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A method of estimating the energy of an impurity in a host electronic system using density-functional theory is
presented. The impurity ion plus its electronic screening cloud is treated as a unit and is used to define a quasiatom.
The energy of the quasiatom is a functional of the host electron density in which it is immersed. In the simplest
approximation it is given by the energy of the impurity in a uniform electron gas having a density equal to that of the
host at the position of the impurity nucleus. This uniform-density approximation (UDA} is tested for light atoms in a
variety of model and realistic situations and is found to be successful in reproducing qualitative trends. By
developing a perturbation expansion for a weakly inhomogeneous host the UDA is shown to be the leading term in a
rigorous expansion of the quasiatom energy in gradients of the host electron density, and corrections to second. order
in gradients are determined. As an example, these corrections are used in the calculation of the binding energy of'a
helium atom to a vacancy and excellent agreement with exact results is achieved. The perturbation expansion also
suggests an ansatz for the quasiatom energy in which the host electron density is sampled by the quasiatom
electrostatic potential. Tests of this ansatz are equally successful.

I. INTRODUCTION

This paper concerns the energy of an atom that
is added to an arbitrary electronic host system,
such as to the interior of a metal, a metal surface,
or a molecule. Methods for treating these sys-
tems to varying degrees of accuracy are already
available. However, not all methods are practical
and the specific method chosen is generally dicta-
ted by the complexity of the host system being con-
sidered. For example, small molecules can be
treated using configuration interaction methods
which represent perhaps the most fundamental ap-
proach to the many-electron problem. However,
for extended systems such as solids, this approach
is not feasible and alternative methods must be
sought. For these systems, density-functional
theory" offers an equally fundamental approach
which, with the frequently used local density ap-
proximation (LDA), appears to provide a good ac-
count of electron exchange and correlation effects.
Aside from the I DA the only limitation of this
method is the successful solution of a single-par-
ticle Schrodinger equation from which the elec-
tronic density can be obtained. This limitation is
steadily being eroded by advances in computational
capability and even complex situations, such as an
impurity in a metal' or at a metal surface, ' ' can
now be handled either directly or when represented
by embedding schemes' or cluster calculations. '
The time is close, when, with sufficient computa-
tional effort, reliable energies for atoms in com-
plicated host systems will be obtainable. Our aim
here is not to add to these direct attacks on the
problem, but rather to develop a qualitative scheme
that can be used to correlate the behavior of a gi-
ven atom in diverse hosts and that can yield, with

little effort, rough predictions for energies in com-
plex situations of practical interest.

An interstitial impurity in a metal provides an
illustrative example of the kind of situations of in-
terest. Unless the excitation spectrum of the im-
purity is the object of study, much of the work in-
volved in the direct approaches is redundant and in
some cases counterproductive. For example, in
determining the energy of the impurity, the inter-
nal electronic structure must be recalculated for
each new impurity position. Both the valence elec-
tron states and core levels change but, as we
shall see, it seems that these are not independent
of one another but conspire together to give a total
electron density and energy for the impurity that
are rather close to those of the free atom. How-
ever, changes of the density or energy from the
free atom do occur, and it is these differences as
the impurity is taken from one host to another that
interest us. The focus of our attention is the de-
gree to which these changes in the impurity atom
are determined by the local host environment. To
the extent that they are, the atoms of a perfect
crystal can themselves be thought of as impurities
in a host which thus provides a unified view of
atoms in solids. Of course, only selected elec-
tronic properties can be considered in this fashion
since many are strongly influenced by long-range
crystalline order (e.g. , single-particle energies,
transport, etc.).

The emphasis in our approach is on treating the
whole atom —nucleus or ion and electron polariza-
tion cloud —as a single unit or "quasiatom. " Since
the unit is electrically neutral its energy will be
unaffected by electric potentials due to charge
distributions far from the atom, e.g. , electric di-
poles at the surface of a metal. By concentrating
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on the atom and the way it is modified by the host
rather than the ion as in pseudopotential theory, "
the cancellation of large energies that result when
valence electrons are stripped from the ion in one
situation and replaced in another is avoided.

We try to identify those parameters of the host
system that affect the quasiatom. For small atoms
at least, calculations indicate that the quasiatoms
are compact objects with localized energy densi-
ties, and it seems that the dominant feature deter-
mining the energy is the local host density. We
are therefore led to a local density approximation
for the whole atom which we shall term the uni-
form densi-ty aPPxoximation (UDA). The quasi-
atom energy as a function of local density can be
calculated once and for all in great detail by treat-
ing the atom as an impurity in a uniform electron
gas. These energy curves for different atoms are
in a sense universal since the quasiatom energy is
determined (qualitatively at least) by a single pa-
rameter of the host, the host electron density at
the position of the impurity nucleus, although more
accurate results will undoubtedly involve addition-
al host parameters.

The UDA was suggested in an earlier paper"
(referred to as I) and tested in some simple model
situations. The same idea has also been used by
Larsen and Ngrskov" for treating the behavior of
H in metal vacancies and by N(((rskov and Lang" for
s tudying chemisorption. Surface reactions have
also been considered by Lundqvist et al. ' from a
similar viewpoint. In this paper we present more
extensive tests of the UDA which demonstrate its
utility in various physical situations. In addition
we develop a general theory of the quasiatom en-
ergy which provides ways of transcending this
lowest-order approximation; these corrections are
also tested.

The outline of the paper is as follows. In Sec.
II we consider the general definition of the quasi-
atom energy in terms of density-functional theory.
A convenient separation of the total energy is made
into a localized self-energy of the quasiatom and

its electrostatic interaction with the unperturbed
host system. This then motivates the UDA for the
atom. The basic ingredient of the local approxima-
tion is the energy curve for the atom in a uniform
gas as a function of mean electron density. The
method for calculating these curves is described
in Sec. IG, and a theorem relating the slope of the
energy curve to the average electrostatic potential
of the quasiatom is proved. Section IV contains a
discussion of the energy curves for several light
impurities, (H, He, Li) and characteristic features
of these curves are accounted for. The UDA is
then tested by applying it to various model situa-
tions such as the binding of an impurity to a va-

cancy, the chemisorption of hydrogen on a metal
surface, and small molecules. In Sec. V we return
to the question of justifying the uniform-density
approximation by investigating its relation to a
perturbation expansion of the quasiatom energy for
a host system in which the variations in electron
density are small and slowly varying. This analy-
sis suggests quantitative corrections to the UDA

and these are explored. The final section discus-
ses prospects of the model for further applications
as well as extensions of the basic concepts.

II. QUASIATOM ENERGY

Consider a host system in which the ground-
state electron density is n, (r) and in which the ex-
ternal field acting on the electrons is due to a rigid
positive charge distribution n,'(r). The total
ground-state energy of the host can be written as
a functional of n, (r),

n„(r,)n„'tr,)
'rl2

n, (r, )n, (r,)+-, dr
+12

where the first term in (l) is the kinetic, ex-
change, and correlation energy functional and the
two remaining electrostatic terms are due to the
external field and electron-electron interactions,
respectively. It is convenient to extract the elec-
trostatic term explicitly from the total energy
functional in the manner above so that any long-
range electrostatic interactions can be treated
properly. The effects concealed in G[n, j are ex-
pected to be short-ranged.

Consider next the effect of adding an external
positive charge distribution bnz(r) of total charge
Z to the host. To be specific, we shall think of the
perturbation as representing an "impurity" which
is located interstitially in a "crystal" at the origin
of coordinates. For simplicity we neglect any
lattice relaxation around the impurity. The total
ground-state electron density nz(r) for the new
configuration can be expressed as

n (r) = n (r) + Anz(r),

where t)nz(r) is the impurity screening cloud. If
Z extra electrons are added along with the nucleus,
t),nz(r) will be localized in the vicinity of the im-
purity (otherwise, in the case of a metal, a surface
contribution to Anz will occur). The neutral unit
consisting of the nucleus and its screening cloud
will be termed a quasiatom.

The total energy for this situation will now be
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nx (r, ) [n,'(r, ) + anx (r,)], „nH(r,)n~(r, ) „n,"(r, )anH (r,)
+12 +12 12

I

and the change in energy associated with inserting the impurity can be written as

AE= Gn —Gn — dr dr ' ' —' d d ' + d
+12 +12

(4)

where

b,n~ (r, ) —Anx (r,)
Ir —r, f

is the electrostatic potential of the screened im-
purity,

The term in large parentheses in (4) can be re-
garded as the self-energy AE„„ofthe impurity
atom and, following the discussion in I, it is rea-
sonable to assume that this self-energy is associ-
ated with a localized energy density. It contains
the kinetic, exchange, and correlation energy
through Gjn~] —G[n, ], and the two electrostatic
terms account for the interaction between the im-
purity charge and its screening cloud and the clas-
sical electrostatic energy of the screening cloud.
It is evident from (4) that the self-energy can be
determined once t)nz(r) and n, (r) are specified.
Clearly it will be different from the isolated im-
purity atom energy E„andthi, s change should in

some sense reflect the impurity's local host en-
vironment. This can be stated more formally by
noting that t)nH(r) is a, functional of the potential

v, (r) associated with the positive charge distribu-
tion of the host. But v, (r) is itself a unique func-
tional of the host density n, (r) and so, for a given

impurity, bn~(r) can be viewed as a unique func-
tional of the host electron density distribution
Anx [n, ]. Thus tEE is itself a functional of n, (r).

Great benefits could accrue from identifying the
features of the host environment of the impurity
that determine its screening cloud and the corre-
sponding change in energy from the free atom, and

the remainder of this paper is devoted to a first
attempt at this problem. Our ultimate goal is to
express quantitatively the modification of the im-
purity atom energy in terms of accessible host pa-
rameters. It is to be hoped that the host electron-
density distribution in the vicinity of the impurity
plays the dominant role here and that it will be un-
necessary to have detailed knowledge of the inter-
nal electronic structure of either the impurity or
host (such as the perturbed band structure).

The additional term in (4), t)E„,takes explicit
account of the electrostatic interaction between the
impurity quasiatom and the host. Since both of
these are electrically neutral the interaction is
double screened. Because of this it should be con-

t

siderably smaller in magnitude than the single-
screened interactions that usually arise in expres-
sions for the energy. For instance, the structure&
dependent part of the energy AE calculated using
pseudopotentials to second order in perturbation
theory involves a pair potential with Fourier trans-
form

u)E (q) u)H(q) 1 4)E
pEH(q) 4 E 2 '~& 1 ~E~H

q
(6)

j ~ f ~
an, (r,)an'(r, )

12

anx (r, )AH (r,)
'F1 2

(6)

where n, =n is the mean electron density of the
jellium. If the electron density in the host is slow-
ly varying on the scale of the impurity quasiatom,
then

aE = ~E(n, (0)),

where n, (0) is the host electron density at the ori-
gin where the impurity resides The unif.orm-den
sity approximation (9) is the leading term in an

expansion of (4) in gradients of the host electron

where u, Z, and c are, respectively, the bare
pseudopotential, the valence, and the dielectric
function; the subscripts refer to the impurity (I)
and host (P) atoms. To avoid double counting of
the electron interactions, (6) is single screened.
In contrast the impurity-host interaction that would

appear in the final term of the pa, rtition (4) is

u, (q) u) „(q) 1 4)E
)= '4,", 1

4np'q ~ ~q) q

which at small q differs from (6) by a. factor 1(s(q)
-Et /()I'+q'T„), where q~'„ is the Thomas-Fermi
screening length. The second-order pseudopoten-
tial expression for AE is of course equivalent to
(4) in the weak potential approximation, but the
partitioning of the energy chosen here may prove
more convenient in some applications.

In the jellium limit where the host positive
charge is smeared out to form a uniform continuum

the impurity-host electrostatic interaction
vanishes and (4) becon)es
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density. It is a local density approximation for the
whole quasiatom, ion plus valence electrons. In
Sec. V the UDA will be investigated further and
corrections to it suggested.

The energy zero of bE in (4) is such that the
impurity energy with respect to the neutral free
impurity atom is AE —E,. Qn inserting the im-
purity, Z electrons as well as the impurity ion
are added to the host so that the potential energy
zero in the host is irrelevant and in particular sur-
face dipoles have no effect.

III. IMPURITIES IN JELLIUM

The central quantity entering the uniform density
approximation is the energy of an impurity in a
uniform electron gas (jellium) as a function of
mean gas density. As shown by Kohn and Sham'
(KS), a formal solution of this problem is straight-
forward within the density-functional theory. The
interacting many-body system can be recast into
a system of noninteracting particles moving in an
effective external potential,

(10)
5n „(,)

where P~ is given by (5) and E„,[n] is the exchange
and correlation energy functional. The electron
density is given in terms of the single-particle
wave functions g,. (r) by

~,(r)=g 10;(r)l',

where the sum in (11) is over bound and continuum
states having single-particle energies c,. less than
the chemical potential p,. The energy bE(n) can be
written explicit'ly in terms of the self-consistent
wave functions and energy eigenvalues of this non-

interacting system.
In practice some approximate form for E„,[n]

must be chosen. Several workers have reported
energies for light atoms in jellium using the local
density approximation in which E„,[n] is defined
in terms of the exchange and correlation energy
of a uniform electron gas. Results for H (Ref. 14),
He (Refs. 15 and 16), and I.i (Ref. 1'7) for a range
of mean gas densities have appeared. The results
of different authors are in agreement apart from
some small differences due to different parame-
terizations of electron gas data which have been
used. Given a specific form for E„,[n] the numeri-
cal uncertainty in bE (n) cannot be more than a2
x10 ' hartrees.

A generalization of the KS procedure to include
spin polarization has been made by von Barth and
Hedin. " Separate effective potentials for up- and
down-spin electrons were introduced, and the de-

pendence of E„,on the spin polarization g(r)
= [n& (r) —n& (r)](n(r) as well as the density n(r)
=ni(r)+ni(r) was included. Using parametrized
data for the ferromagnetic electron gas several
authors" have treated H in spin-polarized jellium.
Particle density and spin polarization distributions
were reported but no impurity energies were gi-
ven.

In the paramagnetic case, the impurity energy
has been calculated either by direct substitution
into the energy functional or by use of the Hell-
man-Feynman theorem and an integration over
coupling constant Z. This latter method empha-
sizes the localized nature of the energy density
associated with AE." To interpret this energy it
is convenient to visualize the insertion of the im-
purity as proceeding in three steps: (i) Z elec-
trons are added to the system with an expenditure
of energy Zp. , the excess charge residing on the
surface ot' the jellium sample. (ii) The nucleus
of charge Z is inserted into the gas zoithout al-
lowing the electrons to relax in its presence. The
energy change for this step is simply the energy
Zbg required to surmount the electrostatic poten-
tial difference bQ between the interior and exter-
ior of the sample. (iii) Finally, the electrons in
the sample relax to screen the impurity resulting
in what may be termed the rearrangement energy
4E~. Combining these terms gives the impurity
energy bE = bER + Zbg + Zp. = bE„+Zg, where the
second equality introduces the internal chemical
potential of the electron gas. The rearrangement
energy AE~ is analogous to the energy of the iso-
lated impurity and through the HeQman-Feynman
theorem can be expressed in terms of the screen-
ing charge density Mz(r) for various coupling
constants Z. Both ~„and p, depend upon the lo-
cal properties of the gas of density n. In con-
trast, the thermodynamic potential, AQ = AE —Zju, ,
on which most authors have concentrated is not a
local quantity. The subtraction of Zp, removes
from the expression the work done in adding Z
electrons but as a resuit, bQ= bEz+ Zbg and so
depends on a nonlocal property, namely, the poten-
tial energy difference 6P. For this reason it is
preferable to base a theory on approximations to
AE and not to AQ. Tests of the UDA for impurities
in nonuniform hosts described in the next section
support this point of view.

%e shall now show that in addition to the energy
at a particular 8 a simple expression also exists
for the slope of the energy curve dbE(dn. This
expression is made use of frequently in the follow-
ing sections.

According to the theorem of Hohenberg and
Kohn, ' the density of an electronic system in the
presence of an external potential v(r) can be ob-
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tained from the variational principle d dPg
dn dn dedr —y, (r) =— (19)

(12)

m (n+%7) = Q„.,„[nz+~nz]—Q. ..„[n+6n]

z+p(n &+n, ) . (14)

But the explicit change in the energy functional
is given by

E„„„[n]= E„[n]
6n[Z&(r, )+n -n(r, )]+ d X'1 d X'2

12

so that using (12) we obtain

n„... [n, +&n,]=a„[n,]

+ dr, dr, 6n[z&(r, )+n -nz(r, )]
12

d/J,
=On (W, +Z)+ O(6n~) .
dn

(16)

Similar ly,

n„.,„[n+6n]=n„[n]- 6 A, +O(6-2). (IV)

In this form variations in the particle number N
are allowed. Again we are interested in the situa-
tion of a point charge with M~(r) =Z5(r) in a uni-
form electron gas with n,'(r) =n. The energy with
and without the impurity will be denoted in the pre-
sent argument by E„[n~]and E„[n],respectively.jpg Z 0
The impurity energy (8) is then

aE(n) = n„[n,] —n„[n]+Zp, (n),

where the argument of AE emphasizes that a gas
of density n is being considered. We now sup-
pose that the density of the positive background is
increased by a small amount, n-8+On, with a
corresponding increase in electron number to en-
sure charge neutrality. There results a change in
the impurity density, n~-n~+ 5n~, as well as in
the external potentials, v, - v, +5v, and v~- v~
+ 5v~. The impurity energy in this new situation
1s

so that any curvature of the energy curve is re-
lated to variations of the mean Hartree potential
with mean density. Such variations reflect the
degree to which the quasiatom responds to
changes in the ambient density.

The slope theorem (18) is exact and does not
depend on specific assumptions for the energy
functional (e.g. , for E„,[n]). It can be proved by
alternate methods such as those used by Budd
and Vannimenus" in their derivation of various
sum rules for the surface properties of jellium.
On a practical level (18) is useful as a check of
self-consistency in the solution of the impurity
in jellium. Alternatively, it can be used to add
detail to the &E-vs-n energy curve, since a
single self-consistent calculation at a given n

yields both ~ and its slope. Equations (18) and

(19) will be used in the interpretation of the en-
ergy curves for the light impurities. discussed in
the next section and in the formal development of
the uniform-density approximation for an impurity
in a nonuniform host (Sec. V).

IV. UDA FOR LIGHT ATOMS

Energy curves for some light atoms in jellium
mill now be presented, and their use in the UDA
will be investigated for a few examples of non-
uniform hosts. He, H, and Li mill be considered
in turn, this order corresponding to the increas-
ing complexity of their interactions with the host.
The self-consistent screening density and energy
for these impurities in jellium have been recal-
culated using numerical algorithms described
previously. '4 Self-consistency was achieved by
the method of Manninen et al.2' The local den-
sity approximation (LDA) was used in these cal-
culations with the spin-dependent exchange-cor-
relation energy function taken from the mork of
Gunnarsson and Lundqvist. " The general method
for obtaining the energy curves is of course not
dependent on the LDA and any improvements to
E„,[n] can be incorporated in future work.

A. Helium

Subtracting (17) from (16) and taking the limit
@s-0, we find

where again pz(r) is the localized Hartree poten-
tial of the impurity (5). Thus the slope of the
&E-vs-ri curve is given simply in terms of the
mean Hartree potential of the quasiatom in a
gas of density n. Straightformardly we have

The energy curve for He in paramagnetic jel-
lium is shown in Fig. 1. The fact that the curve
is devoid of structure will be seen to be indica-
tive of an inert atom. It increases monotomically
with increasing mean electron density" [~Ln)
= -2.860+ 11.5n —26.0n a.u. fits the calculated
points to afew millihartree], has little curvature,
and, at lorn densities, tends towards the energy of the
free atom as calculated within the Kohn-Sham
method (-2.860 a.u. in agreement with Gunnarsson
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FIG. 1. Energy curves versus mean density n for He
and Li relative to the free-atom energies [-77.79 eV for
He (Bef. 22) and -200. 82 eV for Li (Bef. 30)]. The re-
laxation energy AE~ for He is also shown. relative to the
free atom.

and Lundqvist22). Slopes of the energy curve cal-
culated using numerical interpolation agree with
values calculated from the exact relation (18) to
1% except at the highest mean densities consid-
ered where the discrepancy was 5%. We suspect
that this was due to truncation of the integration in
(18) rather than uncertainty in the energy values
themselves.

The doubly occupied 1s state is bound throughout
the range of mean densities presented in Fig; 1
and merges with the conduction band only at the
exceedingly high density corresponding to x,
=0.5 a.u. . As found in previous atomic calcu-
lations' the Kohn-Sham is energy eigenvalue for
the free atom (-0.583 a.u. ) lies considerably above
the Hartree-Fock (HF) value (-0.918 a.u. )." In

the electron gas the level is even shallower but
more surprising is the substantial variation of
the 1s energy over the metallic density range,
rising from -0.445 a.u. at r, =4 to -0.346 a.u. at

x, =2. This shift is large enough to reduce the
1s contribution to the screening charge density at
the nucleus by 10%. Thus the assumption of a
rigid ion core is not particularly good even for
He, and ion pseudopotentials formulated within
the KS theory which assume a rigid core bear
some reexamination. 'The decrease in core den-
sity near the nucleus with increasing host density
is compensated by an increase in the contribution
from the perturbed continuum (or scattering)
states, which leads to a net increase in the total
displaced density shown in Fig. 2. Homever, the

FIG. 2. Screening charge density as a function of the
distance from an He nucleus in jellium (x,=1.6, long-
dashed curve; x, =4. 0, short-dashed curve). The free-
atom density is shown as the solid curve. The inset
shows the densities beyond r= 1.0 a.u. on an expanded
scale.

inertness of the free atom is reflected in the total
quasiatom density through its relative insensitivity
to the mean host density.

Another aspect which demonstrates the rigidity
of the He quasiatom is the rearrangement energy
bE„=bE (P) —Z p, (n), which is shown in Fig. 1.
Except at very low mean densities this varies less
rapidly with n than ~. In view of the behavior of
the rearrangement energy &E~, the strong in-
crease in ~& with mean density can be attributed
to the increasing energy required to insert two
extra electrons into the electron gas. This rate
of increase can alternatively be considered in
terms of the mean Hartree potential of the quasi-
atom, Eq. (18). It is of interest to observe that
the value of the mean potential in the metallic
density range (P ~=-11.4 a.u. ) is quite different
from the value for the free atom (Pz, --5.34 a.u. ).
The difference is due to the outward relaxation
of the atomic screening cloud when the atom is
placed in a metallic environment. The mean Har-
tree potential is a direct measure of this relaxa-
tion, since it can be expressed as a radial moment
of the screening charge density

(20)

which is particularly sensitive to the oscillations
of the density in the outer regions of the quasi-
atom. Presumably the mean quasiatom potential
mill tend to the atomic value in the low-density
limit. However, in the metallic density range its
variation with mean density is small and the lack
of curvature in the energy curve is another mea-
sure of the inertness of the He quasiatom. Linear
energy curves are to be expected for any inert
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n,'(r) =no(r -ft), (21)

where the unit step function B(x') =1 if x) 0 and

zero otherwise and where the valence Z„is
defined through -', m&'n =~„.This model has been
used extensively as a basis for calculations of
monovacancy formation energies for metals. "
The electron-density distribution and energy can
be computed exactly within the KS method. This
nonuniform system is the host. The problem with
an atom at the center of the vacancy can also be
solved, and the energy difference E~ between the
atom in the vacancy and the atom in the bulk
jellium detached from the vacancy can be cal-
culated. Calculations of this sort were first per-
formed by Manninen et al."and by Ngfrskov. "

If n, (r) is the electron density for a vacancy in
jellium, then the UDA for the quasiatom gives
simply

EP"= ~(n, (0)) ~(n—) . (22)

Results of the UDA (22) and of the "exact" cal-
culations for He impurities are given in Table I.
There is binding to the vacancy in all cases, the
He atom preferring the low-electron-density
region in the vacancy in accordance with the posi-
tive slope of &E (n) (Fig. 1). Bearing in mind the
simplicity of the UDA there is good agreement

atom.
The UDA for the quasiatom has been tested by

comparing the results of (9) with results, exact
within the KS method, for simple nonuniform
hosts. Some comparisons were made in I between
the UDA and a few results for H, He, and Li
situated at the center of a vacancy in jellium. We
have carried out more extensive calculations for
a range of mean densities and vacancy valencies.

A vacancy in jellium is taken to mean merely
a spherical hole in the positive background so that

AE'(yg (0))= aE (pg (0))y Z (p + P (0)) . (23)

The exact electrostatic potential of the host at the
position of the impurity, $(0), now appears.
Since the chemical potential in the bulk of the
sample is given by p, = p. (n) —Q(~), the difference
in the two approximations is

&E'(n, (0))—&&(n,(0))=Z(P(n) —P( ))

-Z(P[n, (0)] —g (0)) .

(24)

As shown in Fig. 3 this difference leads to a large
discrepancy in the calculated impurity-vacancy
binding energy E~. It can therefore be inferred
that the Thomas-Fermi approximation which
assumes that the constant chemical potential p,

is everywhere equal to p, (n(r))- P(r) cannot be
valid in this situation, otherwise there would be
no distinction between E~ and E~. This also
emphasizes the importance of keeping the quasi-
atom as a neutral unit. Not only are large electro-
static energies such as Zp(0) eliminated but also
the additional Z electrons are localized and only
sample the immediate environment of the impurity
[leading to Z p(n, (0)) implicit in (9) rather than

Zp(n) in (23)).
The success of the UDA for He does not seem

to be restricted to just lower-density regions of

(-10%) though it tends to be poorer at the highest
densities which are substantially above the metallic
range. Figure 3, in which the exact results are
plotted against the results of the UDA, illustrates
the overall situation.

The results of a possible alternative approxi-
mation scheme are also shown in Fig. 3. In this
method one makes a uniform-density approximation
for the rearrangement energy ~~, rather than
for the quasiatom energy ~E, i.e.,

TABLE I. Binding energies (eV) of He in jellium vacancies. &, is the valence of the vacancy. Densities are in
atomic units.

"0(0) no(0) [Eq. (54)] &E [Eq. (53)] E~ [Eq. (22)] Ez [Eq. (33)] E& [Eq. (56)]

1 1.6 0.058 28 0.026 17
2.0 0.029 84 0.01157
3.0 0.008 84 0.002 43
4.0 0.003 73 0.000 73

2 1.6 0.058 28 0.017 53
2.0 0.029 84 0.007 20
3.0 0.008 84 0.001 26
4.0 0.003 73 0.000 32

3 1.6 0.058 28 0.013 09
2.0 0.029 84 0.005 07
3.0 0.008 84 0.000 76
4.0 0.003 73 0.000 17

0.037 40
0.016 73
0.003 51
0.000 87

0.028 34
0.01167
0.001 93
0.000 48

0.022 75
0.008 86
0.001 30
0.00030

-4.65 (-4.62)
—2.37
-0.71
-0.33

-4.46
-2.20
-0.65
-0.27

-3.70
-1.69
-0.60
-0.19

-8.19
-4.92
-1.96
-0.90

-10.5
-6.28
-2.31
-1.03

-11.7
-6.94
-2.48
-1.06

-8.40
-5.63
-2.42
-1.17

-11.5
-7.29
-2.83
-1.28

-12.7
-7.75
-2.99
-1.25

-9.82
-5.88
-2.34
-1.20

-12.1
-7.13
-2 77
-1.25

-12.9
-7.45
-2.91
-1.22

-9.87
-6.04
-2.26
-1.03

-11.7
-7.07
-2.58
-1.17

-13.0
-7.53
-2.67
-1.20
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FIG. 3. Comparison of the exact binding energies of
He to a jellium vacancy with calculations based on vari-
ous approximations. The solid line represents exact
agreement. For each value of ~, indicated, the horizon-
tal group of points bracketed by circles, triangles, and
squares corresponds to a jellium vacancy of valence Z„
=1, 2, and 3, respectively. The solid points are ob-
tained using the UDA tEq. (22)] while the open points are
based on (23). The + and x signs in each group give the
corrections to the UDA using the gradient expansion (33)
and (34) and the sampling ansatz (56), respectively.

the host. One test has been made in which Z„&0
and the host electron density is piled up above the
background. For Z„=-1and x, =1.6 the UDA gives
E~ =+0.369 a.u. in perhaps fortuitously good
agreement with the "exact" result EB =+0.368 a.u.

B. Hydrogen

The energy curve for H in paramagnetic jellium
is shown in Fig. 4. A fairly linear rise at high
mean densities, similar to the case of He, is
seen. This again originates largely from the
cost in energy to insert an extra electron. How-
ever, the displaced charge around the proton is
more sensitive to mean density than in the He
case and consequently the energy curve has more
curvature. The minimum in the energy curve is
a new qualitative feature.

Recalling the exact expression for the slope of
the energy curve (l8), the minimum clearly indi-
cates the changing structure of the quasiatom.
This change has its origin in the formation of a
doubly occupied 1s bound state for n ~ 0.03 a.u. ,
observed by previous authors, ' after which the
sc,reened proton begins to resemble an H ion.
This results in the growth of the first positive
maximum in the Hartree potential as the mean
density is reduced until eventually at n = 0.0025
a.u. (r, =4.6), the mean value of the Hartree po-
tential goes through zero and the slope of the en-

0.0l 0.02
n {a.u.)

I

0.05
I

0.04

FIG. 4. Energy curves versus mean density n for H
for various spin polarizations as described in the text,
relative to the free-atom energy -13.38 eV. The
dashed curve is the J.imiting low-density result given by
Eq. (25). The ordinates of the points correspond to the
energy of H in the MH molecules while the abscissas de-
note the density of the 1VI atom at the equilibrium spacing
R of the molecule. The molecular parameters are ob-
tained from Bef. 34. The atomic densities are obtained
from Bef. 33. The corresponding point (Bef. 35) for the
ground state of H2 is indicated by the arrow. The energy
of H is a].so shown (Bef. 32).

ergy curve changes sign.
The correct low-density limit for H is the H

ion rather than the neutral free atom, since there
is a positive electron affinity for the atom and
the electron gas chemical potential becomes van-
ishingly small. Strictly speaking, this limit, as
well as that of other negative ions, cannot be
reached using the I DA in the density-functional
theory"" but for the range of densities considered
here this failure is of no consequence. Taking
H as the low-density limit, it follows from the
slope theorem (18) that the energy curve approaches
E„from below and has infinite slope at n =o. The
following simple model accounts rather well for
the form of the energy curve in the low-density
region. In the absence of the impurity the elec-
tron gas at very low densities forms assigner
lattice with each electron oscillating in the har-
monic potential V(r) = —,

' r'/r, ' a.u. at the frequency
, =x,' ' corresponding to a ground-state energy

An impurity H atom will sit at some
%igner lattice site and wiD combine with the elec-
tron there to form an H ion perturbed by the po-
tential V(r). Treating the perturbation to first
order we have
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~E =E„+,'~r (r') —(3~n)" ', (25)

where (x') is the expectation value of x' for H .
&E given by (25) approaches E„vertically from
below as required. Using a variational HF wave
function to evaluate (r') [p„(r)= (o.'/v)'~'e
with n = «] there is a minimum at n =0.0033 a.u.
as shown in Fig. 4, but the minimum is too deep.
The reason for this is that the Wigner model is
not applicable for densities near the minimum
in the energy curve. The electrons are delocalized
and so the second term in (25) will be modified
by screening and the third term will be more
closely related to the bulk chemical potential
rather than the Einstein oscillator energy as in
(25). Nevertheless, the qualitative success of
-this simple model suggests that the energy curve
will have a minimum for all atoms with electron
affinities; the minima for 0, the halogens, etc. ,
are likely to be very pronounced. A minimum
means that the quasiatom has maximum stability
at some finite electron density which in the case
of H is about n —-0.0025 a.u.

The vacancy test of the UDA was also applied
to H impurities in I using previously published
data. "'" A few additional calculations for Z„=1
vacancies have been made confiriming the overall
picture reported in I, and all the available results
are summarized in Table II. The agreement be-
tween the UDA and exact calculations is slightly
poorer for H than for He, but a new qualitative
feature emerges which is accurately portrayed
by the UDA. At high mean densities EB &0, the
low-density region in the vacancy being preferred
because of the positive slope of the energy curve.
However at lower mean densities EB becomes
smaller in magnitude and changes sign at about
Na mean density at which point H is more stable
in the bulk than in the vacancy. This coincides
with the minimum in the energy curve and is a
consequence of it.

A further test of the UDA has been made for

the problem of H chemisorption on a jellium sur-
face. The ingredient for the UDA calculation
is the surface-electron-density profile n, (z) as
calculated by Lang and Kohn. " Here z is the
distance from the edge of the positive jellium back-
ground. A number of calculations of H chem-
isorption in this model have been reported" and
the most recent results' for r, =2.07 a.u. cor-
responding to Al and for x, =3.99 (Na) are illus-
trated in Fig. 5. Also shown are the results of
the UDA for x, =2 and 4. All energies in the figure
are with respect to the KS spin-polarized H atom
[E,=-13.38 eV (Ref. 30)].

In the case of Al the minimum in the "exact"
curve occurs at a distance z =0.8 a.u. outside the
jellium surface and is qualitatively reproduced by
the UDA (z,„=1.65 a.u. ). As the H quasiatom is
moved through the surface the local density de-
creases from the bulk value n=0.03 a.u. and its
energy decreases until a point is reached at which
the local density gives maximum stability. The
depth of the minimum with respect to the energy
in the bulk is given well by the UDA. However,
the UDA breaks down at large separations, giving
the dissociation product H rather than H, which
is incorrect since the energy required to remove
an electron from the semi-infinite jellium (3.9
eV for r, =2 as reported by Lang and Kohn") is
greater than the H electron affinity [0.75 eV (Ref.
32)]. The interaction of the H quasiatom with the
surface must in these circumstances be nonlocal.
The addition of the electrostatic energy in (4) to
the UDA should improve matters since P~(v)
becomes long ranges as n decreases, as evidenced
by the large negative slope of the energy curve
[see Fig. 4 and (18)]; however, this can only
delay the breakdown and further work is needed
to resolve this problem.

The results for a low-density electron gas cor-

1.0

Z. n, (0) EVDA
B ~x act

B

TABLE II. Binding energies (eV) of H in jellium va-
cancies. Densities are in atomic units.

0.0

O

LLj

-1.0—
LU

CI

1.6
2.0
3.25 (Z,i)
3.93 (Na)

2.65 (Mg)

3 2.07 (Al)

'Reference 17.
Reference 16.

0.058 28
0.029 84
0.007 0
0.003 9

0.012 8

0.026 9

0.026 17
0.01157
0.001 8
0.000 8

0.002 2

0.004 3

-4.1
2o3

-0.23
+0.11

-0.85

-2.6

-5.5
—3.3
00
0 6b

-1.0
-3.1

-2.0—

0.0
I

1.0
z (a.u. )

I

2.0 3.0

FIG. 5. Chemisorption energies for H at a jellium sur-
face versus distance from the edge of the jellium back-
ground. The solid lines are based on the UDA while the
dashed lines are taken from Ref. 6.
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responding to Na (r, = 3.99) are equally well re-
produced by the UDA. In this case the chemisorp-
tion curve is rather flat with only a very shallow
minimum near z =0.0 a.u. , while in the UDA the
minimum is again shallow and displaced to z =-1
a.u. These results can easily be understood in
terms of the quasiatom energy curve. Since the
bulk density is close to the minimum in the en-
ergy curve, the large change in host density ex-
perienced by the quasiatom as it is moved through
the surface gives rise to a comparatively small
change in energy.

The UDA for H has also met with some success
in treating the diatomic MH molecules where M
is a group-II metal atom. We regard the metal
atom as the host and form the molecule by placing
an H quasiatom in the paramagnetic electron den-
sity n, (r) of the free M atom. ln Fig. 4 points
representing the molecule are plotted where their
coordinates are —the local electron density of the
free M atom n, (R) (Ref. 33) at the observed inter-
nuclear separation R, and the observed binding
energy of the molecule. '4 The points for all these
molecules are clustered around the point of maxi-
mum stability of the H quasiatom, so clearly the
model has some relevance for molecules. How-

ever, this simplest of quasiatom models is not

entirely satisfactory. A more quantitative model
must account for the electrostatic interaction in
(4) and the effect of local density gradients. These
must also be included if the model is to be sym-
metric so that it is irrelevant which of M or H

is treated as the host and which as the quasiatom.
As in the H chemisorption case discussed above
the UDA will break down at large internuclear
separations as the interaction becomes nonlocal.

We have also considered H, . Electrostatic in-
teractions and density gradient corrections should
be no larger than in the MH molecules, and yet
the point corresponding to H, has coordinates"
(0.019 a.u. , -4.752 eV) which is far from the mini-
mum and well off Fig. 4. The resolution of this
problem lies in the complete spin polarization of
the host, in this case simply a free H atom, to
which the H quasiatom is added. In a general
application of the UDA the quasiatom energy as
a function of local spin polarization, & as well as
local density will be required. In the particular
case of H, we require ~(K,n) with & =1.

We have performed self-consistent KS cal-
culations of the energy of H in ferromagnetic
jellium. Two physically distinct cases emerge.
Consider H in paramagnetic jellium with the appli-
cation of a slowly increasing external magnetic
field &,. In this process the energies of the up and
down spin states shift relative to each other and,
in order to maintain a common chemical potential
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FIG. 6. Schematic fugure of the occupied electronic
states for H in jellium for increasing spin polarization:
(a) paramagnetic state, {b) intermediate spin polariza-
tion, (c) singlet state, and (d) spin-polarized case.

for both spin components, a net spin polarization
develops having a value g=(nI -nI)/(nI+nI) far
from the impurity. For n z 0.03 a.u. there is a
doubly occupied 1s state which is also influenced
by the spin polarization. The majority-spin bound

state becomes less tightly bound (with respect to
the bottom of the majority-spin continuum), and

minority spins begin to dominate in the screening
cloud. The situation is illustrated schematically
in Fig. 6. If g is increased, the majority-spin
bound state eventually merges with the continuum,
leaving. only a minority-spin 1s state and the
minority-spin polarization of the screening cloud
becomes more dominant. This behavior was cor-
rectly reported by Jena et al."but these authors
incorrectly concluded that the screening cloud
must contain one majority spin for the extreme
case of P =1 when the jellium is completely spin
polarized. This is correct only for &0 large enough
to raise the minority bound state above the up-
spin Fermi level. This case, in which the quasi-
atom has its spin parallel to the jellium, gives the
energy curve labeled "spin polarized" in Fig. 4.
However, before this situation is reached, there
is a range of BD for which the jellium is completely
polarized, the minority-spin 1s bound state is
occupied, and the screening cloud contains one
minority spin. This "singlet" state in which the
quasiatom has spin antiparallel to the jellium is
also shown in Fig. 4. For n a 0.03 a.u. there are
no bound states and only the spin-polarized case
is possible. We were unable to obtain self-con-
sistent solutions for the "singlet" case for n
&0.004 a.u. We are not sure how to interpret the
"singlet" state but believe that it might be a poor
attempt by the quasiatom to reproduce the condi-
tions existing in the singlet ground state of H,.

The spin-polarized case is easier to interpret.
The energy curve has the same inert atom char-
acteristics as the He energy curve in Fig. 1. The
increase with increasing density is almost all due
to the energy cost to insert an extra electron and
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C. Lithium

'The energy curve for Li has been calculated in
the range 1.6 ~r, ~ 6 and the results are also
shown in Fig. 1. The dashed portion of the curve
should be regarded as an upper bound, since
thoroughly converged results were not obtained
in this range. The curve is shifted upwards in

energy by approximately 3 eV with respect to the
curve presented earlier in I. There are two com-
ponents to this shift. Firstly, the value of the
KS Li atom ground-state energy reported by
Manninen et al."and used in I (-7.30 a.u. ) differs
from the result of the full spin-polarized cal-
culation of Gunnarsson et al."(-7.383 a.u. ) which
is used here. Secondly, there is also a dis-
crepancy of =1 eV in the && results themselves.

1 0.0

6.0—

i 4.0—
CI

l

1.0
R (a.u.)

3.0

FIG. 7. Energy of the triplet g'„state of H2 vs inter-
nuclear separation. The solid line is the UDA and the
dashed line is an accurate variational estimate (Hef. 35).

the linearity reflects the rigidity of the quasiatom.
In the limit of low mean density the quasiatom
tends towards a neutral H atom [numerical extra-
polation gives &E(0)=-13.37 eV in good agree-
ment with the result of Gunnarsson et al."for
the spin-polarized free H atom, —13.38 eV]. In
a strictly up-spin environment an up-spin H atom
has effectively a closed Is shell.

Although we are unable to treat the H, ground
state at the moment, the spin-polarized energy
curve with the UDA can be used to study the lowest
triplet H, state, 'Z+„. Accurate results" for the
energy of this state as a function of internuclear
separation are shown in Fig. .v along with the
results of the UDA obtained by placing an up-spin
quasiatom in the local up-spin electron density
of a free H atom. There is remarkably good
agreement, perhaps, because in this case nonlocal
interaction effects should be minimal, the cor-
rect limit at large separation being obtained in the
local approximation. Of course the van der Waals
minimum will not be reproduced by the UDA.

Since our results for ~E are consistent with the
slopes calculated using Eq. (18), it appears that
there is a systematic error in the earlier work. "
Nevertheless, the general features are unaltered,
and the energy curve retains its qualitative sim-
ilarity to that of H in a paramagnetic gas. At low

density &E &E, for Li and there is an indication
of a shallow minimum at some density less than
0.001 a,.u. The presence of a minimum is expected,
since free Li is stable. 'The simple Wigner lattice
model presented earlier would predict a minimum
which is shallower than that for H and shifted to
lower density, because the electron affinity for
Li (Ref. 36) is about —,

' that for H and presumably
(r') is larger for the more loosely bound Li .
However, the energy curve could be in error at
densities ~o.001 because of the breakdown of the
LDA which does not give a bound Li, and the
actual minimum is likely to be deeper and at a
higher density than is indicated in the figure.

It is of interest to note that the slope of the en-
ergy curve for Li at higher densities (n ~ 0.03
a.u. ) is about a factor 2 larger than for He. This
is what one might expect if the rearrangement
energy [see Sec. IVA] were independent of den-
sity in which case the slope would be Zd p. /dn.
The actual slopes are reduced by about 25/q from
this value reflecting the density dependence of
~ER, which is shown for He in Fig. 1. That this
scaling of the slope with the atomic number Z
cannot persist to higher values of Z (Ref. 37) can
be inferred from the slope theorem. Being more
tightly bound to the nucleus, core states will tend
to make a smaller contribution to the mean Har-
tree potential than valence (or continuum) states
so that the slope is in some way characteristic
of these more loosely bound orbitals. This ten-
dency to reflect the properties of the valence
states should be even more evident in the curvature
of the energy curve since the core states are
relatively rigid.

The amount of P-wave screening found for the
Li quasiatom is perhaps surprising. By analogy
with the situation for H, it would be expected that
the tendency at low densities toward Li with the
appearance of a doubly occupied 2s state would be
foreshadowed by the predominance of s-like
screening. In fact, in the range of densities
(1.6 &y, ~4) where thoroughly converged results
have been obtained, the total screening cloud con-
taining three electrons consists of the two Is
electrons and a third from the continuum which
is almost completely p-like. The p-wave scat-
tering at conduction-band energies is clearly large
for Li. It is well known that the Li p-wave pseudo-
potential is larger than that of the other alkalis
because there are no p states in the core to ortho-
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TABLE IH. Binding energies {eV) of Li in jellium va-
cancies. Densities are in atomic units.

's. no(0) EUQA
B

3.28
3.25
2.65
2.07

0.0068
0.0070
0.0128
0.0269

0.0017
0.0018
0.0022
0.0043

-1.9
-2.2

4 4
-9.1

-3.7
-4.0
-7.5

-13.5

~Reference 17.

gonalize to, however, the magnitude of the effect
of this on the density is unexpected.

The minimum in the energy curve for Li cor-
responds to the point of maximum stability of the
quasiatom and indicates that Li will chemisorb
at metal surfaces but at larger separations than
for H. This is consistent with previous results"
on alkali chemisorption.

In view of the difference of the present Li en-
ergy curve from that reported in I, Li-vacancy
binding energies have been recalculated and the
results are presented in Table III. The UDA esti-
mates are in somewhat better agreement with the
exact results" because of the lower values of
4E (relative to the bulk energy) in the low-density
region. As an independent check of the exact en-
ergies, a self-consistent solution for a Li atom
in a vacancy (x, =3.28) was obtained which con-
firms the earlier value.

As a final application of the Li energy curve
we consider its relationship to the metallic co-
hesive energy. The experimental quasiatom en-
ergy for a Li atom in a Li vacancy can be ex-
tracted from the experimentally determined co-
hesive energy, E, [-1.63 eV (Ref. 36)], and va-
caricy formation energy, E„[0.34 eV (Ref. 39)].
Consider constructing a metallic sample of (N+1)
atoms through the following cycle starting from
N Li atoms on N sites in a piece of metal and one
free Li atom. The energy of this system is, by
definition of the cohesive energy, (N+1)E, +NE„
where &, is again the free-atom energy. At the
cost of the Li monovacancy formation energy E,
an atom can be taken from the interior of the metal
and placed on the surface. Finally a metallic
sample of (N+1) atoms is obtained by placing the
single free Li atom on the vacant site. This last
change in energy is (&E E,) where, -'according
to our definition, &E is just the quasiatom en-
ergy in the vacancy. The final energy of the sys-
tem (N+1) (E,+E,) must be equal to (N+1)E,
+NE, +E„+(&E —E,), i.e., &E —E, =E —E„=-2.0
eV. Using the electron density n„(0)= 0.001 65
a.u. at the center of a vacancy in x, = 3.28 jellium,
the UDA gives the value &E (n„(0))-E,=-0;3 eV.
However, as shown by the first entry in Table III,

the UDA overestimates the quasiatom energy in

the vacancy by 1.8 eV and so the "exact" quasi-
atom energy for the jellium model is &E-E,
=-2.1 eV in good agreement with the experimental
value. The difference between the UDA and the
exact value is attributable to the inhomogeneities
in the host density, corrections for which are
discussed in the following section. However, it
is apparent that the quasiatom picture is relevant
to the cohesive properties of metals and may pos-
sibly find application in considerations of alloy
stability.

V. CORRECTIONS TO THE UDA

The simple approximation considered so far
in which the electrostatic interaction of the
quasiatom with the host charge distribution was
neglected and where the quasiatom self-energy
was assumed to depend only on the local host
electron density met with good qualitative success
in a variety of situations. In this section we in-
vestigate the reasons for this success by con-
sidering the impurity energy for a host in which
the electron density inhomogeneities are small
and can therefore be treated by perturbation theory.
This approach suggests approximate methods for
correcting the UDA and indicates the way in which
the quasiatom samples the host density in its
vicinity.

We consider a neutral host system that differs
from a uniform jellium by the addition of a small
positive charge distribution 5no(r) which satisfies

~
bz, (r)/n

~

«1. The spatial-distribution of this
density is for the moment arbitrary. The elec-
tron density in this situation will be denoted by
n, (r) =no '+no" (r)+~, where the superscripts
refer to the order in the perturbation 6n', (r)
For example, the lowest order term is n,"'=-n.

The total energy of the host correct to second
order in the perturbation is

(26)

where E,"' is simply the energy of the unper-
turbed gas.

We now consider the analogous situation in which
the perturbation is made to a system consisting
of the jellium host, an impurity of charge ~, and

Z additional electrons so that the system is elec-
trically neutral. The electron density will be
denoted by nz(r) =n~@'(r)+nz"'(r)+ ~ . , where
again the superscripts on the sequence of terms
refer to the order in the perturbation. It will also
be convenient in the following to develop a sim-
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ilar perturbation expansion for the impurity
screening cloud, &nz(r) =&2z(r) —n, (r) =&&2z'(r)
+ &F2z"&(r)+ ~ ~ ~, and the electrostatic potential of
the impurity,

dr z r npr -npr

dr[(t)z '(r)+ pz1& (r)+ ]

d, (F) f=Fd[ nn(F) — rrn( F)]/] F F]-
y(0 & (r ) + y(1) (r ) +...

x[n"'(r) +n',"(r) + ~ ~ ~ -%;(r)]
we have after some manipulation the following
convenient form:

(29)

With these definitions the total energy of the host
plus impurity system can be written to second
order in the perturbation as

EE= nd„rEE(n' ') f dF—d' '(r)[n"'(r)+n"'(F)]

E = ~™ E+EnE(ntn) —f drdr '(F)nn'(F) dr z' r &g,'r g' (3o)

dr z" r%;r

1
d d

B (ro1) &2o(r2)+2 dry dr2
12

(27)

The impurity energy (4), also correct to second
order, is the difference between (27) and (26),

EE = EE(n'P) —J d F(dt)n(F( )nF

dr z'r &;r . (28)

Our objective will be to infer a nonperturbative
expression for the energy starting from this per-
turbation expansion.

In order to achieve this aim it is necessary,
from a comparison with the general expression
(4), to isolate those terms in (28) contributing to
the electrostatic interaction ~„between the neu-
tral quasiatom and the neutral host. Doing so
allows one to treat the electrostatic interactions
in a rigorous way while permitting approximations
to be made to the quasiatom self-energy. With

V'S +(1&(0)2 ~, ,
2 dn (31)

where we have used (18) and (19) to replace the
density derivatives of the energy in favor of the
mean Hartree potential. Using (31) to eliminate~ (n(0)) from (30) we obtain

The second-order contribution to the host density,
n(2&, appearing in (30) cancels with another con-
cealed in DE„[seeEq. (29)].

The second and subsequent terms on the right
of (30) constitute the self-energy of the quasi-
atom identified in (4). To make contact with the
UDA we must rewrite (30) so that the second
term on the right makes reference only to the to-
tal host density n'p" +n'p" + ~ ~ ~ . By doing so the
artificial jellium starting point can be eliminated,
and the resulting expression can be applied to
systems for which the conditions of the present
derivation are not met (for instance, to hosts
where the nonuniformities are large). By expand-
ing the UDA expression for the impurity energy
about the unperturbed density, we obtain

m(n, (o))= m(n(,"+n(,"(0)+n")(0)+ ~ ~ ~ )

= M (n'") —Q("(n"'(0)+n"&(0)+ )

~=~..+~(n, (o)) dr y(0&(r)[n")(r)+n(2&(r)+ ~ ~ ~ -n")(0) n((2&)0]-

&0)

z r p r fop 0 +g dr z r ~fop r pg (32)

If the host density is slowly varying on the scale
of the quasiatom, only the second term in (32)
survives and we recover the uniform-density
approximation for the energy that was proposed
and tested earlier. The usefulness of (32) is that
it provides a method for systematically improv-
ing the UDA. It is apparent that the corrections con-

I

sist of two contributions which are physically dis-
tinct. The first is the electrostatic interaction
AE,, defined in (29) which we argue should be
treated in a nonperturbative fashion because of
the nonlocal character of the interactions. The
remaining terms in (32) comprise corrections to
the quasiatom self-energy itself and arise as a
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result of variations in the host density over the
finite extent of the quasiatom. Since the screen-
ing cloud is fairly compact and rigid it is reason-
able to expect that this component of the energy
is influenced mostly by the local environment.
Indeed the form of the terms in (32) suggests an
expansion in gradients of the host density which
we shall now develop. An alternative approach
is based on the observation that the host density
in (30) is sampled through the (Iuasiatom Hartree
potential and this approach will also be explored.

0& r +&a) r +(y) 0

= --', rr'r', "(0)f drr'd'r'(r)ro(v')

(36)

with a similar result for the part involving s(,2)(r).
The reduction of the fourth term in (32) is facili-

tated by considering the linear response of the
quasiatom Hartree potential to an arbitrary change
in the host positive charge density

A. Gradient corrections d'r' (r) = fdr Z(r', r')()r', (F ) . (37)

gg =4E„+hE~(~

with

(33)

gg „=gE(s,(0))+a(n, (0)) I vn, I'+ &(n,(0))~'s„

Density gradient corrections have frequently
been used to extend local density approximations.
The von WeizsKcker correction to the kinetic
energy density used in Thomas-Fermi theory and
the gradient corrections to the exchange-correla-
tion energy of an inhomogeneous electron gas are
well known examples. '4' Similar corrections to
the quasiatom energy can be developed when the
host density is weakly inhomogeneous.

We begin by considering the leading corrections
to the quasiatom self-energy which, because of
the. spherical symmetry of the system, are sec-
ond order in the density gradient. The quasiatom
energy (4) will have the form

Here the kernel is given by

x I. X (r , r, ) - y.,(r, —r, )]

(38)

where X~ and X, are the density response functions
for the impurity and host systems, respectively.
The minus sign is simply conventional. K~(r, r )
is a symmetric function of its arguments, and be-
cause of the spherical symmetry of the impurity
in jellium system it depends only on the variables
r, r' and r" ~ r".

Vfe note that the Fourier transform of the in-
duced host density n',"((I) is related to that of the
perturbation 6n', (cL) by .

s(,"(g)= (4m/q')X. (q)5n.'(cL) . (39)
where the gradients are evaluated at the position
of the impurity. Both kinds of gradient terms
must appear, since we are not dealing with an en-
ergy density. The coefficients a(n) and b(n) are
of course specific for a given impurity. Thea(n)
term is of the von Weizsacker form and accounts
for a linear spatial variation of the host density;
the last term in (34) accounts for a local curva
ture.

Explicit expressions for the coefficients can be
obtained by expanding the host density about the
position of the impurity in a Taylor series,

n',"(r)=s"'(0)+Q r V. n"'(0).

Since the response function X, has the small-q
expansion

g, (q) = (q'/4m) (I —c,q'+ ~ ~ ~ ), (40)

(39) becomes

n(,"((I)= (I -c,q'+ )&n,'(j) ~ (4l)

The difference between n", '(tL) and 5&0((L) Is of
order q' because of the perfect screening of elec-
trostatic fields at long wavelengths. 5n,'(r) can
therefore be expressed in terms of n',"(r) as

5n+ (r) =n',"(r) — cV'n"'(r) +(0V') . (42)

+ -,'g r, r, v, V, n(0(.) .~ ~ +.~
kj

(35)

and substituting the result in the right-hand side
of (32). For example, the third term in (32) be-
comes

To the lowest order in gradients considered below,
it is permissible to replace 5n,'(r) in (37) by the
result (42).

Using the Taylor-series expansion (35) in (37)
we obtain
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+-,' Q4„.(r)V,. V,.n',"(0)+ ~ ~ ~, (43)

where the expansion functions 4'„.. . are defined
by

0,, . . . (r)= fdr'r, '. r,'" 2 (r, P) .
It is apparent that

( )
(f(j")(r;n)

QN
(45)

Using (35), (43), and (45) in the fourth term of (32)
we find

6 r 02
dn

(o) (r)
0

1 n(l)(p)V2n(z)(p) dr &2
dn

-r) Vd'„"(0)('j dr+ r,. 0,. (r)

+-'c n"'(0) V'n"'(0) " + (46)

where the ellipsis represents higher-order grad-
ients and we have used the identity

dr/'@', r = dr ~', , r (4 l)

to simplify the result. It is clear that the first
term in (46) together with (36) is equivalent to

-rv r"'(0) fdr r'0"'(r r (0)) (48)

where now the tota/ host density appears as the
argument of the Hartree potential.

Similarly, the last term in (32) becomes

B--'c n' (O)V2n& )(O) S (49)

which cancels with the last term in (46). Thus we
conclude that the quasiatom self-energy indeed has
the form shown in (34) with the coefficients given
by [see (46) and (48)]

r(r)= —r fdrpr~d'; (rr) (50)

b(n) = —p dr ~' (t)'z" (r;n) . (51)

(t)'2' (r) = 4,(r)[n ',~'(0) —c,V'n ',"(0)]+P 4'; (r)V n "'(0) parts.
The coefficient b(n) is determined by the Hartree

potential of the quasia, tom and has been evaluated
for He in the metallic density range. The results
are fairly constant for densities between 0 and
0.05 a.u. being fitted to within 2%%uo by the polynom-
ial f)"'(n) =4.3 -300 n' a.u. The calculations were
not actually performed using (51) because of the
slow asymptotic decay of the potential (I)2(r)
-cos(2k~r+ $)l&2, although the insertion of a
damping factor in the integrand can avoid this dif-
ficulty. Instead it was found more convenient to
work with the Fourier transform of (t)2(r), (I)2(q),
in terms of which b(n) = -', [V2~ (j)2(q)] ~,. Even so
there is some uncertainty in the results, particu-
larly at low density where the error could be as
large as 10%%u().

The coefficient a(n) is more difficult to evaluate
since it involves explicit knowledge of the kernel
K2(r, r') or equivalently, the density response
function )(2(r, r ) of the impurity-jellium system.
We shall therefore limit ourselves to some gener-
al comments concerning the physical interpreta-
tion of the correction with which it is associated
and a possible method for its evaluation.

As can be seen from (37) and (44) the function
@,(r) appearing in (50) describes the response of
the quasiatom to a linear density variation which
effectively acts as an external electric field. The
first moment of this response (50) is thus anal-
ogous to the dipole -polarizability of an atom. Some
indication of the importance of the a(n) correction
-can be inferred from the ease with which the free
atom is polarized. However, a quantitative esti-
mate based on the free-atom polarizability cannot
be made since the electron gas has a considerable
influence on the response of the quasiatom. The
polarizability depends sensitively on the valence-
electr'on states which in the case of the quasiatom
consist of the continuum states that contribute to
the Friedel oscillations around the impurity. As
demonstrated by the mean Hartree potential, these
oseillations can have an important effect on the
quasiatom properties. In the case of H at low den-
sities the screening cloud resembles an H ion and
obviously will respond differently from the neutral
atom. A second effect is that the induced dipole
moment of the quasiatom will itself give rise to
fields to which the surrounding electron gas re-
sponds. A self-consistent solution of this prob-
lem is clearly indicated.

Some supplementary information can be obtained
from (45), (44), and (19) which imply

The fact that the final result is as simple as it is
attests to the correctness of dividing the quasi-
atom energy into the electrostatic and self-energy

/

(52)

Since the dimensions of the quasiatom are of the
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order of a Bohr radius, we might expect a(n)- &PZZldn~. Based on this estimate the coeffic-
ient a(n) should be small for He and for H in a
spin-polarized host at all metallic densities but
may be significant for H ln a paramagnetic gas
having a density near the minimum of the energy
curve (Fig. 4). This latter situation arises when
H is near a metal surface and may account for
the discrepancy observed in the UDA chemisorp-
tion energies.

A direct calculation of the coefficient a(n) is
straightforward in principle. The induced change
in the screening cloud hn'~" which can be calcula-
ted with the response function X~(r, r') is re-
quired when a. small density gradient is superim-
posed on the jellium. With the atom at the origin
a perturbing positive charge distribution 5n,'(r)
= & sinQ r will produce the desired effect. With-

in the Kohn-Sham method the response of the
quasiatom to a perturbation of this sort is deter-
mined by a linear integral equation which involves
the independent particle density response function
for the atom in jellium. The methods applied by
the authors in their study of free-atom polariz-
abilities4' can also be used in this case to obtain
a tractable form for the response function and the
integral equation but details of the theory and re-
sults wi11 be presented elsewhere.

Before closing this subsection we return to a
discussion of the electrostatic energy LE„.In
the expanded form shown in (29) it is apparent
that b E„willtend to cancel the third term in (32)
which also contains a first-order contribution.
This cancellation will be evident in later applica-
tions and partly explains the success of the UDA.
With (43) we can write

&0& r. nLE„= dr no r -no r z r;yE + ' g p + 4,. rg,.n p +-' C. rg. p. n~~ p

Here we have left the host density in a nonpertur-
bative form but expanded the quasiatom potential
&I)~(r) in gradients. When written in this form it
is clear that the quasiatom density is being de-
veloped in a multipole expansion, each multipole
interacting electrostatically with the host charge
density. The first two potential terms. combine
to give &t&&~"(r;n,(0)), again indicating that the local
host density is relevant in defining the quasiatom.
As a first approximation to b,Z„the &I&'~"(r; n, (0))
term can be used, while the gradient terms can be
added if refinements to this value are desired.

n (0)f drd (r)-=f dr (r)dn(r) . (54)

With this definition, the second and third terms in

(30) can be combined to give

rrZ(n", ') —f dr dt"'(r)(nt, "(r)+n',"(r}+~ ~ ~ ]

=gg(n&;&) —y&;&[n, (O) -n", &]

=zE(n&" )+ [n (O) -n"']
dn

B. The sampled local density =ZZ(n, (0)), (55)

A different approach from that of density grad-
ient corrections has been suggested to extend the
local density approximation for electron exchange
and correlation energy. "'" Gunnarsson et al."
have emphasized that an electron at position r
samples the electron density over a region the
size of its exchange-correlation hole. The ex-
change-correlation energy density is then obtained

by using the energy of a uniform electron gas hav-
ing a density equal to an appropriately sampled
local density. This refinement improves the ex-
change energy of light atoms. In the same spirit
we propose a sampling technique suggested by the
form of the perturbation expansion (30) which
weights the local host density by the quasiatom
Hartree potential. Specifically we define a sam-
pled host density n, (0) through

where we have again used the slope theorem (18).
This result suggests the animate for the quasiatom
energy

~z =z F.„+~a(n,(0)) (56)

which accounts for inhomogeneities in the host
through the sampled density. Here AE„is the
electrostatic energy (29), which can be approxi-
mated as described before. If &I&~(r) in (54) is
chosen to be &t)&~"(r;n,(0)), i.e., the Hartree poten-
tial in jellium, information about the gradient in
the local density is lost and therefore the ansatz
cannot account for terms such as the second in
(34). We would therefore expect this sampling to
work best when only a curvature in the local host
density is present. A further shortcoming of the
Q'~" (r;n, (0)) weighting is that the sampled density
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becomes indeterminate when Q'~" =0, i.e. , for
n, (0) at the minimum of the energy curve. An im-
proved sampling technique which would account for
distortions of the screening cloud could perhaps
be the use of the additional terms in (43) to define
the weighting function in (54).

The sampling technique is closely related to the
gradient expansion (34). For example, if the host
density is slowly varying, (54) gives

n, (0) =n, (0) + v' V'n, (0) (,~)

&2~(o)( )
(()r (I) z r (57)

In the case that the correction to n, (0) is small we

have

FZ(n, (O)) = ~Z(n, (0))

--', v'n (0) f dry'Qt" (r;n, (0)), (56)

which reproduces the gradient expansion. How-

ever, if [n, (0) -n, (0)] is not small and if n, (r) is
not slowly varying, the sampling ansatz includes
an infinite summation of terms going beyond sec-
ond order in gradients. In this sense the sampling
ansatz can be regarded as an approximate exten-
sion of the rigorous gradient expansion.

C. Tests of corrections to the UDA

Further calculations for the simple model situa-
tion of an He atom in a vacancy in jellium have
been performed to test the validity of the correc-
tions discussed in the previous sections. The
binding energy of the atom to the vacancy has been
calculated using both the gradient expansion (33)
and the sampling ansatz (56) for the (Iuasiatom
energy. Since there is no gradient in the host
density at the center of the vacancy, only the
curvature correction contributes to the energy.

Results for bE„aregiven in Table I. These
were calculated using the first term in (53) with
the quasiatom potential evaluated at the local den-
sity (the density at the center of the vacancy). The
electrostatic energies are all negative due to the
strongly attractive (t)~(r) for &, & 3 a.u. As the
mean host density decreases or as the valence of
the vacancy increases, the density at the center
of the vacancy decreases and the energy AE„be-
comes progressively smaller in magnitude. As
a check on the approximation used, the electro-
static energy has been calculated exactly for one
case by explicitly subtracting n~(r) and n, (r) to
obtain the screening charge for He in the vacancy
and hence Q~(r). This result is shown in paren-
theses in Table I and the excellent agreement with

the approximate result indicates' the validity of the
uniform-density approximation for Q~(r). It would

be of inter'est to check this for more reactive
atoms such as H.

The curvature corrections, b(n, (0))V'n, (0),
have also been evaluated; their variation with
mean density and Z„is mainly due to the variation
of the density curvature in the vacancy since the
coefficient t)(n) depends little on n T. he effect of
the curvature corrections is to increase the ef-
fective host density sampled by the atom and

therefore increase the self-energy because of the
positive slope of the energy curve for He. The
curvature correction cancels some of the electro-
static energy which is likely to be a general fea-
ture. However, all the terms in the approximate
treatment are of the order of magnitude of the
final binding energy and the cancellation is not
excessive as in conventional perturbation treat-
ments using pseudopotentials.

The total He-vacancy binding energies calcula-
ted according to (33) are listed in Table I and a,re
in excellent agreement with the exact results
which are also shown.

Sampled host densities for He in a jellium
vacancy have been calculated according to (54)
with (I)~(r) evaluated at n, (0) and the results are
given in Table I. The sampled densities are all
greater than the local density at the center of the
vacancy due to the positive curvature of the den-
sity. The effect on the impurity energy of using a
sampled rather than the local host density is the
same as that of the curvature corrections. The
He-vacancy binding energies calculated according
to (56) are listed in the table and the agreement
with the exact results is again excellent. In these
cases the sampling technique yields slightly su-
perior results to the gradient expansion. The
corrected binding energies are also plotted on
Fig. 3 and the general improvement over the UDA

is evident.
The sampling ansatz (56) has also been adopted

recently by N6rskov and Lang" in the calculation
of chemisorption energies for H and 0 on jellium
surfaces. Although only the electrostatic correc-
tion AE„was included, substantial improvements
over the UDA were reported, which seems to in-
dicate that the gradient corrections are small in
the cases they considered.

VI. CONCLUSIONS

%e have demonstrated that the uniform-density
approximation for the quasiatom energy works
well in a variety of situations. Qualitative trends
are reproduced for both H and He, atoms which
are chemiealiy very different. Impurity energies
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are given typically to about 1 eV or better in the
metallic situations (vacancy-impurity binding,
chemisorption), however, larger discrepancies
are found for the hydrogen molecules. The most
serious shortcoming occurs when the atom is
separated from the host system and is manifested
in the diatomic metal hydrides and chemisorbed
H through the incorrect dissociation products.

Considering the degree of nonuniformities in
the hosts that have been studied, the success of the
UDA is perhaps unexpected. An extreme example
is the case of the 'Z'„state of H, in which the elec-
tron density of the host H atom varies by approxi-
mately a factor of 10 over the extent of the quasi-
atom. The validity of the approximation appears
to involve more than just the assumption of a
slowly varying host density and the situation is
reminiscent of the local density approximation
for electron exchange and correlation. The latter,
which has proven to be very successful even in
cases where the electron density is rapidly vary-
ing, has been explained from various points of
view. "'" The similar success of the quasiatom
picture in the UDA implies that the nonuniformi-
ties in the host density are being averaged in a
realistic way and some support for this conclusion
is provided by the gradient expansion. More gen-
erally it appears that a slowly varying host den-
sity is a sufficient but not a necessary require-
ment for the application of the UDA.

The quasiatom energy curves contain all the
information necessary for an application of the
UDA. Judging from the examples we have stud-
ied, it seems likely that the energy curves will
fall into two main categories. Atoms which are
chemically inert should have linear energy curves
whereas reactive elements, particularly those
with stable negative ions, will tend to show a min-
imum at low densities followed by a linear in-
crease at higher densities. The main parameters
of the curves are the position and depth of the
minimum and the slope of the linear portion at
higher densities. The latter can be used to de-

- fine the effective number of electrons which are
sensitive to the environment of the atom through
Z,«de. /dn = dZE/dn, i.e., an —effective valence.
For the moment this is a purely suggestive pro-
cedure and more work is necessary to see in de-
tail how this and the other parameters might cor-
relate with the atom's position in the Periodic
Table.

The %igner lattice model seems to provide a
simple explanation of a minimum in the energy
curve in terms of the tendency to form a negative
ion. It would predict a minimum for the halogens
similar to that of hydrogen, while in the ease of
oxygen, a deeper minimum would be expected be-

cause 0' would form in some range of densities.
This latter situation has been verified in recent
calculations of Ndrskov and Lang. "

Corrections to the UDA have also been investi-
gated. As indicated by the general expression,
Eq. (4), the quasiatom energy consists of an
electrostatic interaction with the unperturbed host
and a self-energy part which is influenced by lo-
cal host nonuniformities. Both of these parts con-
tribute in the correction to the UDA as defined
either in the form of a gradjent expansion or by
the alternative sampling ansatz. As seen in the
calculation of the He-vacancy binding energy,
both kinds of corrections were needed to achieve
the good agreement shown in Table I. More im-
portantly, this test demonstrates the feasibility
of correcting the UDA by either the gradient ex-
pansion or the sampling technique. The former
is perhaps to be preferred because of the possible
problems that can arise with the sampling ansatz
[see Sec. V(B)]. Although gradient corrections to
the LDA for inhomogeneous electron gas problems
have not proved successful, "they may be more
useful in correcting the UDA because of the com-
pact and rigid nature of the quasiatom.

The response of the quasiatom to a gradient
in the host density is likely to be correlated with
the curvature in the energy curve. Thus the gra-
dient correction a(n) is probably small for He but
significant for reactive atoms, particularly in situa-
tions close to the minimum intheir energy curves. A
method for calculating the a(n) coefficient was out-
lined in Sec.VA, and it is to be hoped that detailed
calculations in a few cases will reveal correlations
between the quasiatom response and free-atom
properties such as the dipole polarizability. An
application of the gradient correction a(n) to the
chemisorption problem would be of considerable
interest.

The quasiatom approach for estimating impurity
energies in real systems requires knowledge of
the host electron density. Unless this density can
be obtained in a relatively straightforward way
many of the advantages of the'approach cannot
be realized. Fortunately, the host density can be
estimated to sufficient accuracy in various solid-
state problems of interest. For the example of
impurity diffusion in solids the perfect-crystal
density is required which ideally would be obtained
from a band-structure calculation. The simpli-
fication of the quasiatom approach is immediately
apparent in this case since various well-document-
ed methods for dealing with the perfect host have
been developed while the impurity problem is al-
most intractable. However, even a simple super-
position approximation for the density may be
adequate; with
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n, (rj =Q n. (r —H, ),
n, can be chosen to be the free-atom charge den-
sity for transition-metal hosts, whereas for sim-
ple metals neutral pseudoatoms" should suffice.
Another possibility is to consider the host atom
in its jellium vacancy and using the displaced elec-
tron density in this situation as the ingredient for
the superposition approximation. A useful applica-
tion of this scheme v ould be a study of hydrogen
solution and the diffusion of light impurities such
as muons and protons in metals for which the im-
purity potential is required. A cautionary word is
in order, however, since it is not clear at present
what contribution to the sampled density or the
eldctrostatic interaction AE„will arise from the
ion core regions of host atoms near the impurity
where electron densities and electrostatic poten-
tials are very large. Exact quasiatom electron
densities and Hartree potentials may differ signi-
ficantly from the jellium results due to orthogon-
ality and more work is needed to see if this cre-
ates difficulties.

Finally we should mention some other work
which is related to ours in the sense that the locaj.

'

properties of the impurity are emphasized. The
neutral pseudoatom of Ziman" can be viewed as
an approximation to the quasiatom described here

in which the impurity is represented by a weakly
scattering pseudoion and the screening cloud is
calculated to first order in perturbation theory.
Generalizations to strong potentials have also been
developed, particularly by Ball." In the latter
work the impurity potential is calculated self-
consistently in much the same way as is done here
and various alloy properties can be accounted for
successfully in terms of the impurity scattering
phase shifts. However, the concept of a quasi-
atom is seen to be more generally applicable and
is especially suited to obtaining a quantitative
estimate of the impurity energy.
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