, and
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H. For numerical purposes they may be obtained

from Egs. (4), (7), (9), (11), and (12).
9. Triclinic group N (classes 1 and 1

All 21 elastic constants are nonzero and inde-
pendent, although one may use the 3 degrees of
freedom in orienting the coordinate axes to elim-
inate three of them. No general expanded for-
mulae for T, G, and H will be given, but as with
the previous group, they can be obtained numer-
ically.
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