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We derive expressions for the Fresnel coefficients using a theory which takes into account the coupling between
bulk and selvedge; the selvedge is the region near the surface of thickness l, l/2, & 1, where 2 is the wavelength of
light, in which the macroscopic Maxwell equations with a bulk dielectric constant cannot be used. The expressions
involve selvedge response coeAicients, and we show how to evaluate them for a given microscopic model of the
surface. Since our expressions describe the coupling of bulk and selvedge to all orders, unlike earlier simple
perturbation expressions, the dispersion relations of surface excitations can be determined from their poles. Using
jellium metal with random-phase-approximation electron dynamics as an example, we derive a formula for the
surface-plasmon dispersion relation, and compare it with earlier approximate formulas.

I. INTRODUCTION

The simplest theory for the optical properties of
surfaces is obtained by using the macroscopic
Maxwell equations and by assuming that the dielec-
tric constant changes as a step function at the sur-
face from its value ~ in the bulk medium to unity
in the vacuum. ' ' To go beyond this, it is natural
to write down a kind of perturbation theory with an.
expansion parameter f/A. , where /). is the wave-
length of light and l is the thickness of the ~egion
near the surface in which the bulk dielectric con-
stant does not give a sufficiently accurate descrip-
tion of the response; we refer to this region as the
"selvedge. " To date, the theories of this type
,which have been developed are essentially scat-
tering theories for the selvedge in the Born ap-
proximation: They have not only treated the re-
sponse of the selvedge to first order in l/A. , but
they have neglected the coupling between the
selvedge and the bulk.

To see this and its consequences, consider first
the simple model discussed by McIntyre and
Aspnes (MA), which can be solved exactly: The
selvedge is treated as a slab of material of thick-
ness l with dielectric constant &, 4~ . In the course
of this work we show that for

1(-2~ y2)). /2 && 1

1 (Q2 -/P)~/2 && 1

where &u= 27//A. = v/c and k is the magnitude of the
wave vector in the plane of the surface, the re-
flection coefficients' for P-polarized light are
given by

r,' =r +n,'(1+r,„)' -n~(1 —r, )',

to a very good approximation, where the O denotes
vacuum. Here x, , x „t, , and t, are the
F resnel (reflection and transmission) coefficients

in the absence of the selvedge, and

n,'= n„(1 n, nr-) -'

for j= z, k, with n, =n„+ n,~ and

n f/2(~2 Q2) 1/2~-1(~ 1)l

n„= —,'i(ru' —u')' "(e, —1)l .
(1.4)

%e show in Sec. III that n„and n» represent the
"bare' response coefficients of the selvedge. A
"renormalization, " taking into account the coupling
between the selvedge and the bulk to all orders,
sits in the term (1-n, nr —)

' of Eq. (1.3).
Now note that the usual "first-order term" written
down for the change in ref lectivity due to the
presence of the selvedge in the MA model,

[41( 2 y2)1/2]

(e, -e„)[(,)'e -u'(1+ ~/e, )] &

(1 —E )[k (1+E ) —(d E ]

whe re h. R = R ' —R, R ' =
~
r~ ~, and R =

~
ro

not obtained from using Eq. (1.4) with the first of
Eqs. (1.2), but rather from using Eq. (1.4) with

to which Eq. (1.2) reduces if the renormalization
is neglected.

Authors who have employed expansions in (1/X)
and used more sophisticated models of the selvedge
than that of MA, e.g. , Feibelman, ~' Bagchi and
Hajagopal, '" and Dasgupta and Bagchi, "have
implicitly neglected the coupling between the
selvedge and the bulk and arrived at results at the
level of Eq. (1.6). Their expressions for &R/R
reduce to Eq. (1.5) if their models of the selvedge
are replaced by the model of MA. In this work
we take into account the coupling between the
selvedge and the bulk and show that in fact Eqs.
(1.2) and (1.3) are quite generally true if l//) «1;

22 1589 1980 The American Physical Society



1590 J. E. SIP E

this is a completely new result. Of course, for
models of the selvedge more sophisticated than
that of MA, the expressions for the bare selvedge
response coefficients are more complicated than
Eq. (1.4). We show how to calculate them in
terms of the (in general "nonlocal') response
function of the medium near the surface.

It is obvious that results of earlier workers, ' "
equivalent to Eq. (1.6), are inadequate if a num-
ber of respects. First, Eq. (1.6) is inaccurate
if either np or n, ~ is sufficiently large, indicating
a selvedge "resonance. " This occurs in certain
models for a clean metal surface which employ
hydrodynamic equations to describe the electron
dynamics (Eguiluz and Quinn" and Sipe"), and in
certain models for adsorbed monolayers (see,
e,g. , Delanaye et al."and Inglesfield and Wik-
borg" ). It occurs" even in the MA model if, for
example, e, = 1 —u,'/w' and ~ = ~, at frequencies
of interest. Second, even if n„and n„are small,
their effect on the dispersion relation of any sur-
face excitations (e.g. , surface plasmons') which
are determined by the condition"'" x,' —~, can-
not be investigated with "naive' perturbation ex-
pressions of the form (1.6) that diverge only at
the poles of x~ (and at those of m„and n», if any).
To try to get around this, Dasgupta and Bagchi'
have shown that if the range of the arguments of

is extended, the surface excitations may also
be found by applying the condition x' —0. They
then use a perturbation expression equivalent to
(1.6) for ~,' and indeed find a change in the dis-
persion relation due to the presence of the sel-
vedge. However, since they do begin with an ap-
proximate expression (1.6), their results can only
be expected to be approximate; we show this is
true in Sec. IV. In any case, to predict the re-
sults of various (especially attenuated total re-
flection" ") experiments, one would like to know
not just the poles of the Fresnel coefficients but
their values at all wave vectors and frequencies
of interest; this cannot be given by (1.6) but re-
quires the renormalized expressions (1.2). Since
in this work we both establish equations such as
(1.2) and show how the bare selvedge response
coefficients are to be evaluated in terms of the
microscopic model adopted for the surface, we
give a quite general framework for discussing the
elastic light scattering from a variety of surfaces
in a variety of geometries.

We note that a rather different approach to this
problem has been taken by Mukhopadhyay and
Lundqvist. "' They divide space into bulk,
selvedge, and vacuum, but do not make an ex-
pansion in (I/A, ); instead, they formally (and in
some numerical examples) completely solve for
the fields in the different regions and match them

II. THE COUPLING THEORY

We consider a material with a surface parallel
to the z = 0 plane. In the presence of an incident
electromagnetic field, charge and current densi-
ties p( r, t) and j(r, f) are induced, and by virtue
of continuity they may be expressed in terms of a
polarization potential ' ~ p( r, t),

~=-& p, j=p. (2.1)

We seek stationary solutions of our equations by
putting

at the boundaries. This is, of course, a valuable
and, in principle, exact method, although the cal-
culations are in general difficult. However, we
feel it is still useful to establish correct, simple
expressions such as Eq. (1.2) explicitly for the
limit I/A «1. Certainly there are many instances
where that limit is at least a good first approxima-
tion, and in that limit the bare selvedge response
coefficients are found to be relatively easy to
evaluate, involving only a c= ~ calculation, Fur-
ther, the physical interpretation of the results
(Sec. III) is both clear and illuminating. Thus,
even if more sophisticated calculations are later
to be made, the theory we develop here can be ex-
pected to give considerable insight into the physics
of the problems to which it is applied.

The plan of this paper is as follows. In Sec. II
we present the coupling theory itself, writing
down the equations for the currents in the bulk
and selvedge in the limit l/A. «1. These are for-
mally solved in Sec. III for both s —and p-polarized
light in terms of the response coefficients and we
obtain expressions for the Fresnel coefficients;
we concentrate on these coefficients because of
their clear physical interpretation and because of
their use in predicting the results of a number of
experiments (see, e.g., Simon et al."), not just
those of the standard reflectivity experiment mea-
suring AIl/P. Applications and discussion are
presented in Sec. IV. We consider first the model
of MA which, since the exact results are known,
yields a check on the general theory. We then
demonstrate the invariance of our expressions
such as (1.2}, for even more general selvedge
models, under a change in the location of the
plane that divides the bulk from the selvedge.
Finally, we apply our theory to the standard mod-
el of jellium metal with the electron response de-
scribed by the random-phase approximation (RPA).
The surface-plasmon dispersion relation is pre-
sented, and we discuss under what conditions our
result reduces to the approximate result of Das-
gupta and Bagchi. ' Further applications are
planned to be presented in future publications.
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a «A„«A. , (2.3)

where a„=2m/k. Denoting these averaged quan-
tities by capital letters, the averaged Maxwell
equations are

V E=-4~V"P, v. B=O
(2.4)

Vx B+z~E = -47tz~P, gx E -i(d8=0,
where 9= (v/c and we have used Eqs. (2.1) and
(2.2). [For an underlying microscopic model
which has translational invariance in the xy plane
at the microscopic level, such as jellium metal,
this averaging of course leads to no simplification;
the fields in Eqs. (2.4) may be taken as the mi-
croscopic quantities. ]

Next, we neglect the effects of any macroscopic
surface roughness by supposing that, at any given
z, the substrate or adsorbate inhomogeneities
essentially vanish when averaged over a distance
z, in the xy plane. Then the medium is transla-
tionally invariant in that plane at this "eoarse-
grain" level and an incident field of the form eon-
sldered Rbove will 1nduce R polarization poteIltlal
P(r) of the form

p( r) p(z )e( ())xx+))xx) (2. 6)

For a source (2.5), the solution to Eqs. (2.4) is"
g(~r) E(z )ei (i)xx+))x)z)

where

X(z)=X,.(z)+f G,z —z') ~ Zz(z )dz'. '

(2.6)

(2.7)

Here E, (z) is the contribution from the incident
field, a solution of the homogeneous form of Eqs.
(2.4), and

C(.) = G,(z) 4'.6(z), -. (2.3)

where z is a unit vector in the z direction, and

G,(z) = 2ziru'io, '[(ss +p p„)e(z)e' o'

+ (ss +p~ p ~)e(-z )e '"0'],

(2.9)

y( r, i)= Re[y( r)e '"'], (2. 2)

where f(r, t) is any one of the fields involved, and
we consider an incident field which has a spatial
dependence in the (xy) plane given by exp(ik„x
+ ik, y), where the wave vector in the plane of the
surface is the real vector k= (k„,k„,0). For wave
vectors of interest ka«1, where a is a character-
istic atomic spacing, and it is convenient to intro-
duce "quasimacroscopic' quantities" as spatial
averages in the (xy) plane only of the correspond-
ing microscopic quantities over distances 6„
satisfying

where e(z) is the usual step function, e(z) = 0, 1
ass &0, &0,

s =—

AXED,

where k=k/k, and

po ——v() (kz 7 %Ok) .

(2. 10)

(2. 11)

To establish a similarity with later equations we
have put &, =-&.

~(),= (v', —k')'~', (2. 12)

where Hecto ~ 0, Imago~ 0. Finally, within linear
response the induced polarization potential is re-
lated to the electric field by

Zz(z ) f X(z=, z ') X(. ')z( ', (2. 13)

E(z) = E,(z)

+ G z' -z' x z', z'
(2.14)

the solution of which determines the electric field
throughout all space.

We now assume the medium is macroscopically
isotropic as we go deep into the bulk (which we
take as z —-~). If magnetic effects are unim-
portant, and if moments of any constituent mole-
cules in the bulk higher than the electric dipole
may be neglected, then a macroscopic description
of the bulk electrodynamics employing a unit mag-
netic permeability and a dielectric constant

e= 1+47ty

is generally' '" completely adequate" at frequen-.
cies and wave vectors of interest. If the under-
lying model for the bulk is a continuum (such as
jellium metal), then y is given by

XU= lim g zz' dz'.
O, c

Otherwise, X must come from a macroscopic the-
ory for the bulk (cf., e.g. , Sipe"). For simplicity
and to facilitate comparison. with earlier work, we
here assume the former; the geIleralizaion to the
latter instance is straightforward and will not be
done explicitly.

Near the surface Eq. (2. 15) cannot be applied

where y is just the product of (i/v) and the con-
ductivity tensor (cf. Harris and Griffin" and
Mukhopadhyay and Lundqvist '). The k and m de-
pendence of y is kept implicit, and the range of y
as a function of (z' -z) is, for each z, on the order
of a «27(/k, 2v/(() for frequencies and wave vectors
of interest. Combining Eqs. (2.V) and (2.13) we
obtain
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and the full Eq. (2. 13) must be used. We locate
the origin of coordinates so that for z &0 the
macroscopic description can be used (the bulk),
while for z & 0 the microscopic description is re-
quired (the selvedge). Denoting by l the value of
z beyond which x(z, z ') = 0, we assume

f(z)=Z'(z), where

0
z'(. )= f,'(. )+ G(. —.') xz(z')dz'

& Co

with

(a. as)

Z,'(z ) = E,. (z ) + 2 wi ~'I, 'e ' ()'(s s +p ~p~) Q .
M«1, ~l «1. (2. 17) (2.26)

The problem of determining l as a function of w

for certain microscopic models has been discussed
by Mukhopadhyay and Lundqvist" and by Barrera
and Bagchi"; we shall turn to it in a future publi-
cation.

The invariance of our results to a change in the
precise location of the division between bulk and

selvedge, subject to Eqs. (2. 17), is discussed in

Sec. IV. Writing

X(z', z ")-=e(-z')XO6(z '-- ')+ X'(z', z ') (2. 18)

and setting

(2. 19)

That is, the bulk responds with a susceptibility p

to an effective incident field which includes the
field radiated towards the bulk from the selvedge.

To consider E(z) at points in the selvedge it is
useful to decompose C into components Cr and C~
which give, respectively, the transverse and lon-
gitudinal components of the electric field gen-
erated by P(r). That is, fr ~(r), given by Eq.
(2. 6) and.

(2. 27)

satisfy

for points z' & 0 in the bulk owing to the short
range of x, Eq. (2. 14) reduces to

v ~ Er(r) = 0,
rr x f~(r) =0,

(2. 28)

,0

E(z)=E,(z)+ G(z -z') xE(z')dz'+f, (z),
oo

(2.ao)
wher e

E, (z)= C(. -") P(')d".
0

(2.21)

Using Zqs. (2.8) and (2.9) we find that, at points
outside the selvedge, the electric field due to the
charge-current distribution in the selvedge is
given by

awi(o'u, '(ss +p p„) Qe'" ', ) l

awing'wQ'(ss +p~ p~) Qe '"()', z & 0

where

Q= f P(. )dz
0

(2.23)

and where we have used the inequalities (2. 17) to
set terms of order exp(sieve) equal to unity. From
Eqs. (2. 1) and (2.9)-(2.11) we see that the field
(2. 22) is precisely that which would arise from a
current distr ibution

at all points in space. The tensor G~ is given by
Cin the limit c- ~. We find

C, (z)= r,e(z)e "'+f,.e(- )e", (a. 29)

where

(2. so)f„=awk[(zz —kk) +i(zk+ kz)],

and G~ follows immediately by subtraction. In
the limit «

l
z

l
«1, where « is the largest of &o, k,

and Idol we obtain

Cr (z ) = G + 0 (K(K
l
-

l )), (a. 31)

where

where

+ J„a —& ' ' P z' ' dr, ',
gl 0

(2. 33)

Gz, ——awi(d wQ'ss +aw(im()+ k)kk+2w(ik wQ -k)zz

(2.32)

vanishes as c- ~. Turning to Eq. (2.20) for
points 0 &z ~ l, using the inequalities (2 ~ 17) we
find E(z) = E'(z), where

z'(z)=E, (z)+O' Q-4wzz P( )

J(z) = -i(oQ5(z -0') (2.24)
0

E,(.)=E,(.)+ C.( —.') xz(")d" (2.34)
g ~oo

at points outside that current distribution. That
is, within the approximation exp(+iur, l) = 1, the
selvedge radiates as a current sheet placed just
outside the bulk. At points z &0, Eq. (2. 20) gives

f.(z)=i,,e( )+K.e(-z). (a.36)

Comparing Eqs. (2.25) and (2. 33) we see that, as
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expected, E*(z —0'}-E"(z —0 )
-=E' as P(z —0')

—yE'. In fact, neglecting the variation of E,(z)
over the selvedge by virtue of the inequalities
(2. 17) we find that, for z & 0,

E(z)=(U+«Xzz} E -4z«P(-)

@.(~)=&E! 4~I x.-.('-, ')E.(")d-", (2.37)

essentially the equation written down by Feibel-
man' for the variation of E,(z) through the selv-
edge (see, also, Mukhopadhyay and Lundqvist'0).
However, our solution for the amPlitude of this
profile in the selvedge will be a self-consistent
one, whereas the solutions of Feibelman and
others' "are essentially Born approximations.
Finally, note that in general from Eq. (2.36) we
find

E(z = l')= (U+4zyzR) E"

—4zik(z k + kz ) ' Q . (2.38}

The fi~st term on the right-hand side of Eq. (2. 38)
is precisely what would be expected from the sal-
tus conditions of usual dielectric theory"; the
second term is the discontinuity due to the selvedge
itself —it is the discontinuity across a current
sheet (2.24) [cf. Eq. (2.22)].

Once E(z) is determined throughout the selvedge
by Eqs. (2. 13) and (2.36) in terms of E~, Q fol-
lows from Eqs. (2. 13) and (2.23). It is convenient
to write the response function that results in the
form

Q= No (E, +pro Q),

where E|=- E~(z = 0) is the sum of the incident field
and the field from the bulk just outside the bulk
[cf. Eqs. (2.8) and (2.34}]; No ~ E, then specifies
the Q that uould result if the selvedge were ex-
posed to a total applied field E, and the trans-
verse component of the field of the selvedge itself
were neglected [c= ~ limit calculation; cf. Eqs.
(2.31}-(2.33)]. Now in the "bound- surface- state
region" (k & &u), where there is no radiation
propagating to infinity, the transverse field of the
selvedge at the selvedge

(2. s9)

E„=Gr 'Q (2.40)

-4wia(;5+ii) f e(. z )P(E )e .
c' =0

(2. 36)

Using Eq. (2.36) with Eqs. (2. 13) and (2.25), the
profile of E(z) may be determined, numerically
if necessary, through the selvedge. Note that,
in particular, if we put k = 0 and look at the z

component of Eq. (2. 36) we find, using the symme-
try of X,

is in phase with Q and leads to only self-energy
corrections. However, in the radiative region
(k (Cu), part of Er is out of phase with Q and leads
to a damping of oscillations in the selvedge. This
is of course the radiative damping and it is easy
to verify that the work done by E~ on the selvedge
just accounts for the energy it radiates. That
ls,

III. THE FRESNEI. COEFFICIENTS

To obtain the solution of those equations in a
simple way which leads directly to the F resnel
coefficients, we apply the method of transfer ma
trices. "'~" Consider fir st an "isolated selv-
edge" at z = 0,

(s. 1)J(z) = -i(oQ5(z),

the field of which is givenby Eq. (2.22); Q responds
to an applied field according to Eq. (2.39) where
E, is the value of the applied field at z = 0. We
restrict our selves to diagonal N„

No =N,ss + iV 0 pk + No z z (3.2)

(the generalization of which is straightforward),
and deal first with s -polarized light. Taking an
applied field that is the sum of fields propagating
in the +z directions, it is easy to verify that the
total electric field for z x 0 is of the form E,(z)

--'Re J E*dr = —Re (E x II+) nds2 T 8 l
V S

(2.41)

where J is the current distribution (2.24) of the
effective current sheet and E, [Eq. (2.22)] and H,
=B, are, respectively, the electric and magnetic
fields it produces; V is any volume, S is the sur-
face su r rounding it, and n is the outward-directed
normal. gee note the similarity with atomic
physics where in the dipole approximation an atom
responds through its polarizability (as calculated
in the c= ~ limit) to the sum of the incident field
and its own transverse field at the atomic site.' '
As in our problem, this provides the "radiation
reaction" necessary to guarantee energy conserva-
tion,

Once N, is determined by a microscopic calcula-
tion from Eqs. (2. 13), (2.25), and (2.36) (see
Sec. IV), Eqs. (2.25), (2.26), (2.34), and (2.39)
must be solved consistently to determine the elec-
tric field at all points in the bulk and in the
vacuum, and thus to specify the scattering behav-
ior of the surface. Since these are coupled equa-
tions involving the charge-current densities in
the bulk and the selvedge, the interaction between
the bulk and the selvedge is described to a11 ord-
ers ~
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= E,s exp(iud ) +Ey exp(-Ae, z) with different am-
plitudes E', as z ~ 0. Writing

e,(0')=M,'M e„(O-)

=M' e (O-}. (3.12)

we find

'E;exp(iw, z) '

.E, exp(-iur, z).~

(3.3} Since the elements of a general transfer matrix
are given in terms of the Fresnel coefficients of
the surface according to'

e,(0")=MDe, (0 ), (s.4)

where the current sheet transfer matrix MD is
given by

M)) ——(t)() (s. is)

+ +pg Sp

where

'Plo~= 277tt(g Mo +0~ ~

(s. 5)

(s.6)

we may identify

r' =r, +(1+r )n,'(I+~ ),

+(I+~ ),'t (3, 14)

We note that from Eq. (3.5) the reflection and
transmission coefficients of an isolated selvedge
may easily be found to be x=n, and t=1+n„re-
spectively, where

(3.7)

The (I -n~) renormalization of the bare selvedge
response coefficient no 'occurs because the selv-
edge responds to its own transverse field [Eq.
(2. 39)] in addition to the applied field.

Next, suppose there is no selvedge present but
bulk medium in the region z &0 and vacuum in
z & 0. Then for z &0 the electric field is of the
form E„( )=zE' s exp(Ae )z+E s exp(-il„z),
where w„ is given by Eq. .(2. 12) with v, replaced
by

(s.s)

where e„(=z) is the dielectric constant of the
medium. Defining e„(z) according to the pattern
of Eq. (3.3), we find

where

(3.15).;=...tl ..(i+,„)j- .
We note that the Eqs. (3.14), and the similar
equations below, may be derived directly from
Eqs. (2. 25), (2.26), (2. 34), and (2. 39) by evaluat-
ing the response of the system to different incident
fields. The transfer matrix method is used only
because it leads to a simple and compact deriva-
tion.

The expressions (3. 14) may be interpreted with
the aid of Figs. 1 and 2, where we use a dashed
line to schematically indicate the selvedge and we
use the dots to indicate the bulk material. The
coefficients x~ and ~', contain, besides the bulk
amplitudes z~ and x „respectively, selvedge
amplitudes proportional to n,'. 'Ihe factor (1+r~)
appears in the selvedge amplitude of x,' because
the light may reflect off the bulk material both be-
fore and after interacting with the selvedge. Like-

e,(0 )=M,.e„(O ),
where in general

(s.9)

(s. io)

arid the s -polarization reflection and transmission
Fresnel coefficients ~,&

and t,.&
are given by

tI+I, ) (~+f, )
lls

~] -SU) 2$Ug
y' t

zo +so ' '~ so +rei
(s. ii)

Now, considering both bulk and selvedge, since
the content of Eqs. (2.25), (2.26), (2.34), and
(2. 39) is that the effective current sheet is placed
above the bulk material, the total fields in the
vacuum and bulk of the coupled system are related
by

I'mo

FIG. 1. The s-polarization reflection coefficients for
an isolated selvedge and a coupled bulk-selvedge system.
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(tom

IllD
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tom tmo

FIG. 2. The s-polarization transmission coefficients
for an isolated selvedge and a coupled bulk-selvedge
system.

E (z ) = E„"p, exp(im„z) +E„p exp(-i e„z),
respectively, where p„, are given by Eq. (2.11)
with 0 replaced by m. The current sheet transfer
matrix is found to be

PMD—

where

1+n, pl-

~ -n 1-n, ~

(3.16)

Bog + Rpg (3.17)

n„= 27)ik'w, '(N „'+2))k) ',
n, » = 2v&o, (&,» —2))'k)

(3.18)

In deriving Eq. (3.16) we have set terms of order
1+a„n„equal to unity, since they represent

wise, the selvedge amplitude in x'0 contains the
facto~ t pt~ because the light must pass out of the
bulk before, and back into the bulk after, interact-
ing with the selvedge. The corresponding factors
in the selvedge amplitudes of t~ and t„', are ob-
viously (1+r~)t and t„,(1+r~), respectively
Finally, we note that the selvedge response coef-
ficeint has been renormalized again, this time
from n, for an isolated selvedge [Eq. (3.7)] to n,'

LEq. (3.15)]: The selvedge is now interacting with
its own transversq field in the presence of the
bulk rather than with what that field would be if
the bulk were absent.

For p-polarized light, the analysis is similar:
The fields in the vacuum and bulk medium are of
the form

E,(z) = E,
'

J„)e xp i{w, z)+E,P, exp( —i)c,z)

IV. DISCUSSION

As a first example of our general expressions,
we consider the MA model (see Sec. I). In the
coupling theory the equation for P(z) in the selv-
edge is (see Eq. (2.33)]

)4(. )= (o, +G„' 4) —4mi o( )

+ L z —z™Pz' dz'
a' =0 )

(4. 1)

A A A A

The (zk+kz} terms in I. lead to corrections in Q
which are of second order in (kl). Thus we
neglect them, in which approximation Eqs. (2.23),
(2.39), and (4. 1) lead to an N, of the form (3.2),
and we find [cf. Eqs. (3.5), (3.6), and (3.16)-
(3.18)]

nOo = 2 ECO '4))0 (Eo —1)'l )

no» —22&o(E —1)l )

n„=—,'ik'(u, e.) '(e, —1)l .
(4.2)

Comparing Eqs. (4.2}, (3.14), (3.15), (3.17),
and (1..2) with the exact solutions of the MA model
as usually given is not very illustrative. How-
ever, in an appendix we write these exact solu-
tions in a form that shows that Eqs. (4. 2) are in-
deed good approximations of the exact bare re-
sponse coefficients of the selvedge and that Eqs.
(3.14), (3.15}, (3.17), and (1.2}do indeed take
into account the interaction of the selvedge with the
bulk to all orders.

It is interesting at this point to set e, equal to
e, the dielectric constant of the bulk; then the
Fresnel coefficients should be essentially un-
changed. As an example, we look at ~,' for p-

terms of order (kl)2 in the response of the iso-
lated selvedge. If n,„=0, the Fresnel coefficients
are found to be given by Eqs. (3.14) and (3.15)
with n,' and n„replaced by n,' and n~, respective-
ly, and of course using the bulk Fresnel coeffi-
cients for p polarization,

M) )Eg —)OyE) 2(6)6y ) ZU 4

(e,=1). If n„=0, the Fresnel coefficients found
are those obtained by using Eq. (3. 19) in Eq.
(3.14) along with replacing n„by n, »,-n,' by n», -
and (1+r, ) by -(1-r~). The sign differences
occur simply because the z components of pp, and

pp are the same, while the k components differ
by a sign. If both np~ and n„are nonvanishing,
the Fresnel coefficients are more complicated
but their interpretation is just as straightforward.
In particular, rp' and x', are found to be given by
Eqs. (1.2), (3.17), and (3.18).
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y +y n +n
om

QtS 1-n. -n-y
(4.3)

and putting Eqs. (3.17), and Eqs. (4.2) with e,
=e, in Eq. (4.3) we find

1 —L(M„+ zvo)L
0))) ()))I 1 z (I gg )I

=r e" o'[1+O()('L')],

where (( is here the large~ of ~zo„) and
~

zo, ~.
More generally in this section it represents the
largest of all such wave-number terms that ap-
pear. Using the exact M~s (with e, =e„) instead of
the approximate M~~ (cf. Sec. III and the Appen-
dix), we obtain

(4.4)

()' 2~~0'
~om = &ome (4.5)

the phase factor exp(-2iu, l) appearing because of
the reference of the incident and reflected beams
to z =0 rather than to the surface of the material
of dielectric constant e at z=/. We see that the
coupling theory predicts this factor correctly to
first order in vl.

As a more important check we now consider the
dependence of Eq. (4. 3), for any seLvedge, on the
location of the division of the medium into bulk
and selvedge. It is clear from the calculation
leading to Eqs. (4. 2) that moving the division
plane a distance l' into the bulk changes the re-
sponse coefficients according to

n„-n„+—,'ik'(zu, e„) '(e„—1)l',

BD),
~ S~), + 2218~(E —1)l

and using Eqs. (4. 6) in Eq. (4. 3) we find

[I -i((v +n), )L']r, +r, n, +n
1 —L(nr -M, )L

' —n, nr, —

(4.6)

=e" o'[1+0()('L")]

polarized light; the other Fresnel coefficients may
be investigated similarly. The first of Eqs. (1.2)
is in general equivalent to

this plane subject to Eqs. (2. 17), any bound sur-
face excitations, which are specified" "by the
poles of xo' satisfy the dispersion relation

] -n, -n y =P (4.8)

to first order in ~l. Invariance to this order is
consistent with our deviation in Sec. 0 where the
approximations made, such as the neglect of the
variation of the incident field E,(z) over the selv-
edge, and keeping only the lowest moment of the
current distribution of the selvedge in calculating
its radiation, are analogous to the dipole approxi-
mation made in atomic theory'~ where the same
order of accuracy is achieved. Further, since
in general the fields of the selvedge in the selvedge
are evaluated to first odrerin KL [cf. Eqs. (2. 29),
(2. 35), (2.31), and (2.32)], any resonances in the

no& are calculated to that order.
As a second example, we consider a clean metal

surface in the approximation of a jellium back-
ground and electron dynamics described by the
RPA. ""'"We consider p polarization and
write expressions for the bare response coeffi-
cients n„and no~ in terms of the dielectric 'tensor

e(z, ')=05(. -z')+4vtl(, .') (4.9)

at points z, z ' near the surface. It will be clear
that our results can easily be generalized to more
sophisticated models for clear metal surfaces and
metal surfaces with adsorbed molecules.

To evaluate N, we must determine Q as a func-
tion of E,'-=E, + Cor Q (Eq. (2. 39)]. For simplicity
and to facilitate comparison with earlier work we
only evaluate No in the 0 = 0 limit. In that limit
the fields in the selvedge and in the bulk at short
distances [in the sense of Eq. (2. 17)] from the
selvedge are given by [cf. Eqs. (2. 25) and (2.33)]

z (.)=z'
E,(~)=z,', -4)TP, ( ),

and from the second of these we formally obtain

z,(z) = (~„'(.))z,', ,

+(r n, +n )[1+0()d')]Om

(n, + n r, )[i + O()d')]
(4.7)

where, following Dasgupta and Bagchi, "we have
put

Now the correction terms in the fraction in the .

second of Eqs. (4.7) are of order ~'ll', since the
bare response coefficients are of order (d [cf.
Eqs. (2.23), (2. 39), (3.6), and (3.18)]. Thus,
for &l' & ld«1 we see that except for an unim-
portant phase factor exp(-2iw, l'), which arises as
in the example of Eqs. (4.4) and (4.5), the reflec-
tion coefficient ro is unchanged to order al'' by
moving the division plane of bulk and selvedge a
distance /'. In particular, for any placement of

(z,.'(z)) = J'.,'(z -')d'-'

no, = &i&'wo' 1 — e„z dz,
0

no~
——ply)0 Cpp Z —1 CP p

0

(4. ia)

and likewise for other tensor components. Then,
using Eqs. (2. 23), (2.39), (3.18), (4. 10), and
(4. 11) we find
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n -n„',-ia-'(w, e) '(e 1—)l',

no& no& —2iwo(e —1)l
(4. 14)

without changing our results for r,' (or the condi-
tion for its divergence) to first order in v/'. Do-
ing this is not necessary, but it formally simpli-
fies our results, for putting

~(z) :=~e(l' -z) + e(z l'), -
~-'(z) =~-'e(i' -z)+e(z -l'),

(4. iS)

we obtain

where we have extended the upper limit of the in-
tegrals from l to +~, since in that range the inte-
grands vanish. Now suppose the edge of the jel-
lium occurs at z =/', where of course 0 &l'&l.
Then, since vl'«1 we may, according to the
discussion above, change our response coeffi-
cients according to

where

(4.21)

If ~=0, the SPD»educes to

Kp6+zU= 0
p (4.22)

the usual SPDR"" if the presence of the selvedge
is neglected.

As mentioned in Sec. I, Dasgupta and Bagchi"
show that the SPDR may be determined by extend-
ing the range of arguments of x~ and applying the
condition xo —0. However, since they then apply
this to an expression for xo following from a sim-
ple series expansion in (l/A. ), it might be expected
that their estimate is only correct if the shift of
the SPDR from the SPDR in the absence of the
selvedge is small. This is indeed true: They
obtain

+p = yak lUp 6 g — 6 g dg,
~ 40

(4. 16)
2kmn(k2 ~&)&/2 ~

k (1 + e ) —co~e
(4.23)

n„= 2 ik'(w, e ) '( e - I)n,
no@= 0

where

(4. 17)

(4. ie)

is an effective length, "are now formally indepen-
dent of the choice of origin.

The optical properties of the surface now follow
from simply using Eqs. (4. 17) and (3.17) in Eq.
(1.2) and in the corresponding equations for the
transmission Fresnel coefficients. In particula~,
the surface-plasmon dispersion relation (SPDR)
is given by Eqs. (4.8), (4.17), and (3.17). It
may be written as

(4. 19)

where we have put w= (~'e —k'}'l'(=w„), or in the
equivalent form

2k b, (k' — ')'~' ef
k'(I+r) -(g'r (4.20)

+oa —»~o 6&z 8 —6 Z d
w QO

for our new coefficients. We have extended the
integrals to -~ since for -~ &z &0 the integrands
vanish. The integral in the expression for +pg

vanishes (in the k= 0 limit to which we have re
stricted our determination of Np; see Bagchi" and

Dasgupta and Bagchi"), and our response coef-
ficients

in our notation, and it is clear from Eqs. (4.20)
and (4, 21) that the solution of our more exact Eq.
(4. 19), which is written here for the first time,
reduces to Eq. (4. 23} only if w,e+ w = 0 at the
solution of Eq. (4. 19). We note that Eq. (4. 19)
may also be obtained by taking our expression
(1.2), (3.17), and (4. 17) for r,'„and setting r,'„—0 under the extension of range of arguments
discussed by Dasgupta and Bag chi.' Further,
applying this condition to Eq. (4. 17) and the ex-
pression (1.6} in which the renormalization of the
selvedge response coefficients is neglected, -leads
to precisely the approximate result (4.23).

Now, it has been pointed out"~ "~' ~4 that, for
clean metal surfaces, it appears that the SPDR
is not too different from Eq. (4.22). In particu-
lar, the RPA does not seem to lead to any of the
'multipole' surface plasmons predicted by appli-
cation of the hydrodynamic theories. " There-
fore, for elean metal surfaces there will in prac-
tice be little difference between the solutions of
Eqs. (4. 19) and (4.23). However, surface excita-
tions with dispersion relations drastically dif-
ferent from Eq. (4.22) can appear if adsorbed
molecules or atoms are present. ' '4" The solu-
tion of the equations corresponding to Eqs. (4. 19)
and (4. 23) will then be quite different, and it is
important to use the correct renormalized result
that follows from the coupling theory we have de-
veloped here. The application to such problems
of that theory, which also gives the correct values
of the Fresnel coefficients both near and far from
the yoles indicating these excitations, are planned
to be considered in future publications.
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APPENDIX

while

n'„, =-,'ik'(w, e, ) '(z, —1)lc~
+ zoo(e, + 1)lc g)

—iw~i~ g,
(A7)

M, (z) =
'exp (iw, z )

exp(-iw, z).
(A1)

for +y&l and ~, &0, we have

eo(z~)=Ma(z~ —l)M~M, (l)M, M (-zz)e (zz)

=M,(z, )M M M (-.,)e (z,),
where

Mz =Mo(-l)M„M, (l)M„

and we have used the identity"

M)~ M~q —M;~.

(A2)

(A3)

(A4)

For s —and p-polarized light M~ takes on different
values, Mz=Mz'~. From Eqs. (3.10), (3.11),
(3.19), and (A1) we find

'j. +n' n"
A C

(A5)

where

We indicate here how to write the exact solution
of the MA model' in a form which permits easy
comparison with the results of the coupling theory.
Our notation is as defined in Sec. DI. Introducing
propagation matrices

n', ~ =-', ik'(w, e, ) '(z, —1)lc ~

—z 2 w(ofg —1)lc g y

mol «1,
(A.9)

zo, l «1,
we have l„, l~, l~, lD = l, and to first order in
w, l and w, l [Eq. (1.1)] we see that M~ ~ go over to
M~~, and thus the results of the coupling theory
approach the exact results. In particular, the
coupling theory describes the interaction between
the bulk and the selvedge to all orders since the
setting of M~ =MD only approximates the bare
response coefficients of the selvedge.

l„=-', (iw, ) '(2 —e ' ' —e'"-'),

l~ = —,'(iw, ) '(e'"+'+ e '"-' -2)
l~= ,'(iw,-) '(e'" ' —e-'""),
lD = -', (iw, ) '(e' ' —e '"-'),

where w, =w, +wo. Looking at Eq. (3.12) and the
corresponding equation for p polarization, it is
clear that M~'~ [Eqs. (3.5), (3.16), and (3.17)],
with the bare response functions n,~ given by Eqs.
(4. 2), are the approximations which the coupling
theory gives for M~'~. For
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