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Sticking probability on metal surfaces: Contribution from electron-hole-pair excitations
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We use a recently proposed method to calculate the probability P(E) that an incoming particle loses a given
energy E to electron-hole-pair excitations. For the case for which an adsorbate level crosses the Fermi energy, we

present a simple analytical calculation of the probability P(E) and the sticking probability. For the case for which
no such crossing occurs, we give simple estimates and show results of more detailed numerical calculations, For not
too heavy adsorbates with levels in the neighborhood of the Fermi energy, we find that the energy loss due to
electron-hole-pair excitations should be important. We show that the relative width of P(E) is of the order 1; i.e.,
the probability for an energy loss E is not sharply peaked around the average energy loss as tacitly assumed in a
friction-coefficient approach to sticking.

I. INTRODUCTION

The theoretical discussion of the sticking proba-
bility, which is defined as the probabi1ity that an
atom or a molecule approaching a surface will be
adsorbed, has in recent years attracted a large
interest as a relatively simple example of a dy-
namical surface process. ' ' The incoming par-
ticle can be adsorbed only if its kinetic energy is
dissipated into other degrees of freedom. Two
energy-loss mechanisms have been assumed to be
responsible: the coupling to the translational mo-
tion of the substrate ion cores, i.e. , excitation of
phonons, ' and the energy loss to the low-energy
particle-hole pairs, when the atom or molecule is
adsorbed on a metal surface. ' ' Because of the
complexity of the problem various simplifying as-
sumptions have been introduced in the calculation
of the sticking probability.

The first detailed discussion of the electron-
hole-pair mechanism has been presented by Suhl
et a/. ' Their approach is based on the use of a
Fokker-Planck equation for the adparticle motion.
The dissipative effect of the substrate is described
in an average way by a friction coefficient. The
limitations of the underlying assumption of this
approach will be discussed after the presentation
of our results. Nerskov and I undqvist' have em-
phasized the importance of the possibility that an
initially unoccupied adsorbate level moves below
the Fermi level and becomes occupied. Because
of the finite velocity of the adsorbate there is a
nonzero probability that this crossing occurs in a
nonadiabatic fashion leading to an energy-loss
mechanism. Avoiding a fully quantum-mechanical
description they estimate the probability for this
to happen. %e will present a detailed description
of the contribution of this effect to the sticking

probability.
Recently, Brako and Newns have presented a

discussion of the spectrum of excitations created,
when the adparticle is described as an external
perturbation to the metal. Their calculation of the
spectrum is limited to small perturbations by the
use of the approximate method of Miiller-Hart-
mann et al. ' In this method the excitations in the
Fermi (electron) system are treated as bosons,
which makes the model soluble.

The weak-coupling assumption restricts their
discussion of the spectrum to small changes in the
adsorbate densities of states during the adsorption
process. As we will show, this always is a poor
assumption and, e.g. , the effect stressed by Ners-
kov and I undquist4 cannot be described. Brako and
Newns' also use a result by Hamann' to calculate
the elastic-scattering probability in special cases
for strong perturbations. From that they present
a discussion of the sticking probability for zero
temperature T, of the gas atoms. However, no
results are given for the T @0 sticking probability.

In an earlier paper" (in the following referred
to as I), we have developed a. strong-coupling bos-
on description for perturbations that vary slowly
in time. This provides us with a general expres-
sion for the probability P(E) that the adsorbate
loses an energy E to the substrate. %e shall use
this method to obtain some general results for the
electron-hole-pair contribution to the sticking
probability. A discussion of the other methods
mentioned above will then be given. In an appendix
we present a rigorous proof of our boson approach
in terms of Tomonaga bosons. ""

II. MODEL

%e consider the electronic-loss mechanism for
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where M is the mass of the adsorbate and E(z). is
the ground-state energy of the system with the ad-
sorbate at a distance z from the surface. The in-
teraction between the adsorbate and the substrate
is described in the spirit of the Anderson model"
and we use the Hamiltonian

H, = ~~n+e z t rs,

+ V~ z t ~ ~+He. , (2)

where the substrate levels are described by q„
the adsorbate level by e, [z(t)], and V,~[z(t)] gives
the interaction between the two systems. We take
into account that the energy of the adsorbate level
can depend on the separation to the substrate and
that the coupling is reduced with increasing sep-
aration. For simplicity we neglect the lateral mo-
tion of the adsorbate assuming normal incidence.
This is no severe restriction, since for slow in-
coming particles the adsorbate velocity is almost
perpendicular to the surface after it has been ac-
celerated by the surface attraction, even if the
incidence is not normal.

From the Hamiltonian (2) we can calculate the
energy E(z) as a function of adsorbate position.
Since (2) only describes the attractive forces, we
add a term

to E(z) to include the repulsion due to the pene-
tration of the adsorbate into the cores of the sub-
strate atoms.

Because of the finite velocity of the adsorbate,
there is a nonzero probability that some of the
kinetic energy of the adsorbate will be transferred
to electronic excitations in a nonadiabatic process.
We therefore want to calculate

P ( &
= 8 (")

I
« —(H —E') &

~
0(")),

where
~
P(~)) is the solution of the time-dependent

Schrodinger equation

(4)

the case of nonactivated adsorption. We assume
that the incoming atom or molecule has a velocity
v,. far from the surface. When the adsorbate ap-
proaches the surface it is first accelerated due
to the binding forces and it obtains a velocity v(t)
much larger than v, Closer to the surface it i:s
decelerated by repulsive forces and is bounced
off the surface. Because of the large mass of the
adsorbate we assume that its nuclear motions can
be treated classically. Thus the adsorbate is as-
sumed to describe a trajectory z(t) defined by

d'z(t) dE(z)
yg2

H, , ~~ =H, +H, dt+0(dt ) . (6)

We replace the change H„which involves fermion
operators, by boson operators

H, = Q (H, ),(b, ,+ b', ),

where b, creates a particle-hole excitation of
energy e = &,. —&,-. The matrix elements are given

for t -~ and E'„ is the ground-state energy of the
system for large adsorbate-substrate separations.
The function P(z) describes the probability that the
system has an excitation with the energy & when
the adsorbate has left the surface. This probabil-
ity is well defined, since the time-dependent Ham-
iltonian H, approaches a limiting value for t -~.
If the energy lost to electronic excitations is larg-
er than the initial kinetic energy, the adsorbate
has insufficient energy to leave the substrate and
sticks to the surface.

This model is not fully consistent since the par-
ticle trajectory is calculated under the assumption
that no energy is lost. In practice, this inconsis-
tency should not be very important, since the
strong nonadiabatic effects usually occur at a dis-
tance where the velocity v is much larger than the
initial velocity v, Therefore, if the adsorbate has
lost an energy of the order Mv', , this leads to a
small change of v, which as we shall see below de-
termines the strength of the nonadiabatic effects.
In the stochastic description of sticking by Iche and
Nozieres' the probabilities for an energy loss E
in the first round trip are important input para-
meters. Our distribution P(E) provides a micro-
scopic determination of these probabilities. '

In our approach we do not consider the nonadia-
batic effects due to the forces described by the re-
pulsive potential Vz(z). This coupling involves the
phonon-loss mechanism which has been discussed
elsewhere. "'

It is in principle straightforward to calculate
P(E) numerically by the methods we have intro-
duced to calculate x-ray photoemission (XPS)
spectra of adsorbates. " Because the adparticle
usually presents a perturbation varying sloppily on
an electronic time scale, this is in practice a dif-
ficult numerical problem. We therefore use in-
stead an analytical method presented in I, which
is valid in that regime. We sketch here the in-
tuitive derivation given in I, and present the rig-
orous proof of our bosonization in terms of coher-
ent particle-hole pairs, i.e. , Tomonaga bosons"'"
in the Appendix. The Hamiltonian at t+dt is writ-
ten as
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in terms of the one-particle eigenstates of H„

(H, ).= &., ~
H, ~.,)

with

H, ~. )=. ~.,'. ).

(6)

00

(~' H ~')e'"~'dt

(16)

The boson operators b t at time t are given, ex-
cept for a time-dependent shift (c number), by
their expression for t --~. It is consistent with
our dropping of the diagonal terms of the pertur-
bation to neglect this shift. Integrating (7) over
time we obtain the Hamiltonian" (b = lim, „0,): 00

((CFP
~
H,

~

e F()}'dt .
00

(17)

where in the second equality we have used the iden-
tity of (e(F ~H,

~

zF') with the time derivative of the
generalized instantaneous phase shifts at the Fer-
mi level. The average energy transfer is given
by"

H, = Q(d b~b + Q W (t}(b„+f()

with

t

V(.(t) = (H, ,).dt'.

The probability P(&) is given by (see I)

(9)

(10)

When we assume a time dependence of the coupling
terms in the Hamiltonian (2) of the form V,,(t)
= V(t)A„with the A„ independent of time we obtain

(e' H, i
eF) =(i,(t)+2[& —c,(t)][V(t)/V(t)]] p,'(e )

(18)

00

p(c) = — dec' cxp —I (1 —tc " '(),

where

with

p(c(=(I (v.,(c(l')"'.

The adsorbate density of states is given by (13)

(19)

(H, ) e'"~'dt (12)
P.'(~F) = —,

This probability has a delta function 5(c) with the
strength

lmr (z(t), ~„)
[~ —e, (t}—Rer(z(t), ~,)]'+ [Imr(z(t), e )]'

(20)

P, = exp— (13) where

which describes the probability for elastic scat-
tering. The first moment is given by

~ V» (((z (t ) ) ~

'
E~ —s0 —& ~

(21)

p~ —— 6P 6 d6 =
0

(14)

The coupling to the substrate enters the effective
adsorbate level position E (t) via the real part of
r:

and for the second moment we have e,(t) =e,(z(t))+Rel"(z(t), eF). (22)

E P ~ dq=p, , +
0 Ot

In I we have shown that for slowly varying per-
turbations this boson description gives exactly
the same results for the moments p, , and p., as
the direct fermion calculation. For the special
cases where a direct fermion calculation for the
no-loss peak has been possible' our boson ap-
proach also gives the exact result. " For slowly
varying perturbations only excitations involving
states close to the Fermi energy are important.
Then the matrix element (H, ) can be evaluated
at the Fermi energy and we find"

Using the abbreviation I'(t) =ImI'(z(t), &F) we can
rewrite (19) as

(c', (~», ~c',)= — „ccctcc . , ) (p
d r(t)

m dt EF —6 t

which shows explictly the general relation between
the matrix element and the time derivative of the
phase shift (16).

III. GENERAL RESULTS

In this section we apply the model of Sec. II to
various possibilities of the time behavior of the
adsorbate density of states p'(eF). In particular
we distinguish between the cases when an adsor-
bate level crosses the Fermi level during its flight
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&(~) =f(~)(1—e*"') . (25)

The value of the Fourier transform f(~) for ~ =0
is determined by the change in phase shift when
the Fermi level is crossed:

I=
I
[6.,{t.+-'» —6.„

We can obtain an explicit form for f(t) when we
linearize the inverse of the argument of the arctan
in (23) at t =t, . With the crossing time r t this
leads to

towards the surface and when such a crossing does
not take place.

Let us first discuss the case when the crossing
occurs. From Eqs. (18), and (20) or Eq, (23) one
can see that the matrix element of H is large at
the time t = t, when the adsorbate level crosses the
Fermi energy, because the phase shift varies
rapidly by an amount «~. If we neglect for a mom-
ent the variation of the resonance width I'(t, ) during
the crossing we obtain for the crossing time Lt
= 21 (t,)/i (t,). During the time nt the matrix
element is of the order i,(t,)/I'(t, ) and the con-
tribution to the average energy transfer p, [Eq.
(17)];s -~t[q (tJ/I (t,)]'- q (t,)/I'(t, ) Thus the
contribution is large if the crossing of the Fermi
level takes pla, ce far outside the surface where
I'(t, ) is small. This is the situation that has
been emphasized by Nt(rskov and Lundqvist. ' We
now discuss this case in more detail. Around the
level-crossing time t, the time derivative of the
phase shift shows a pronounced maximum with a
falloff time determined by M.
The function of time which describes this behavior
around t, we denote by f(t). The second time
which is important is given by the round-trip time
T between the downward crossing and the upward
crossing of the level at time tp+ T As discussed
above we use trajectories which are symmetrical
in time with respect to the turning point. There-
fore the upward crossing is described by the
same functional form. At time t, + —,

' T the matrix
element of II, has to vanish. All these require-
ments are fulfilled, if we choose

(~„'IH, ~.') =f(t) -f(i+T). (24)

For X(x) we obtain

The approximation (16) of evaluating the matrix
elements with states at the Fermi energy is cor-
rect only for adsorbate densities of states at the
Fermi energy that vary slowly in time, i.e. , the
following discussion of the spectral function is re-
stricted to 1/at «21'(tJ. From Eq. (27) we find

T + &t T+ (dd +it)'

From Eq. (11)we obtain the probability (Q
J cod%):

(29)

For large T the weight of the no-loss peak is

P~= (rd/T)'. (30)

This result that the probability for elastic scat-
tering is given by the square of the ratio of the
crossi. ng time and the time between the crossings
is independent of our special form (26) for f(t).
This follows from {25) and the general properties
of f(t) discussed above. If the Fermi-level cross-
ing takes place fairly far outside the surface, we
have P, « 1 and

P(e) = b,t'e.e '~' (31)

This result gives us the average energy transfer

p., = 2/n. t

and the relative width

& =- [(t .—t,')/t ', ]"'= I/M.

(32)

s = dE P &'d&'
o g. 6

Thus the width of the distributionis of the same
order as the average energy transfer. This result
is independent of rt and follows from IX(~) (2.

From Eq. (29) we can calculate the sticking coef-
ficient. We assume that the incoming particles
have a Boltzmann distribution with the temperature
T„and calculate the probabil. ity that an atom with
the initial kinetic energy & loses an energy &' & e.

~t/2
~ {t-t,)'+(~t/2)' ' (26)

T' 1+2&kT
n.t'+T' (I+t tkT, )' (34)

I
x((u) I' = 2(1 —cos(uT)e "

We note that
I
&(~) I' ( 2 independent of nt and T.

(27)

When the level crossing occurs far outside the sur-
face the variation of I'(t) can be neglected during
the crossing and we have nt =2I"(t,)/i, (t, ) as men-
tioned earlier. This yields for X(w)

We have assumed that ~t is independent of the
initial energy &, since at the time when the energy
loss takes place the pa.rticle has normally been ac-
celerated so that its velocity is fairly independent
of the initial velocity. For At«T the low-temper-
ature (kT «1/nt) sticking coefficient is very
close to one. We should mention that due to our
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We assume that
~
r(t)/[z~ —e, (t)]~ grows contin-

uously before the adsorbate has reached its turning

point and de creases continuously afterwards. This
is, for instance, normally the case if e, (t) is con-
stant. The n

r(t)
IX(~)l - —max, arctan =—& ~ 1.z„—e, (t)

(36)

For small values of ur, X(&u) is linear in &u, which
can be seen by performing a partial integration
of Eq. (16). The function X(u&) is also small for
~» ur, = 1/&r, where &~ is the time over which
the integrand in Eq. (16) varies substantially.
Then we expect X(~) to have roughly the shape

~

x((u)
~

= ((o/u), ) e "~"~ x,„
which gives the average energy transfer

1 2
&i =~ ~mm ("c

(37)

(36)

classical description of the adparticle our discus-
sion does not include the possible low-temperature
anomalies of the sticking coefficient resulting
from a quantum-mechanical description of the ad-
particle. "

In many cases the adsorbate resonance does not
cross the Fermi energy. To obtain an estimate
of the function &(&u) we use

fX(cu)f~ — —arctan
/

dt. (35)
r (f)

dt e~- C,(t))
V,kz 25K ~~ = 2 Vz 2B2 ~21/2

(43)

where 2B is the band width and

V(z) = V. e +1 (44)

We have assumed that V(z) =0 for z larger than

z „.The parameter & describes the decay of the

wave functions outisde the surface and we assume
o! = v4, where 4 is the work function. Far inside
the surface, i.e., for negative z, V(z) in (44)
saturates at the value V,. In the following we use
the parameters 2B = 4 eV, z,„.= 3.5 a„and 4 = 5

eV. For the parameters in Eq. (3) we use V„
=1 eV and~~ =4a, '. For the initial adsorbate
energy we use & =2Mv'=0. 025 eV and M =2 pro-
ton masses, which corresponds to a hydrogen
molecule.

We first consider the case when the adsorbate
resonance crosses the Fermi energy and assume

onance crosses the Fermi energy. Normally v,
is much smaller than v,„. On the other hand

de, /dz can be much larger than r(t, ). Thus the

relative magnitude of (p, ,),„,&„, and (p, ,) „,„depends
on the system.

We now give some numerical examples of the

two situations discussed. We assume that the

coupling constants V„(z) can be described by

and the relative width

p, -p, ,) ~ 43 2

) ~~x

As a crude estimate for &, we can use

(39)

e.(z) =2(z —2), (46)

in units of eV. In Fig. 1 we show results for the

~c ~Vms ~
(4o)

where v is the maximum velocity of the ad-
sorbate and o.'=[dl (z)/dz]/1" (z) is the corresponding
logarithmic derivative of I'(z).

We can now compare the contributions to py

from Eq. (32) and Eq. (38). For chemisorption
we can obtain a X in Eq. (37) which is of the
order unity. The parameter a depends on how

rapidly the substrate wave functions decay out-
side the surface and it may be of the order 1.0
a.u. Then we have

————P(cF)
dUI
dt

fl
11

)
I p(&F)

I I IE I

(
1

P'1) surface z U max (41)
1 2 3
z (a.u. )

For the case when the adsorbate level crosses
the Fermi energy we have

where v, is the velocity when the adsorbate res-

FIG. 1. The velocity v, the density of states at the
Fermi energy p, (~z), and the average energy transfer
per time unit dp&/dt as a function of distance. The ad-
sorbate level position varies linearly with distance and

Vp = 3.5 eU. The scale of the figure is arbitrary and the
real maximum values of the curves are 0.23ap eV (v),
1.39 eV ' fp, (~z)], and 0.09& eV' (dp, /dt).
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FEG. 2. The probability distribution P(&) for the pa-
rameters in Fig. 1.

FlG. 4. The probability distribution I'(&) for the pa-
rameters in Fig. 3.

adsorbate velocity. At z =2 the kinetic energy is
about 9 times higher than the initial energy &

provided that the particle has lost no energy. If
the particle has lost the energy & its velocity at
this point is reduced by a factor v'8/9 =0.94. Since
we are interested in the probability that the en-
ergy loss is smaller than &, it is reasonable. to
calculate the trajectory z(t) under the assumption
of no energy loss. In Fig. 1 we also show how the
density of states at the Fermi energy, p, (z, e~),
varies with distance and how the average energy
transfer per time unit

(46)

depends on the distance. The friction coefficient"
is given by dividing d p, ,/dt by the velocity squa, red.
Since d p.,/dt is proportional to the square of
p, (z,er) it is very localized to the region where
the resonance goes through the Fermi level. In

Fig. 2 we show the probability P(e). This dis-
tribution has an almost negligible delta function
with the weight P, =0.018. This agrees fairly
well with the predictions of Eq. (30) which gives

Pp:0 014. We find an average energy transfer
p, , =0.52 eV compared with JL(,, = o.53 eV from Eq.
(32) and a relative width ~=0.74 compared with
'=0.71 according to Eq. (33). These fairly small
deviations are due to the more realistic f(t).

In Fig. 3 we show results for the case when the
adsorbate level does not cr'oss the Fermi en-
ergy but is assumed to remain constant. We notice
that p, (z, &.) becomes large when ImI'(z, &z)
—

~&z —',
~

which happens for z-l.3. Closer to
the surface ImI' becomes so large that p, (z, cr)
is reduced again. The quantity d p, /dt behave. s
in a similar way although the large values of
v(z) for small z shifts the maximum towards
smaller z. The probability P(e) is shown in Fig.
4. In this case there is a strong 6 function at
& = 0 with weight P, = 0.61. The average energy
transfer is p, , =0.028 eV and the relative width
is 1.64. These results are in good agreement with
the qualitative arguments presented before. In
Table I we show some more results for other val-
ues of V, and &,. When the coupling is increased,
i.e., V, is increased or ~e. —&,

~

is reduced, the
relative width is reduced in agreement with Eqs.
(36) and (39).

In our discussion we have completely neglected
the spin of the electrons. For the case when a

TABLE I. Results obtained using a s-independent &,~

The binding energy of the adsorbate to the surface is
given by E@.

0
2 (Q.U. )

~- P (&FI

I

FIG. 3. The same quantities as in Fig. 1 but for a
constant &,= 2 eV and with Vp ——6 eV. The maximum val-
ues of the curves are 0.11ap eV (v), 0.08 eV ~ Ip (&z) t, and
P.PPP 81 eV' (pj's&//gt).

(eV)
Vp

(eV)

4
6
8
6
8

10

(eV)

0.10 5.45
0.34 2.54
0.77 1.84
0.81 1.64
1.5 1.42
2.2 1.33

I'p

0.85
0.80
0.66
0.61
0.52
0.48

p, g

(eV)

0.0023
0.0132
0.026
0.028
0.037
0.044
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level crossing occurs far away from the surface,
neglecting the spin is in the spirit of the un-
restricted Hartree-Fock picture. In the other
case we have discussed, the energy transfer
occurs close to the metal surface, where the
restricted Hartree-Fock picture is appropriate.
Then the distribution P(e) including spin is simply
obtained by the self-convolution of our result for
P(e).

IV. CONCLUDING REMARKS

We have calculated the sticking probability in
a model that includes the electron-hole-pair loss
mechanism. We have considered the cases when
an adsorbate resonance crosses the Fermi en-
ergy during the adsorption process and when such
a crossing does not take place. In the former case
there can be a large contribution to the average
energy transfer far from the surface, while in
the latter case the main contribution arises close
to the surface. For not-too-heavy atoms, rea-
sonable parameters give energy losses that are
important on the scale of thermal energies.

From the results obtained we can discuss the
validity of the underlying assumptions in the use
of the Fokker-Planck equation for the adparticle
for calculating the sticking probability. As in our
boson model, the adatom is treated classically
and it is assumed to exert a slow perturbation on
the substrate electrons. In addiiton it is assumed
that the dissipation of energy to the substrate can
be described in an average way by a friction co-
efficient. This assumption is justified if the prob-
ability P(E) for losing the energy E is strongly
peaked around the average energy transfer, i.e.,
if the relative width & of P(E) is small. For the
case when an adsorbate level crosses the Fermi
energy we found &= 1/W2. If no such crossing
takes place the width decreases with increasing
coupling, but has a lower bound ~ ~ 1. These
results were obtained under fairly general con-
ditions and the proof of Eq. (35) shows that «& 1

is impossible, when we consider a single round
trip of the incoming particle. This result is very
different from the result for P(E) due to the cou-
pling to phonons, which is also given by an ex-
pression like (11), but with the A„having a dif-
ferent meaning. " In the phonon case the coupling
constant is not bounded and in the classical limit
(many phonons) one obtains a P(E) sharply peaked
around the average energy loss." It is the occur-
rence of the phase shifts in our exact calculation
of P(E) which makes &«1 impossible for the
slowly varying perturbation presented by the in-
coming particle even if the perturbation is strong
and cannot be described in the weak-coupling

approximation. ' We therefore prove the con-
jecture made by Brako and Newns' from their
weak-coupling calculation for P(E).

The probability for elastic scatte~, ng can be
large for the case when the adsorbate level does
not cross the Fermi energy. However, for the
situation considered by Ngrskov and I undqvist'
when the level crosses the Fermi energy we find
small values for P0 and their neglect of elastic
scattering should be justified.

APPENDIX

In this appendix we present a rigorous deri-
vation of our result Eqs. (11) and (16) for the
excitation probability P(E) for slowly varying
perturbations. This exact solution is obtained
by the use of coherent particle-hole excitations,
which rigorously obey boson commutation rel-
ations, when one works in a subspace of states
with no holes deep in the Fermi sea and no elec-
trons high above the Fermilevel. "'" This is the
relevant subspace for the problem we are con-
sidering: A perturbation varying on a time scale
T only produces excitations with respect to the
instaataneous Hamiltonian in a range +1/T around
the Fermi level. In contrast to Tomonaga. 's
original analysis we can therefore choose the sub-
space as small as we want, simply by increasing
T. This allows us to obtain the exact solution for
P(e) in terms of the instantaneous phase shifts at
the Fermi level, i.e. , we are not restricted to
small perturbations like Schotte and Schotte" in
their discussion of x-ray spectra.

As in I we consider a system. of spinless s-
type electrons, i.e., the eigenstates ~e') of the

Hamiltonian H, are labeled by the energy only.
If we introduce creation and annihilation oper-
ators g, , (P, ,) of these eigenstates we can write
the Hamiltonian as

0
(Al)

e„=nB/N=n&E (n=0, 1.. . , N) (A3)

and later take the limit N-~. The Hamiltonian
and the anticommutation relations are then-re-

where the energy zero is taken at the bottom of
the band, B is the band width, and the g, „g,
obey fermion anticommutation relations

(A2)

etc. To make closer contact to the formulation of
Tomonaga, "we first work with a fictitious finite
system and take the limit of infinite volume in the
end of the calculation. We discretize the energy
variable
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and

Ht=~& pg „,
n=0

(A4)

(A6)

etc. Now following Tomonaga" and Schotte and
Schotte" we introduce coherent particle-hole
excitation operators (n & 0);

N-n

Z 4, ~&..., ~ (A6)
n m=0

Using the fermion anticommutation relations (A5)
it is straightforward to derive the commutation
relations for the b„, (n, n'&0),

[b, „b„, ,] =[b„„b„,,] =0 (AV)

and

[b„„b„.,] = 6„„,. (A8)

The commutation relations (A8) hold exactly if one
restricts the physical relevant states to the sub-
space 8 of states with no hole below &~ —&0 and no
electron above &~+ E0. A careful discussion of
how large &0 can be chosen is given by Tomonaga".
As mentioned above, in our discussion of slowly
varying perturbations we do not have to worry
about the largest possible value of E„because
we can choose the relevant subspace as small
as we want by increasing T.

The commutator of bn, with H, can easily be
calculated:

[b„„H,] =t ~nb„, . (A9)

This indicates that except for a constant, H, can
be expressed in terms of the boson operators in
the form

N

H, = Q 6«nb„, b„,+E,'. (Alo)

An explicit proof of this relationship has been
giv'en by Tomonaga. " Like in the Luttinger model"
with our definition of the boson operators (A6)
we even do not have to introduce the linearization
used in Tomonaga's proof. The constant in (A10)
is given by the ground-state energy E,'. In the
limit N-~ we can replace (A6), (A8), and (A10)
by

This exact representation of H, (in the subspace
S) is the starting point for our derivation of Eqs.
(11) and (16).

As in I, we now express the Hamiltonian at time
t+dt in terms of the boson operators b„, (or b, ,):

H,~, =H, +H, dt + 0(dt) (A14)

In terms of the Fermion operator H, can be written
as

N

H, = Q (H)
m, m'=0

with

(A15)

Let us first discuss the diagonal part m =m'.
As we can restrict the subspace in the limit
T- to excitations arbitrarily close to &~ we can
replace the matrix element in this neighborhood
of the Fermi energy by its value E~. Then in this
region (H, ) is a constant times the particle-num-
ber operator in that region, which is a constant
of motion. We therefore have

H, =&.p'~H, ~«,') g ~n(b„, , b+„',)+E.',
n&0

(A17)

where we also have used the Hellmann-Feynman
theorem. In the limit N- we obtain

B

H„„,= &b, t b, td&
0

B
+ {«' IH, ~I«' ) Wc (b, , + b, ,)dc dt

0

+E'+" + O (dt') (A18)

On the other hand, we can express H„«directly
in terms of boson operators b, „«(A13):

&, t+dt &, t+dt + (A18)

H, = Q (H,),p, (, , +(Eot ~H~ IEO) . (A16)
m&m'

In that immediate neighborhood of the Fermi en-
ergy the off-diagonal part can be exactly expressed
in terms of the bn „because we again can replace
the matrix element by its value at the Fermi en-
ergy

B-6
b6 ~= tt'e ~4s+s gd«'

~

[b, „b', ,] = 5(& —«'),

(A11)

(A12)

A comparison with (A18) leads to the relation
between b, , and b, t~, :

b~ ) ~(
——b, t+(EF ~Hg

~

Cr)/WCdt . (A20)

Integrating this differential equation we obtain
B'

Ht — &b, t b, tdE+E0.
0

(AIS) b b
' {E„'IH,, I&~t)dt'

6 ~ t 6+
«OO v«

(A21)
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where b, is the boson operator before the per-
turbation has been switched on. Now we can use
the N-~ version of (A17) to express H, in terms
of the b,:

B

H, —Eo — eb, b,dE
0

B
+[&, (t)/v J We(b, +bt)de6p

0

B
+[a(t)Al' ,j ae. (A22)

Here we have introduced the instantaneous gen-
eralized phase shifts at the Fermi level

6, (i) =Imln(det[1 —(e~ -H —i0) '(H, H„)J}-
(A23)

and have used the relation (see I)

6, (f)=.&., ~H, ~.,). (A24)

In (A22) we have expressed the Hamiltonian H,
vigorously in terms of boson operators in the sub-
space of states relevant for slowly varying per-
turbations. Calculating the distribution P(E) is
then a straightforward exercise in boson algebra
and leads to Eqs. (11) and (16) where in (11)Q
is replaced by J a&da. This proof confirms a
long-standing conjecture concerning how the re-
sults of the conventional boson description have
to be generalized in terms of phase shifts. ' With
our approach one can avoid the more complicated

I

mathematics, which was necessary at this point
to obtain partial information on P(E) exactly, as
in the weight of the no-loss peak for separable
forms of the perturbation. '

Our proof also provides the exact solution to the
problem of the threshold singularity in x-ray
photoemission (XPS). As the threshold behavior
is usually calculated by suddenly switching on the
perturbation, "it might look surprising that we
obtain the exact result for the exponent of the
power-law singularity working in the opposite limit
of a slowly switched-on perturbation. But as the
threshold singularity reflects the long-time be-
havior of the response, the spectrum at threshold
can be obtained by our approach as discussed in

I, and is just a manifestation of the Anderson
orthogonality catastrophe. "

In Sec. II we have described a "derivation" for
P(E) in terms of the individual particle-hole pairs,
and the result coincides with the one of the rigorous
derivation of this appendix for slowly varying
perturbations. As the result (11) uithout the fur-
ther approximation (16) is also valid for smal/
perturbations which may vary rapidly in time, '
the expression (11) for P(E) has a wider range
of applicability than the result following from
(A22).
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