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Fluorescence in the presence of traps. II. Coherent transfer
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A study is made of the time dependence of the donor fluorescence in a system where there is a small concentration
of randomly distributed acceptor ions which act as traps for the excitation. It is assumed that the donor-donor
transfer is coherent and that the donor-acceptor transfer is a one-way process involving the emission of a phonon.
The probability amplitude characterizing the decay of an eigenstate of the donor array is calculated in the average t-
matrix approximation. Both ordered and disordered donor arrays are treated. In the case of the former the decay of
the amplitude of the k = 0 mode is studied in detail. It is found that the decay is exponential in three dimensions
and varies as t '" and t ' in one and two dimensions, respectively. In disordered systems the distinction is made
between extended and localized modes. Approximate calculations appropriate to dilute arrays, which interpolate
between these limits, are discussed. The analysis sheds light on the applicability of the Born approximation for the t
matrix in both ordered and disordered systems and on the use of fluorescence experiments to detect the existence of a
mobility edge between localized and delocalized states in a disordered system,

I. INTRODUCTION

In a. recent paper' (hereafter referred to as I) we
outlined a theory of the fluorescence in a system
with a small concentration of impurities which act
as traps or acceptors for the excitation. It was
assumed that a fraction of the donor ions was ex-
cited by a broad-band pulse. The time dependence
of the donor fluorescence was calculated for a sit-
uation where the excitation could be transferred
among the donors as well as from the donors to
the traps. The competition between these two pro-
cesses gave rise to decay rates which depended on
the relative magnitudes of the donor-donor and do-
nor-acceptor transfer rates.

The starting point in I was a set of coupled rate
equations for the functions P„(t) characterizing the
probability that ion z is excited at time t, all other
donors being in the ground state. For a descrip-
tion in terms of rate equations to be appropriate,
it is necessary that both the donor-donor a,nd do-
nor-acceptor transfer processes be incoherent,
as will be the case when they involve the annihila-
tion and creation of phonons.

In this paper we develop a theory of the fluores-
cence in the presence of traps which is comple-
mentary to I. Instead of incoherent donor-donor
transfer, we assume completely coherent transfer
among donors. Like I it is applicable when there
is a small concentration of traps. Transfer to the
traps, which are distributed at random, is accom-
panied by the spontaneous emission of a phonon
and hence is an incoherent process. It is further
assumed tha, t the trap depths are much greater
than k~T so that backtransfer is unimportant on
the time scale of interest.

Since we are assuming coherent transfer it is
necessary to begin with the microscopic Hamil-

tonian. We use the tight-binding formalism to
characterize the donor array. The donor Hamil-
tonian thus has the form

where E,, is the diagonal energy of the jth donor,
N is the number of donors, and Wf, denotes the
transfer term connecting donors j and ). We as-
sume W, , is both real and symmetric (W,*., = W. ,
= W„). The symbols b& and b~ denote annihilation
and creation operators, respectively, for the jth
donor. They obey the standard Fermi commuta-
tion relations.

The Hamiltonian (1.1) can be diagonalized by a
unitary transformation. The resulting expression
takes the form

KD &nCnCn

where c and c~ are the annihilation and creation
operators of the ~th mode. They are related to
the 5f and Qt by means of the equations

c,=+X,.b (1.3a)

c', =+X*„,bt,

b, =+X*,.c. (1.3b)

(1.3c)

b)=+X,ct . . (1.3d)

nf n'f nn' & (1.4a)

X fX (1.4b)

The elements of the ~&& N unitary matrix X satisfy
the relations

22 1980 The American Physical Society



22 F LUORESCENCE IN THE PRESENCE OF TRAPS. II.

There is an important comment to be made in
connection with Eqs. (1.1}-(1.4). At no point have
we made the assumption that the donor array has
translational symmetry. Thus the Hamiltonian is
appropriate when donors are distributed at random
as well as when they form a lattice. Also, we
choose to refer to the eigenstates of X~ as (Fren-
kel) excitons even though in the case of disordered
systems a characterization in terms of wave vec-
tor may not be appropriate.

The Hamiltonian associated with the traps is
written

Xr=+W d~d

where W, is the trap energy and d' and d~ are the
corresponding annihilation and creation operators.
Consistent with the neglect of backtransfer we as-
sume 8 —W„»k~T; all a, p. The phonon Hamil-
tonian has the form

(1.6)

Here ~, is the phonon energy (8= 1) and a, and a~

are the (boson) annihilation and creation operators
for the mode q where q corresponds to the wave
vector and/or other quantum numbers labeling the
eigenstates. It should be emphasized that our use
of the fermion formalism to describe the donor
system and the traps is merely a matter of taste.
Since we will be considering only states with zero
or one exciton we could equally well have used a
boson formali. sm or dispensed with second quanti-
zation entirely.

As mentioned earlier we assume that the trans-
fer of excitation to a trap is accompanied by the
emission of a phonon of energy & —W, . The
Hamiltonian associated with this process is written

Xz= ggg[A»(q)a~d~b, . +A*„,(q)b&~d a, ]—= g.b„.

not included any terms of the form (a~+ a,)c~~c,
which scatter excitons from one mode to another.
Such effects have been discussed recently by
Kenkre' and Wong and Kenkre. '

As was previously pointed out, it was assumed
in I that the initial state of the system corre-
sponded to exciting a small fraction of the donors
chosen at random. Such a state can be created by
means of optical absorption by using a weak pulsed
source whose bandwidth is much greater than the
inhomogeneous linewidth. In the present analysis
we consider a somewhat different situation. It is
assumed that an exciton is created in mode n at
t= 0. We then calculate the probability amplitude
for this state at a later time g. Apart from an ex-
ponential factor associated with radiative decay,
which we will consistently omit, this amplitude is
given by

fi (t) = &c.
~
exp(-iXt)

~

u), (1.9)

where
~

n) denotes the one exciton state and X is
the full Hamiltonian XD+ K~+ K~+ K~

The experimental situation corresponding to
(1.9) can be created optically by using a pulsed
source whose bandwidth is much less than the
width of the exciton band. When there is transla-
tional symmetry the selection rules governing op-
tical absorption permit only exciton modes with
wave vectors k= 0 to be created in a direct pro-
cess. In contrast, in disordered systems where
the wave vector is generally not a good quantum
number it is usually possible to create excitons at
any point in the band.

In Secs. II-IV we will develop a theory for the
probability amplitude averaged over all trap con-
figurations, which is applicable whenever the num-
ber of traps is much less than the number of do-
nors. Our results are discussed in Sec. V where
we consider the connection between the configura-
tional average of the probability amplitude and the
measured fluorescent intensity.

Here A„.(q) is the matrix element associated with
a process in which excitation is transferred from
the jth donor to the p,th trap with a phonon q being
emitted. By making use of (1.3c) and (1.3d) we
can rewrite (1.7) in terms of the normal-mode op-
erators for the excitons:

X,= g g g g[A„,(q)X*.,a&d ~c.

+A*„.(q)X,.c'd„a,] .
Ii should be mentioned that in writing $C~ we have
omitted terms involving a,d ~ c which do not con-
serve energy in first order and thus have a negli-
gible effect on our results. Moreover, we have

II. j-MATRIX ANALYSIS

In this section we will outline a formal calcula-
tion of the configurational average of the probabil-
ity amplitude which is based on the average t-ma-
trix approach. ~ We consider a system which con-
sists of N donors and Nr(«N) traps. In damping
calculations such as the one outlined here it is
useful to consider the operator G(E)= (E —X} '.
We restrict our attention to the states

~

n), ~P),
... which have one exciton in mode n, P, . . . , zero
phonons and no excited traps, and the states

~
p. ; q),

~p;q'), . .. which have no excitons, trap p excited
and one phonon present in mode q, q', ... .

For g~ 0 the configurational average of the prob-
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ability amplitude can be written

(2.1)

t,(E) =t „+t.g(E)t.(E), (2.3)

where ( .
&, denotes an average over all configu-

rations of N~ traps. It should be emphasized that

I
&8 (t)), I' is not necessarily the same as the con

- figurational average of IR (t) I', which character-
izes the intensity of the fluorescence. We return
to this point in Sec. V.

In the average t-matrix approach we calculate
the matrix element of the t operator associated
with a single trap, which we denote by &n It, (E)

I
P&

The configurational average of the diagonal ma-
trix element of G(E) is then given by

«nlG(E) lo'», = [E-~.-N, &&~It,(E) l~&&,] '. (2.2)

The 5 operator obeys the equation

where h „denotes the interaction with the pth
trap, Eq. (1.7), and g(E) = (E-X,) ', where K,
= 3C -3CI is the unperturbed Hamiltonian. Rather
than working directly with the exciton states it is
convenient to carry out the analysis in the site
representation Ij&. The state Ij& is related to the
eigenstates through equations analogous to (1.3b)
and (1.3d):

In&= Qx,*,. Ij&, (2.4a.)

(2.4b)

so that

&o. ltlp&= g &i ltlt&x. ,xa,. (2.4c)

Using the site representation the t-matrix equa-
tion assumes the form

& lt.( ) lj&=Z & II. lt" q&&q t'lg(E) lt" q&&t" qlI. lj&

+ ZZ &i t. l»q&&q t l«E)»q&&q t It. lt&«l«E) l~&&~ll. l»q &

t, m q, q'

x &q', p Ig(E)
I p; q'&&q', p I&. Ij &+ (2.5)

A term-by-term examination shows that (2.5) is
equivalent to the equation

&ilt, (E) lj&=v, ,(E)+ g ~;.,(E)«lg(E) Im&&~ It,(E) lj&,

and

6,",= &p P A*„.(q)(~. —~, —W )A „,.(q) . (2.1O)

t, m

(2.6)

where i, j, l, and m refer to donor sites in the
vicinity of the trap p, . The symbol U,',(E) denotes
an energy-dependent, nonlocal effective interac-
tion which takes the form

~;,(E)=Z &ill. l»q&&q i
I
g(E) l»q&&q». lj&

= g A*.,(q)(E - ~, —W.) 'A. ,(q). (2.7)
e

Equations (2.1), (2.2), (2.4c), (2.6), and (2.7)
constitute the formal solution to the problem to
lowest order in Nr/N. At this point there are sev-
eral comments which are appropriate. First,
from (2.1) it is evident that we are interested in
the behavior of v, ,(E) for E= q . This being the
case we can write

1-(6;,-iy,', )&j~g(E) ~j&
' (2.11)

If,, —iy,", is the same for all p, -j pairs the con-
figurational average assumes a particularly sim-
ple form since we can equally well average over
all j. In this case we have

Here we have made use of the symbolic identity
(x+ ig) ' = 6 (1/x) -im6(x), where (P denotes the
principal value. In most cases y and 5 will show
only a weak dependence on exciton energy and
trap depth, which we shall ignore. Second, if we
keep only the first term on the right-hand side of
(2.6) we obtain the Born approximation to the t ma-

(i It~(E) ly&=v. .(E). Finally, if each trap
interacts with a single donor the t-matrix equation
is readily solved with the result

v,', (e +i@)= 6;., -iy,', ,

where

y,, = ~+A*„,.(q)6(&. —~, —w,)a.,(q)

(2.8)

(2.9)

»&=NZ I &i I 1 6 ~ ~

~ E
(2.12)

Note that if (j Ig (E)
I
j& is independent of j we have

the general result
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&( lt(E)le», = "
N [1-(6-iy)&j~g(E) ~j&]

the last e(luation following from (1.4a).

(2.13)

III. SYSTEMS WITH TRANSLATIONAL SYMMETRY

In this section we investigate the behavior of
the probability amplitude in donor arrays with
translational symmetry. In this situation the ex-
citon modes are labeled by the wave vector k as-
sociated with the Brillouin zone of the donor lat-
tice. I ikewise the expansion coefficients X,. take
the form N '/'exp(ik r,.) where r& denotes the po-
sition of the jth donor.

We first focus attention on a system where each
acceptor is coupled to a single donor, which
serves as a crude model for interstitial traps.
Since all sites are e(luivalent, Eq. (2.12) reduces
to

cay rate. ' The denominator is a correction to the
Born approximation. If 5«y, as is often the
case, then the correction amounts to a reduction
by the factor 1+ [yB(&~)]'. This factor arises
from the interplay between phonon-assisted trans-
fer to the traps and coherent transfer among the
donors. Loosely speaking, we have B(&-„)=hE '
where bE is the exciton bandwidth. Thus when the
exciton band is broad, bE»y, we have I'
=(Nr/N)y, whereas in the narrow band limit we
obtain a much slower decay I'= (Nr/N)(t) E)'y '.
These results have a simple physical interpreta-
tion. When the band is broad, excitation is rapidly
transferred throughout the array and thus can
quickly reach a trap. When the band is narrow,
the excitation moves slowly so that it takes a long
time for it to be trapped.

As noted in the Appendix the principal value sum
(3.4) diverges for the k= 0 mode in one and two
dimensions. From E(l. (A11) we infer the nonex-
ponential asymptotic behavior

((k lt(E) lk», =

where

(3.1) $6Ot

' N (4 Dt)'/' '

in one dimension and

(3.'t)

g.(E)=-Z (E —~;)
k

&„- denoting the exciton energy &,+5~,. W, .

x (exp[ik ~ (r, —r,.)] —1), with e, the energy at the
center of the zone. From (2.1) it follows that the
probability amplitude is given by

(3.2)

&ft-„(t)&,

=(i/2e) J dtee ' '(v —e-„—(N /N)(5 —iy)
«dO

x [1 (6 iy) g,((d-+i&)] ') '.
(3.3)

B((;)=- 6' (e; -(;)
k'

(3.4)

The evaluation of this integral is discussed in the
Appendix. The essential point is the behavior of
the principal-value sum

' N, 4~Dt
(3.8)

in two dimensions. Here L and A denote the length
and area of the array, respectively, while D is
the coefficient of the 4' term in the expansion of
q-„about k= 0. The nonexponential decay of

(B,(t)&, in one and two dimensions is reminiscent
of the nonexponential decay of the integrated donor
fluorescence in the incoherent transfer problem. '

As a second example we consider the decay of
the k= 0 mode in a system where the traps are
substitutional impurities. Assuming nearest-
neighbor interactions between. donors and accep-
tors, transfer to the trap can take place from any
one of the z equivalent nearest-neighbor sites.
The ]t-matrix equation has the form shown in Eq.
(2.6) with i and j denoting nearest neighbors of the
impurity. In the case of the k= 0 mode the config-
urational average takes the form

If B(q-„) is finite then we can make use of (At) with
A -8/N«Nr/N. We find &«ltlo». = —Z& ltlj&

i, j
(3.9)

(R-„(t)&, = exp(- i@it —i t(Nr/N)(5 —iy)

x [1 —(5-iy)B(e;)] '], (3.5)

from which it follows that the amplitude decays
exponentially at the rate

since the result obtained by summing over nearest
neighbors is independent of the location of the
trap.

The t-matrix equation is readily solved for the
partial sum

(3.6)(Nr/N)y

[1 —6B(g-„)]'+[yB(g;)]'
The numerator in (3.6) is the "golden-rule" de-

T,. = i t j .

We obtain

(3.10)
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T,.= v,, + v, , l gm T
g, m

(3.11)

IV. DISORDERED SYSTEMS

The analysis of the trapping in systems where
the array of donors is itself disordered is com-
plicated, depending in detail on the eigenfunctions
and eigenvalues of $CD. We will consider only the
case where each trap interacts with a single do-
nor, which is an appropriate approximation when
the donor array is itself dilute. In this case the
configurational average of (alt

I
o.& takes the form

[Gf. (2.11)]

I
».= —„'Z

I ., I' J„,.
(4.1)

assuming 5,, can be set equal to zero. In writing
(4.1) we have allowed for a distribution in y arising
from the variation in donor-acceptor separation.

Since all nearest-neighbor sites are equivalent,
T,. is independent of j. Thus we have

&(0 lt(E) lo», =.T,./N

g(6,, — ~„)» -Z, (6,,

-i~„)&jig�

(E) lf&

(3.12)
where p, , and 6,, are given by (2.9) and (2.10),
respectively, and

(
I

( )If&=„-Z ',' ', (»)
j and l referring to nearest neighbors of the trap.
From Eqs. (3.12) and (3.13) we conclude that in
three dimensions (R,(t)&, decays exponentially at
the rate

a Z(6, -fy, ,)

1-Z, , (6,, — ~„)&jig(..) If»
(3.14)

where Re denotes real part.
Finally, it should be noted that the asymptotic

behavior of &Ro(t)&, in one and two dimensions,
which is displayed in Eqs. (3.'l) and (3.8), is valid
for interactions of arbitrary range. This is a con-
sequence of the fact that in the limit E- q, the
sum in (3.13) is dominated by the terms with k= 0.
When this happens the matrix elements (j Ig(E) Il&

diverge, becoming independent of r,. —r, . As long
as (j Ig(E) Il& is independent of j and l the t-ma-
trix equation can be solved for the sum

Z, &
(i It I

j). Equations (3.'f) and (3.8) then follow
from an analysis similar to that shown in Eqs.
(A 8)-(A 11).

Thus 1'(y)dy is the probability that the transfer
rate lies between y and y+ dy.

The behavior of ((o
I

I
I
n», is influenced by

(j Ig(E) Ij). Expanded in terms of eigenstates
this function takes the form

(4.2)

Insight into the meaning of this function can be ob-
tained by writing it as an integral:

(jig(@) lj)= JdE'o (+')(E -8') ' (4.3)

where

p;(E)=Ng IAisl'6(E ~8) (4.4)

is the local density of states associated with the
jth donor.

At this point it is convenient to consider two
limiting situations. The first pertains to systems
where the exciton modes are delocalized, that is
to say I2C~ I'=1/N for all donors. When this hap-
pens we expect the local density of states to be
nearly the same for all j. Under these circum-
stances it is a reasonable approximation to re-
place the local density of states by its global
average p(E):

p, (E)-„-gp, (E) = g 6(E-.,) = p(E),
1

having made use of (1.4a).
Using (1.4a) a second time we obtain the result

(4.6)

« It(E)l ».=—'
1+ (jy/N) jp(E')(E —E') 'dE'

(4.6)

From (4.6) and (At) we conclude that (R (t)&, de-
cays exponentially at a rate 1" given by

p(E')dE' ' -'
r =—,( y(&)& d& 1+Ir—(P

(4.V}

provided the principal-value integral is finite.
The other case corresponds to the opposite limit

where the mode n is confined entirely to the jth
donor, i.e. , X &= 5&3. When this happens we have

«alt(E) lo')&, =1 (4.8)

From Eq. (AV) of the Appendix we obtain the result

& .()&.=1'N N1+%~ N

Nr/Ne "a
+ exp [-y;.1(1+Nr/N) t),1+Nr N

(4.9)
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which reduces to

(R (t)),=(1-Nr/N)e "~'

+(N /N)e " 'exp(-y;It), (4.10)

(4.11)

which interpolates between the two limits men-
tioned above. This approximation satisfies the
sum rule

in light of the assumption Nr/N « l. Equation
(4.10) has a simple physical interpretation: 1
-Nr/N is the probability that there is no trap as-
sociated with the jth donor, Nr/N is the probability
that a trap is present. When this is the case the
amplitude decays at the rate y&&.

The decay of a mode which is intermediate be-
tween those limits is more complicated. In order
to gain insight into the problem we consider a
simple model where the mode is confined to N~
donors (1&N~~N}. We assume that ~X,&~'=1/
N~ if j is one of the N~ donors and zero other-
wise. For donors in this set the local density of
states is approximated by

p, EdE=N, (4.12)

following from (1.4b).
Taking y to be the same for all sites we obtain

the result

&&~ ~t(E)
~

~&&,

= -iyN-'(1+ AN-,'(S —&
)-'

L

El 1

E -E'+ i (1-N-')N-'d' P dE'

(4.13)

Equation (4.13) together with (A7) leads to

46@8 Ce $60i~ (E )dE(R (t)), = + exp —(y/N~)t(1+ C)
~

1+iy(1 —N ~)N '8
J (4.14)L

where C= (Nr/N)N~ is the mean number of traps associated with the N~ donors participating in the mode.
An interesting aspect of (4.14) is that when C» 1, which necessitates N~» 1 since Nr/N «1 by assumption,
the decay of the localized mode is indistinguishable from that of a macroscopically delocalized mode where
Ni =. N.

In the opposite limit, C «1, Eq. (4.14) takes the form

(R (t)&, =(1 —C)e "~'+Ce "&'exp -(y/N~)t(1+fy(l -N~')N '& p(z')dz' -'

la

(4.15)

analogous to (4.10}. Equation (4.15) has a simple physical interpretation. Assuming the traps have a Pois-
son distribution with mean C, then to order C the quantity (1 —C) is the probability that there are no traps
associated with the state n, while to the same order C is the probability of there being a single trap as-
sociated with one of the N~ sites. Probabilities of configurations with more than one trap are of order C
and higher and hence can be neglected when C «1. The second term in (4.15) described the decay in the
presence of a single trap; the first term characterizes the behavior when no traps are present. In this
situation when there are also interactions which transfer excitation between exciton modes, trapping can
take place in a two-step process involving incoherent transfer to a state having one or more traps.

V. SUMMARY AND DISCUSSION

In this paper we have outlined a calculation of
the configurational average of the probability am-
plitude characterizing the decay of an exciton in a
system with a random distribution of traps. The
results apply to situations where the number of
traps is much less than the number of donor ions.
The distinction is made between donor arrays
with translational symmetry and those which are
disordered. In ordered arrays in three dimen-
sions the probability amplitude decays exponen-
tially. The rate of decay depends on the range
and strength of the donor-acceptor transfer. In
a system where each trap is coupled to a single
donor the rate is given by (3.6). When the trap is

—4 (e- - ~-.) ' «1 .
N k k'

k'
(5.1)

In the case of one- and two-dimensional arrays
we find that the asymptotic amplitude of the k= 0
mode does not decay exponentially. Instead, in
one dimension we obtain (R,(t)&,- t '~' [Eq. (3.7}]
while in two dimensions we have (R,(t}),—f ' [Eq.
(3.8)]. Both of these results are universal in the
sense that (3.7} and (3.8) are independent of the
strength and range of the donor-acceptor transfer.

I

a substitutional impurity which interacts only with
its nearest neighbors the rate of decay of the k= 0
mode has the form shown in (3.14). As a by-pro-
duct of our analysis we learn that the Borri approx-
imation to the decay rate is only valid when
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With disordered arrays the distinction is
made between localized and extended modes.
When the modes are delocalized the approximate
decay rate is given by (4.7) (provided the princi-
pal-value integral is fimte). In the extreme case
where the mode is localized on a single donor,
(R (f)&, is given by (4.10). In the intermediate sit-
uation where the mode is associated with N~ do-
nors the amplitude is crudely approximated by
(4.14).

We next address the question of the relation of
our results to various experimental studies. The
essential point here is that what we have calculated
i.s the probability amplitude averaged over trap
configurations. What is measured in laboratory
studies of fluorescence decay is IR (f) I', where
R (f) is the amplitude associated with the config-
uration of traps appropriate to the sample under
investigation. From Egs. (4.9) and (4.14) it is
evident that when the mode n is strongly local-
ized, I(R.(&)&, I' cann«be eaua«d with IR„(&) I'
On physical grounds we can conclude that the ap-
proximations leading to (4.14) are equivalent to

(IR.(t) I'&, = + (5.2)

with

dfEp(+l)) 2 1

I".=(y/N, )(1+ C} 1+ y(I-N-, ')N-')a

state is indistinguishable from that of a macro-
scopically extended state (N~= N). Taking C= 1,
i.e. , an average of one trap per N~ sites as a cri-
terion, we conclude that fluorescence experiments
can only di.stinguish between states with N~ «N/Nr
2.nd N~»N/Nr. Since the samples studied'in Ref.
7 have N/N„= 400 (for a Cr' concentration c
= 0.16% and a trap concentration -', c'} it is impossi-
ble in principle to determine if the states involve
more than 10'-10' donors. However, in this case
the distinction between N~ = 10' and N~ = 10" is
probably not important for determining the loca-
tion of a mobility edge.

Finally, we would like to emphasize the differ-
ence betw een systems wher e incoherent donor-
donor transfer is dominant and those where the
transfer takes place coherently. Since the inco-
herent transfer rates fall rapidly with decreasing
temperature by going to very low temperatures it
may be possible to see a crossover from in-
coherent to coherent behavior. Systematic studies
of the fluorescence decay in both regimes which
were carried out on the same sample would be
particularly worthwhile. Measurements of the de-
cay in quasi-one- and two-dimensional materials
could be extremely interesting in that they hold
the promise of testing the behavior predicted by
(3.7) and (3.8) as well as the corresponding results
for incoherent transfer.

(5.3)

Likewise on physical grounds we argue that when
the mode n is delocalized in the sense that there
is significant amplitude on a macroscopic number
of occupied donor sites we have

l(R.(&)& I'= IR.(f}l'. (5.4)

The reasoning is as follows. Since the donor-ac-
ceptor transfer rates fall off rapidly with distance
(~ ' for dipole-dipole transfer) the decay of the ex-
citon wave function at the point r& is primarily
sensitive to the configuration of traps in the vicin-
ity of r&. Thus a wave function extending over
many donors samples many local trap configura-
tions. When this happens the wave function asso-
ciated with a single global trap configuration gives
rise to a time-dependent fluorescent intensity
which is experimentally indistinguishable from that
proportional to

I (R,(t)), I
'.

Recently, experiments have been carried out in
ruby' which have been interpreted as providing
evidence of a mobility edge between localized and
extended states. ' It is beyond the scope of this
paper to discuss these experiments in detail.
However, from Egs. (14.14) and (5.2), it is evident
that when C» 1 the decay from a localized donor
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APPENDIX

(E) iy(Nr lN)-
I+iy P Ix,, l'/(E

(A2)

and q-0+. At long times the dominant contribu-
tion to the integral comes from co= & —q = 0. As
a result, in (A2) we must single out the terms
where t.&= q . Thus we have

( )
-iy(Nr/N)

1+isa. /(E —e.)+ isa.(Z) '

in which

(AS)

Ix„I' (A4)

In this Appendix we discuss the evaluation of the
integral for (R,(t)&, which is defined by

OO

(R (f)&,= — d+ [&a+i E —e -f(++i')] ', (A1)
& QQ

where
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B.(E)= g ~X,, ~'(E-e,)-'.
B,SgN

(A5)

From (A5) it is evident that B (e ) can be writ-
ten

(A6)

where 6' denotes the principal value. Provided the
principal value is finite we can evaluate the inte-
gral with B„(e ) in place of B (re+is). Closing the
contour in the lower half-plane we obtain as a re-
sult

(AS)(R (t)), = e "a' + exp(-yt[A +(Nr/N)j[1+iy B(e )] 'J~.
i

In one and two dimensions the principal-value integral diverges for the k= 0 mode. Writing g-„—q, = Dk'

we have for one dimension,

g 1/2
N ~ (eo+&E-e~) 4E-Dk'

and for two dimensions,

(Aa)

(A10)

(B (f)) e-jeg e iDk t1 . 2

c NT

Converting the sum to an integral (-~ & k & ~) in one and two dimensions we obtain (3.7) and (3.8), re-
spectively.

(A 11)

(A 9)

as ~bE
~

—0. Thus in the limit ~4E
~

-0 we obtain

In light of the behavior shown in Eqs. (AB) and (A9) it is evident that j(e,+ DE) dominates the denominator
in (A1). Hence in the long-time limit, which corresponds to bE-0, we have
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