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Ab initio Hartree-Fock calculations of crystalline systems using full-symmetry analysis
of basis-set expansions
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A technique is presented for carrying out ab initio Hartree-Fock calculations on systems of infinite three-
dimensional periodicity. The method represents an adaptation of standard molecular basis-set expansion techniques
and fully utilizes translational and point-group symmetry to simplify the calculations. It is shown that the expression
for total energy may be written as a sum of pairwise interactions between neutral charge units consisting of a nucleus
and a localized compensating electronic charge. The resulting sums are rapidly convergent. The technique is
illustrated with sample calculations on face-centered-cubic lattices of hydrogen, lithium, and sodium. Generalization
to systems of lower symmetry is discussed.

I. INTRODUCTION

In recent years it has become increasingly ap-
parent that existing theoretical techniques are in-
adequate for the detailed study of electronic states
at solid surfaces and defect sites. Semiempirical
band-calculation methods allow treatment of long-
range periodicity, ' but do not permit the evaluation
of total energies and hence cannot differentiate un-
ambiguously between possible sur face or defect
structures. Ab initio methods do not suffer from
this limitation and have been successful in the
study of localized chemisorptive bonding states
on metal', and semiconductor' surfaces. However,
these calculations have required that the surface
be modeled using a finite cluster of atoms. This
restriction leaves these methods incapable of con-
sidering a host of phenomena whose characteristics
are intimately related to the two-dimensional sym-
metry of the surface.

We feel that the solution to this dilemma lies in
the development of an ab initio var iational tech-
nique that includes full two-dimensional periodi-
city. Ultimately it will be necessary to allow sys-
tematic examination of electron correlation (many-
body) effects; however, as a first step in this
program we have considered a simpler problem:
Exact Hartree-Fock (HF) calculations on three-
dimensional periodic systems. In this paper we
generalize the ab initio techniques used previous-
ly in cluster studies~ to take full account of per-
iodicity. The resulting energy expressions retain
the numerical simplicity of basis-set expansion
techniques' and may be cast in a rapidly conver-
gent form. To illustrate its application, we re-
port the results of calculations on some simple
systems: Pace-centered-cubic arrays of hydro-
gen, lithium, and sodium. While the development
presented here is specific to systems of three-
dimensional periodicity, extension to systems of

lesser periodicity is straightforward, and we
conclude with a brief discussion of methods by
which this may be done.

II. HARTREE-FOCK FORMALISM

A. Wave functions and Hamiltonian

The construction of general one-electron wave

functions is begun by defining a basis of Bloch
orbitals for each wave vector k as

y', (r)= pe'" "~y'(r '-It, ),

where (for simplicity) we have assumed a single
atom per unit cell, and the sum runs over all N
atoms (cells) of the semi-infinite lattice. Here
the p'( r) are basis functions centered on the atoms
and located by the vector R, . We will take them
to be linear combinations of Cartesian Gaussians,

y'(r) =x'y'z'e "
/v &, , (2)

where 3, p, and q are integers, e is a variable
scale factor, and ~, is the normalization constant.
The p„'- are normalized but not orthogonal (for a
given value of k). The one-electron functions
(Hartree-Fock orbitals) are obtained from the
basis functions as

(r)=q '~'Q q p-'(r),

where the normalization factor is
m

gga gg jk~ fR&-Rv)
kn

g ~ Q IJ'
~ v

=N g g C+'g' e'"'".(y'(r)
~

y" (r R.)) . (4)
e, b o

In (3) the sum is over the m (nonorthogonal) basis
functions for each k, and the subscript n identifies
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the band (i.e., root of the Hamiltonian matrix for
a given k). The coefficients C„.' are obtained var-
iationally (solutions of the matrix HF equations).
These one-electron wave functions (3) may be
combined to form the single Slater determinant
wave functions relevant to this study.

e„=@[(.„(r,)P (r, ) ~ ~
q„~ (r„.,) q„(r„,) Xc, ],

(8)

e» =g[q.„(r,)y„. (r,) ~ q~ (r„„i)
x g ( rN)))Xsa 1 (6

Here 4~8 and 4» are wave functions for closed-
shell (S= 0) and high-spin (S= Np /2) states for an
array of + atoms, each with p valence electrons,
and the X s and X» are the appropriate spin
functions. '

The total electronic Hamiltonian is

where h, is the one-electron operator
g

I, )R„-r, I

and V;"' is the potential for the core electrons on
center p, . The total energies of 4~8 and 4„8 are

Nu/X V f
kn+

4 4,k' n'

(8)

and the orbital eigenvalues are
-2 Np/g

~- =h- - +- (&Z- -, , -BZ- . ).
kn kn ~kn f kn, k' g

Expressions (8) and (9) permit a very general
class of wave functions' of which two special
cases are considered here:

f=2) A=2, B=1 for +cH,

f=1, 2=-'„B=,' for 0». -
The kn are over all occupied orbitals. The first
term in (8) is a sum of one-electron energies,

NP/f NP/g m

p fh„-„~„=g fq„=„'g C&' C„-' (y'-„.(r)~h~y,'-(r))

Np/f m

fN g rl- Q Q CyHC

k cyb ty

x ((t)'(r)) hI f()(r -5,))

where

=fN Q Q D~,"h~,',
a, b fy

g D;"„y'(r —R„)y"(r R„) .
a, b g, V

In addition, we have

p(r) =g p.(r),

where
tff N

p, (f)=fg g I)",„P'(r-R„)y'(V-R„).

Integrating over all space leads to
t5 N

p dsr „r = D'sSa~
a, l

Thus, p„(r) is the density function for the p elec-
trons near atom

Applying (11) to the two-electron Coulomb Z„-„p„,
and exchange K~„ f „.sums in (8) leads to

N~/f
gyp& yg+ ~b elk R„-R )

'ks ktf kn
ks

h'„"„=(y'(r —~„)
~

h~ y'(r g)),
and o= 1 refers to the atom chosen as the origin.
The quantities D„'„may be identified as elements
of the one-particle density matrix upon noting that

N tg
p(r)=f (|)[ (r)q (7)

ks

f g g rl-1 CrHa CH e(k (R„-0„)
kn kff

t2~ g v kn

x y'(r —5„)y'(r K )

Np N . N

Q~„-„-„,~ -B&„-„„-,„,)=N Q D",. Q D'„'„[A(a b'~ c"d") —B(a'c"
~

b'd")]
tf ~

dg 0 Q~ Jk ~ V

using the notation

(r')
~

r"H")-=f ('(r, -H )H'(r, H)r)'r, — H'(r, —Hl )Hr(1', -% )H'r, .
)r, - r~)

Combining the above equations leads to

(12)
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ln g Z g Z
~=iV g g D" fhaa+ g g D'„'„[A(a'b'~ c"d") —B(a'c"

~

b'd")] +g
ab ty cg „)„ iR

fn m

Ne) g'g Ce Cb'e R'"'b" + —g g C;„[A( a
b]

"c)A—N(a c ]'b'"a )]) .
ty apts CBd

(14)

For systems with inversion symmetry,

Kn

As a result, we may avoid dealing with complex quantities by redefining (14) as
N m 7$ g

*(E„+e „-„)=N(b„+b=„-„) g, g'aa(C; C';„e"„'"")b;.'+ —Pg C„"„(A(a'b'] c'A ) —N(a'e""] b A")])
e a, Q CPC

B. The density matrix

The form of (11) for the density matrix elements,
while general, is not particularly useful, as it
defines N'm2 distinct elements. It is immediately
apparent that this value is too large since D',"„de-
pends only on g, —R„. Thus, there are at most
the Nni' distinct values Da„~.

Consideration of point-group symmetry allows
this set to be reduced still further. The atoms
surrounding atom 1 may be broken into ) "shells,
where each atom in a shell has the same value for

~
R,

~

and is related to the others by an operation
of the lattice-point group. Thus, Eq. (11) may be
rewritten

unique

Dab -i gga C() i)c.
lo

~nkvd s n)fP s ntf.

where the sum over kn has been broken into an
outer sum over stars of vectors s, and an inner
sum j over the t, members of each of these stars
(and occupied bands). But, from the definition of
a star, this is equivalent to

The leading factors g, and g, in (15a) and (15b) are
degeneracy factors from the application of the (P&

to vectors in k and r space, respectively. From
(15b) we have, for a particular atom c'= (P, (v),

9
~e ae ~aBa ~ 1 i CAPaeii C(PNBZ

s ff

x exp[zk, (P, (Pz'(R, )j

Thus, only a single atom in any particular shell
need be considered, reducing the number of nec-
essary elements to Am' (where X is the number of
shells). Once again, for systems with inversion
symmetry, it is convenient to redefine (15b) as

1 8/'
Re(g+&ZgBJ ei)7s (PZ (Ra&)le nfts nks n~sSe

where g/z is the pure rotation subgroup of 8, and
the inversion symmetry has been explicitly in-
cluded in obtaining the real function. For these
cases~

ufli ue 9
Da& -l Cga Cb 5 &Kg'Ã&)

lty '&nfl nTYg naggs

whe~e, for simplicity,

K, = (P, (lz, ),

(i5a) and only —,Am(m + 1) elements are unique among
the density matrix elements.

C. Matrix elements

and the inner sum is over the operations 6'& of the
lattice-point group 8. Using the recipr ocal re-
lationship between k and r this becomes

uni ue

Da() ~-1 C ea(zi gByei)(a'(PJ Ra) (15b)
s n&s a

where, for example,

A, =a'i'((z) .

An additional difficulty arising from the use of
Eqs. (13) and (14) is that they appear to require
an exorbitant number of one- and two-electron
matrix elements. The problem of defining a
unique set of one-electron matrix elements has
been dealt with in detail by Slater and Koster, ""
and others. '+' Defining a set of unique two-elec-
tron integrals is greatly facilitated by the results
of the preceding section. Since in (13) and (14)
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the two-electron integrals are multiplied by fac-
tors depending only on 8„—R„, a minimum set
will consist only of those integrals (ab ~ cd) that
possess unique spatial orientations of ab and cd,
without regard to the absolute position of (ab lcd).
Thus, an integral involving four centers may be used
four times (excluding consideration of point-group
symmetry) by translating the indices of the inte-
gral such that the centers other than 1 may be
taken to coincide with the origin.

This is seen more clearly by noting that a given
integral

(9'(r)& (r -R.) l~'(r -R.)9'(r -R,))

may be expressed equivalently as

where R„=R„-8„. Wraith cubic symmetry, there
will be ,'N—'/4S distinct combinations of 5, and I„.
This defines all unique angular orientations of H
with respect to 5,. The translation (E

I 8„]pro-
vides radial separation of R„and N, . Since each
four-center integral may be used four times due
to translational symmetry, there will be N/4-
unique operations ]El +»] for each choice of R,
and @„. As a result, the number of matrix ele-
ments requiring explicit evaluation is reduced
from —~m4N', as suggested by Eqs. (13) and (14),
to only - ~~ m &', a savings of over two orders
of magnitude.

III. EVALUATION OF ENERGY EXPRESSIONS

A. Repeating unit

Equations (13) and (14) represent general expressions for total energies and eigenvalues, but involve
semi-infinite sums over atoms. Practical considerations dictate truncation of these sums and care is
required to achieve a balance between one- and two-electron quantities such that rapid convergence may
be attained. This situation is very similar to that in the classical Madelung problem, suggesting that re-
arrangement of the terms in the sums might be beneficial.

We begin by combining nuclear and electronic terms in Eq. (13) to obtain

E=Ng' ' '"+g D'„' fh, + gQ D'„„[A(a b'I c"d") —B(a'c"
I
b'd")]I .

Noting that
N N g N

gg(w'( —,) („- z (
e (~))= pp (y'(~-(() „q'(r+(()),

where the prime indicates pe 1 in the sum and R„=5, —5„, the sum may be partitioned as follows:

&IN=+ QDj,,I f a -k —
~ ~

' + QQDf„[A(a'O'I c d")-2B(a'c'I b'd')--,'B(a'd"
I
b'c')]

I (1Va

m g 2

+ZZ ZD» I 3
c" r d" + QQD~, [&(a b'Ic"d")-—B(a c"Ib'd")-'B(a'd lb c )] I ~ (17c)

c,a 0 dsb

The reasons for this choice of partitioning be-
come apparent upon consideration of the properties
of the D'„'„defined in Sec. IIB, From the defini-
tion of p„(r) we see that (17a) includes all Cou-
lomb and exchange quantities resulting from the
interaction of the local density at the origin with
itself. In addition, there are terms describing
the interaction of this local density with the nu-
clear charge at the origin. Thus, (17a) represents
the self-energy of a neutral charge unit consisting
of the local electron density and the associated

nucleus. Expression (17b) is the total energy of
interaction between this unit and all other nuclei
of the lattice, while (17c) represents the interac-
tion between this unit and all other local electron
densities. Collectively then, Eqs. (17) express
the total energy as a sum of pairwise interactions
between such neutral charge units centered at each
site in the lattice.

In Fig. 1, we have plotted the density function

p, (r) along symmetry directions for a face-cen-
tered-cubic lattice of H atoms [lattice constant
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FIG. 1. Orbital density function Q(r )P(r ) and local
density function p&(r ) for a face-centered=cubic lattice
of hydrogen atoms. In this calculation, a=2.44 A and

P(r ) is a 1s basis function (with a nearest-neighbor
overlap of 0.30). The calculation included 381 charge
units. The relative shift of the two curves is real; p&(r)

becomes slightly negative at large distances, ensuring
normalization.

a=2. 44 A and P(r) is a 1s basis function]. The
D'„' values are highly peaked about the nucleus,
producing a density function p, (r) that extends with

only small amplitude beyond the boundary of the
Wigner-Seitz cell.

The partitioning of energy quantities in this
fashion, while not unique, does clearly indicate
the difficulties that might arise with straightfor-
ward truncation of (13). In using such a spherical
cluster approach, two-electron integrals that re-
tain all four indices within a radius R, of the ori-
gin are summed into the total energy. All nuclei
within this radius are used in the computation of
electron-nuclear (EN) attraction and nuclear-nu-
clear (NN) repulsion terms. As R~- ~, the cor-
rect limit is reached, but, in general, the conver-
gence is very slow. The reasons for this can be
seen in Fig. 2(a). Here we show a particular atom
p, within a radius R, of the origin. A radius x'
about p, is indicated for which p„(r) should be sig-
nificant. For this atom, the EN and NN interac-
tions with the charge unit at 1 will be fully counted,
but only a portion of the interaction between p„(r)
and this unit will be included. Coulomb (and cor-
responding exchange) integrals of the form
(a'b"

~

c"d") for
~
R„~ & R, are arbitrarily excluded,

and thus the shaded portion of p„(r) shown in the
figure is omitted from the sum. Consequently,
truncating the sum in this manner would be ex-
pected to produce an imbalance between one- and
two-electron quantities. Indeed, Euwema et al."
employed such a method in a study of the diamond
lattice and found it necessary to include monopole
and dipole corrections to the potential in order to

FIG. 2. (a) Schematic illustration of the spherical
cluster approach. Integrals (a'b Ic~d") are excluded
when & is in shaded region. (b) In the bispherical clus-
ter approach, electrons one and two are treated equiv-
alently by including all centers o and v such that

I B,I

& R~ and I R„—R~ I
& R~.

obtain adequate results.
The analysis leading to Eq. (17) suggests an

alternate bispherical approach. Here, a sphere
of radius R, is defined about each center p, that is
within R, of the origin. As before, al.l EN and NN

interactions between the atoms p. and the charge
unit at the origin are included; however, to define
repulsions between the p„(r) and p~(r), all two-
electron integrals (a'b' c' d") satisfying

[R
f
(R, , (R„f (R, , and /R„-R„[(R,

are included. This arrangement of "bispherical"
clusters is shown for a particular atom p, in Fig.
2(b). Not only does this approach avoid charge
imbalance, but it is also apparent that the sum
need not be taken beyond the point where

p (R„./2) = p„.(R /2) « I,
since the charge unit at the origin is effectively
shielded from all charge units farther away from
the origin than

~
R„, ~.

"

B. Balancing calculated quantities

Truncating the energy sums in any manner nec-
essitates some modification of the concepts dis-
cussed in Sec. II. Partitioning the sums in the
manner described above makes further discussion
of the two-electron integrals particularly appro-
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priate.
The discussion of charge units unambiguously

defines the necessary two-electron contributions
to Coulomb sums, but it is less clear concerning
the unbiased evaluation of the exchange sums.
The Hartree-Fock Hamiltonian provides a simple
criterion for balancing Coulomb and exchange con-
tributions since we must guarantee that

the resultant residual Coulomb repulsions ean
seriously affect orbital shapes and total energies. '
To examine this cancellatiori for ab initio methods,
we first expand the expression (19) (leaving impli-
cit the sums over a, b, c, and d),

king, kn ff sktf

~k.,k. -&~.,k.= 0 ~ (18) &i% R,
ty SR &RV"R& ) Q +1ya &~d V

0 %~V

This cancellation of self-Coulomb and exchange
terms is assumed to occur in deriving Eq. (8).
Deviations from this condition are inherent in
methods utilizing exchange approximations, and

—(a'c"
~

~'d")],

where 6 = C*'C'C*'C". This may be broken into
six terms:

N'

Q «'~'""[(a'&'~ c'd" ) —(a'c'~ 5'd")], o=1, p=1 (19a)

'ee '"'"~l (a'&'~ c"d') -(a'c"
~

5'd')], o=1, (19b)

N'
II

pe+ '"v-&~&[(a g ~c"d") (a c" ~b d")], cr=1, goal, ve1 (19c)
'

Q e'"'" Q e'" ".e[(a'b'~ c' d') - ( a' c'~ b'd")], (19d)

e+ "~g e +'"&6[(a 5'~ c"d') —(a c"
~

b'd')], o& 1, (19e)

N n
e'"'"~ Q e'"' '"~ R~ ' 8 [(a'b'

~
c"d ") —(a'c"

~

0'd")], (19f)

The sum restrictions over atoms used in each ex-
pression are shown at right. Of the six, (19a),
(19b), and (19e) always cancel on a term-by-term
basis. The same is true of (19f) if each integral
included in the Coulomb (first) sum is also in-
cluded in the appropriate position in the exchange
(second) sum of that expression. Similarly, under

.these conditions, the Coulomb and exchange sums
in (19c) will cancel exchange and Coulomb sums,
respectively, of (19d) on a term-by-term basis.
Thus, Eq. (18) will be satisfied exactly if each in-
tegral generated for summation into the Coulomb
field of Eq. (13) is also entered into the correct
position in the exchange sums. This is precisely
the condition suggested by the partitioning of terms
shown in Eq. (1V).

IV. FACE-CENTERED-CUBIC HYDROGEN

In this section we present an application of the
concepts discussed in the previous sections to a
face-centered-cubic lattice of hydrogen atoms.
Calculations were carried out using an expansion

I

of 1s Gaussians

P'(~, g)=Q C)e ( /gN,

on each center, where the eoeffieients C, and n,
are determined by fitting to a Slater orbital e ~" of
scale parameter f, and the number of functions
(P) in the expansion was allowed to be 1, 2, and 3.
Both lattice constant a and scaling parameter f
were optimized, and we present a detailed discus-
si.on of the convergence and magnitude of the ener-
gy quantities involved in the e-„„and E/N sums.

A. Calculational details

Both one- and two-electron matrix elements
were generated using a program developed to in-
corporate all rotational and translational symme-
tries. The one-electron portion to Eq. (14) may
be simplified to'"'

m tl

g, Q
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where c'(A) is an atom in shell X and the inner sum
is over the n atoms in shell ~. For this case,
only A. integrals h",„» are required. The symme-
try properties of the density matrix allow process-
ing of the two-electron integral list prior to

evaluation of the Hamiltonian matrix in a manner
that greatly facilitates manipulation of these inte-
grals. We will illustrate this by using (16) to re-
write (12) as

Ngg D g g L:.' P [&(~'f'I(E
I
-It.]f"d "])-E("«I -~.)Ec'kl t'«I -&.34~"))]

a 0 ty c,d td u

1$

=N ZZ~D'" gg D" —ZZI&("f""'l(p, l-& H"d"'"'")
a, Q

-a(a'(p,
I
-R,)(c')I 5""'(p,

I
-It„Hd"'"'$)]

zp~cbcd
le&X) ~ ~~1m(X' )%~~ lv(X), le&X' ) 11,g(X)u(X')) f

C, d
(20)

where R„=8„—H„. Here again g is the lattice
point group and g, is the appropriate degeneracy
factor. The quantities J~,",„" and K",„'„"a,re inde-
pendent of changes in the wave function, depending
only on the choice of basis. For the largest case
considered here (X= 18, N= 381), truncating these
sums in accordance with the definition of bispheri-
cal clusters produced an integrals list consisting
of 324 values of Jy y and 5184 values for the
~ecaa

lltytd '
A variety of sophisticated schemes have been

developed for carrying out the sums over occupied
states necessary to evaluate the density matrix
elements. " Such schemes are necessary because
evaluating the C~„values requires diagonalization
of an mxm matrix at each k point to be considered.
In these calculations m = 1, and no diagonalization
is necessary. It is a relatively straightfor ward'

task in this case to carry out the sum by dividing
the Brillouin zone into a fine grid of weighted
volume elements, using an average value of k for
each element. The position of the Fermi surface
was determined by noting the variation in ~„- in all
directions radiating outward from the zone origin.
The weights of elements intersected by the surface
were made proportional to the volume enclosed.
The actual summation (integration) was carried
out using a simple Romberg procedure. ' Some
experimentation with grid size indicated that er-
rors of 0(10 ' hartree) could be obtained with a
grid of -600 points within —,', th of the total oc-
cupied portion of the zone.

In these calculations (m = 1), the only task to be
performed on an iterative basis is to achieve self-
consistency in constructing the Fermi surface.
Iterative changes in E/N and grid weights were
monitored, and convergence to 10 ' hartree and
10 /p, respectively, could be obtained in a few

(~ 5) iterations starting from a spherical Fermi
surface.

B. Results

To obtain a readily verifiable test of the stability
and accuracy of the procedures used in this study,
calculations were first carried out using a high-
spin wave function (6) in the separated-atom limit
(a = 40, 0 Bohr = 21.16 A). Such a test is useful
because in this limit q-„„=&for all kn and, since
all states in the first Brillouin zone are filled,

~-1 eik &Rv-Rg )
JLV Rq ~v '

fthm

This condition provides an exacting test of the
integration procedure over the zone. In addition,
we would expect to obtain

e ~„=E/N = E„,
for a high-spin wave function in the Ewald limit,
where E„, is the energy of an isolated hydrogen
atom. This test was carried out using the two-
function Gaussian 1s basis of Huzinaga" contracted
for f = 1.0 (the free atom value). Eight shells of
repeating units were considered (N= 135), result-
ing in only eight unique nonzero two-electron in-
tegrals. A grid of 1140 points was used in the
Brillouin-zone integration. The calculated density
matrix elements, listed in Table I, are within 10
of the theoretical values. These errors propagate
as shown in Table II, producing a total energy per
atom and band spectrum deviating by no more than
0.00005 hartree from the theoretical value of
-0.485 81.

The optimum lattice parameter for the closed-
shell (singlet) wave function was obtained from a
series of HF calculations at different lattice
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TABLE I. Density matrix values for a high-spin wave function in the separated-atom
limit. Pl = 135.)

~ (shell number)
4 5

D ( ) 1.00000 lxlp 2xlp 2xlp lxlp -2xlp 5 -lxlp- 4xlp

Using the two-Gaussian basis from Ref. 15 with & =1.0 and a =40.0 bohrs.

spacings. As discussed below, 14 shells of charge
units (N= 249) were adequate for this purpose,
leading to E/N values within (0.001 hartree of the
largest systems considered. The two-function
Huzinaga basis" was used on each atom, and the
scaling parameter g was optimized for each value
of g considered. The results of these calculations
in terms of E/N and the virial ratio are shown for
nine combinations of a and g in Table III. The
optimum energy per atom of -0.4638 hartree is
unbound with respect to isolated H atoms (E
= -0.4858 hartree) by about 0.6 eV. This result
is consistent (by the virial theorem) with an opti-
mum exponent that is more diffuse (&=0.96) than
for an isolated H atom.

The behavior of energy quantities as a function
of increasing & was examined in some detail. In
Table IV are shown a variety of quantities obtained
using optimum a and g for values of N between 13
and 381. In the first column, E/N values are given
where in each case the Fermi surface was assumed
to be completely spherical. The convergence,
while not completely monotonic, is very rapid with
the last three "clusters' differing in energy by less
than 0.0004 hartree. Self-consistent energy values
obtained after converging the Fermi surface are
shown in the second column. It was expected ini-
tially that the iterative process might. magnify er-
rors inherent in the larger clusters; however,
comparison of the two columns shows that this was
not the case. Thus, it appears unlikely that addi-
tion of further shells would produce a change in
this value by as much as 0.001 hartree.

More detailed information about convergence
may be obtained by examining the individual terms
in the energy sums. The terms listed in Tables
V and VI are defined by recasting (14) in the sim-
plified form

eg =~gg ~~ II~ (»~~ e aae ~ pig

aa=+0 ~ 2(&". )+—(A/i:„)-BFc;:„IQ)e"'"~,

in which the innermost sum is over the n, atoms
in a particular shell A. , and J",, and E~ include
interactions with all other local density functions
included in the calculation. A similar expression
is possible for the total energy E in (13). The
total Hamiltonian elements appear in Table 7 for
selected values of A from 2 to 18 (N= 13 to 381).
A comparison of the matrix elements common to
the N = 225 and N= 381 cases reveals that for all
13 matrix elements the discrepancies are no
greater than 0.0005 hartree. Much of the differ-
ence between &= 225 and N= 381 total energies
must be attributed simply to the additional terms
in the ~= 381 expansion.

The individual Coulomb and exchange matrix
elements are grouped in Table VI. The Coulomb
matrix elements for a given "cluster' tend towards
zero with increasing c'(A) at a rate proportional to
the overlap terms S„,». The degree to which a
given element deviates from zero in the converged
limit is a measure of the non-point-charge char-
acter of the local density functions. It is an indi-
cation of the penetration of the charge units sur-
rounding the origin into the unit at that point. The
fact that these matrix elements approach a limit-
ing value is an indication that this unit is fully
shielded from all further additions.

The exchange matrix elements are larger in
magnitude and tend towards zero more slowly than
the cor responding Coulomb elements. An examin-
ation of Eqs. (13) and (14) shows that there are in-
tegrals of the form (1'1'

~

o'o') that contribute to

TABLE II. Total energy and band spectrum for a high-spinwave function in the separated-
atom limit. (a = 40ao and 1V= 135.)

Total energies
E/N atom

Eigenvalues at symmetry points
X W L

-0.485 81 -0.485 81 -0-485 84 -0.485 78 -0.485 81 -0.485 82 -0.485 81

Using the two-Gaussian basis from Ref. 15 with &=1.0.
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TABLE III. Optimization of lattice constant and scale factor for face-centered-cubic hy-
drogen.

Lattice constant
(A)

2.2376
2.2376
2.2376
2.4614
2.4614
2.4614
2.6851
2.6851
2.6851

Scale factor

0.90
1.00
1.1p
0.90
1.00
1.10
0.90
1.00
1.10

Total energies
E/N (hartree)

-0.459 73
-0.46100
-0.457 03
-0.463 4Q

-0.463 07
-0.456 42
-0.460 55
-0.458 60
-0.449 25

-0.9418
-1.0031
-1.0224
-0.9101
-0.9325
-0.9284
-0.8721
-0.8725
-0.8560

Cf
b

0.062
0.015
0.018

-Q.p61
-0.064
-0.032
-0.14
-0.12
-0.068

Virial ratio

1.056 0
1.0818
1.127 4
0.975 64
1.011 7
1.0718
0.925 31
0.973 02
1.049 7

Optimum calculated values

2.4388 0.958 -0.463 84 -0.9338 -0.0633 0.999 99

Usirg a two-Gaussian expansion with N =249.
The &~ values for all but the calculation at the optimum parameters are approximate and

were obtained using a linear interpolation across the Fermi surface.

the matrix element K„&» whose values dissipate
as

~
R,

~

~. These are not, however, the predom-
inant contributions to K„,» and the elements for
large o{A,) are negligibly small.

Finally, in Fig. 3 we show the calculated band
spectrum and E/N for a calculation with %=381
at the optimum lattice spacing. The P= 3 basis"
was used with )= 0.958 {the optimum value from
the P = 2 basis). Comparison with the separated
atom energy of -0.4970 hartree indicates that at
this level of calculation, the system is unbound by
0.9 eV.

V. SODIUM AND LITHIUM CONDUCTION BANDS

The application of real space basis-set expansion
techniques has been limited for the most part to

ionic ' or insulating systems possessing very
localized orbitals. The highly diffuse basis sets
necessary to descr ibe nearly-free-electron metal
systems would be expected to produce poor con-
vergence in conventional spherical cluster expan-
sions. The definition of local electron density
functions in the bispherical cluster approach pro-
vides a means by which this limitation might be
eliminated. Accordingly, we have carried out ad-.
ditional calculations for the conduction band states
of face-centered-cubic (fcc) sodium and lithium
crystals, using the atomic orbital basis. This
basis is too restricted to provide quantitative in-
formation about these conduction bands, but should
illustr ate the convergence properties of this tech-
nique.

TABLE IV. Total energies and band spectra for face-centered-cubic hydrogen as a function
of cluster size.

Shell
num-
ber

A.

No. of
charge
units
0(A)

Total energy (hartree)
Spherical Converged
surface surface

Eigenvalues (hartree)
Cf

Virial
ratio

2
4

8
11
12
14
16
18

13
43
79

135
177
201
249
321
381

-0.537 9
-0.456 1.
-0.4572
-0.462 09
-0.462 31
-0.462 21
-0.462 26
-0.462 57
-0.462 62

-0.526 7
-0.461 3
-p.459 6
-0.463 47
-0.463 94
-0.463 81
-0.463 84
-0.464 21
-0.464 27

-0.737 9
-0.876 1
-0.9110
-0.927 74
-0.933 28
-0.934 44.
-0.933 84
-0.930 22

0.927 57

-0.516 2
-0.014 6
-0.067 5
-0.068 95
-0.065 47
-0.063 48
-0.063 30
-0.063 56
-0.061 83

0.839 00
1.008 31
1.009 26
1.000 50
0.999 84
1.000 01
0.999 99
0.999 61
0.999 58

Using a two-Gaussian expansion with k =0.958 and lattice constant & =2.44 ~.
Isolated atom energy is -0.4858 hartree.
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TABLE V. Total Hamiltonian matrix elements g~&g& for face c-entered c-ubic hydrogen.

Shell
no.

Magnitude
Charge units in calculation

135 225 321 381

1
2
3
4

6
7
8
9

10
11
12
13
14
15
16
17
18

10 ~

10
10 ~

10
10
10 3

10
10 3

1p 3

1o 4

10 4

1P-4

1P 5

10 4

1O 4

10"4

1O '
1O 4

-4.60 71
-2.5683
-1.1138
-4.6785

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

-4.6173
-2.5806
-1.1262
-4.8401
-2.0438
-7.9322
-3.3410
-2.0588

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

-4.6190
-2.5811

101217
-4.848Q
-2.0560
-7.8527
-3.3597
-2.0359
-1.5705
-8.3562
-8.9267
-3.4751
-2.1242

0.0
0.0
0.0
0.0
0.0

-4.6191
-2.5812
-1.1217
-4.8476
-2.0564
-7.8572
-3.3612
-2.0303
-1.5381
-8.3783
-8.9491
-3.7483
-3.6317

1.4807
3.3233
3.1503
0.0
0.0

-4.6192
-2.5812
-1.1212
-4.849O
-2.0582
-7.8461
-3.3458
-2.0319
-1.5370
-8.1912
-9.0147
-3.7957
-2.9707

1.3651
3.2874
3.1738
3.1900
1.6276

Using a two-Gaussian expansion with f =0.958 and lattice constant a =2.44 A.

In these calculations, the core electrons were
removed from the problem through the application
of standard ab initio effective potential techniques. "
Here, the one-particle equation for the valence
orbital of the atom is written as

( —,'v' Z/~~~+V--)y =~ y,
where

V-"= Z V,()~f.&(f„l
l, tn~0

I

and each V, (r) is a loca/ potential describing the
Coulomb and exchange interactions between the
valence orbital P„and the core orbitals. The
functions V, (x) are obtained from ab initio calcula-
tions on the atom, and the resultant orbital P„cor-

TABLE VI. Hamiltonian components for face-centered-cubic hydrogen.

Shell
no.

Magnitude 43

Total Coulomb hf~~y~+ (2/f) j ~~y~
Charge units

135 225 321 381 Magnitude 43 135

Total exchange E«~y~
Charge units

225 381

1
2

3

5
6
7
8
9

10
11
12
13
14
15
16
17
18

10
1p 2

1p 2

10
10
10
10
10
1p 4

1O 4

10 4

1p-5

1O

1O '
10-6
1O '
10
1Q 7

7.0405
-5.6655
-3.6024
-1.9367

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

5.9309
-5.9749
-3.7045
-1.9756
-9.7403
-4.3849
-1.9421
-8.5856

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

5.9104
-5.9808
-3.7065
-1.9762
-9.7418
-4.3849
-1.9421
-8.5849
-3.7313
-1.5580
-1.5580
-6.4636
-2.6881

0.0
0.0
0.0
0.0
0.0

5.9105
-5.9808
-3.7065
-1.9762
-9.7417
-4.3849
-1.9421
-8.5844
-3.7310
-1.5577
-1.5577
-6.4618
-2.6873
-1.1114
-4.5120
-4.5122

0.0
0.0

5.9062
-5.9821
-3.7070
-1.9764
-9.7423
-4.3851
-1.9422
-8.5847
-3.7309
-1.5577
-1.5577
-6.4615
-2.6873
-1.1115
-4.52O6
-4.5208
-7.6948
-3.0129

10
1O '
10
1p 2

]0 2

10 2

1p 2

10 3

10 3

1o 4

1p -4

1p-4
1p-6
1O 4

1p -4

1O '
1p -4

1O 4

5.3111
2.0018
7.5352
2.7418
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

5.21Q4
1.9831
7.5576
2.8644
1.0697
3.5474
1.3989
1.2002
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

5.2100
1.9831
7.5103
2.8717
1.9818
3.4678
1.4176
1.1774
1.1974
6.7982
7.3687
2.8287

-5.6389
0.0
0.0
0.0
0.0
0.0

5.2101 5.2098
1.9831 1.9830
7.5108 7.5p46
2.8714 2.8726
1.0822 1.0840
3.4'723 3.4611
1.4191 1.4037
1.1718 1.1735
1.1650 1.1640
6.8206 6.6336
7.3914 7.4570
3.1021 3.1495
9.4435 2.8339

-1.5919-1.4762
-3.3685 -3.3326
-3.1954-3.2190

0.0 -3.1977
0.0 -1.6306

0

Using a two-Gaussian expansion with /=0. 958 and lattice constant a =2.44 A.
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basis sets were then used in calculations of up to
249 charge units to assess the convergence of en-
ergetic quantities. In addition, the lattice pa-
r ameter a was optimized for each metal in cal-
culations with ~= 135.

B. Results and discussion
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r
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FIG. 3. Band spectrum along symmetry directions for
face-centered-cubic hydrogen using N= 381 and a three-
Gaussian expansion (Ref. 15) for the 1s orbital.

rectly mimics the character of a valence orbital
obtained with all core electrons explicitly included
in the calculation.

A. Calculational details

Under standard conditions, both sodium and

lithium exist in body-centered cubic lattices. "
Both metals undergo a martensitic transition at
low temperature, which for lithium produces a
partial conversion to a fcc structure. The fcc
structure is thought to be favorable for sodium at

low temperature, "although it has not been ob-
served.

The fcc lithium structure has been characterized
with a=4. 370 A, representing a 1.88% expansion

of the nearest neighbor distance relative to the
bcc phase. " This distance was used in calcula-
tions on the fcc lithium structure, while for sodi-
um, bond distances for the bcc lattice were scaled
outward by 1.881 to obtain a=5. 343 A. The ef-
fective potentials and basis sets used were those
of Melius and Goddard is For both sodium and

lithium, the valence orbital consisted of four
Gaussian expansions in which the three most con-
tracted functions used coefficients found optimum

for the atom. The coefficient for the most dif-
fuse Gaussian was optimized in the band calcula-
tions involving 135 charge units. " The optimum

Energy quantities for the four largest clusters
considered (N= 177 to 249) are collected in Tables
VII and VIII for sodium and lithium, respectively.
Comparison with trends in Table Dt' suggests that
E/N values are converged to within 0.001 hartree,
while Fermi energies and bandwidths are only

slightly less reliable. Overlap values 8;; are
collected in Table IX, together with those of the
two-Gaussian hydrogen basis, and indicate the in-
sensitivity of the bispherical method to the diffuse
character of the metal basis sets.

The reasons for this insensitivity may be seen

by examining Fig. 4. Here we show the p„(r)
function for lithium along several symmetry di-
rections, together with the cor responding atomic
orbital density function rf&(r)p(r). While the over-
lap values of Table IX suggest that the p„(r) func-
tion might extend to very long range, the figure
indicates that it is very similar in shape to the
atomic orbital density. It is the oscillating nature
of the D',„values that results in the highly localized
nature of p„(r).

As indicated by Fig. 5 and Table X, the calcu-
lated band spectra for these systems deviate only

slightly from a totally spherical distribution, in
agreement with experimental infor mation. " Work
function values for lithium and sodium may be es-
timated from Fermi energies e&, listed in Tables
VII and VIII (using A. = 14), and correcting for the
potential shift due to the metal surface. values
calculated in this manner (0.2 and 1.2 eV) are
smaller than the observed values for bcc lithium
and sodium (2.49 eV [Ref. 23(a)] and 2. 26 eV
[Ref. 23(b)]). To some extent, the error is a re-
sult of simple basis-set deficiencies, particularly

TABLE UII. Total energies and band spectra for face-centered-cubic lithium as a function

of cluster size.

Shell
nuQlber

No. of
charge
units

O.P.)

Total energy (hartree)
Spherical Converged
surface surface

Eigenvalue s (hartree)
Ep Ef

11
12
13
14

177
201
225
249

-0.178 49
-0.178 17
-0.17791
-0.17771

-0.17995
-0.179 55
-0.179 29
-0.179 13

-0.305 52
-0.303 24
-0.30112
-0.299 52

0.035 34
0.046 25
0.051 75
0.054 49

~ Using the atomic orbital from Ref. 18 and a lattice constant of a = 4.370 A.
" Isolated atom energy with effective potential is -0.1964 hartree.



Ab initio HARTREE-FOCK CALCULATIONS OF CRYSTALLINE. . . 1545

TABLE VIH. Total energies and band spectra for face-centered-cubic sodium as a function
of cluster size.

Shell
number

No. of
charge
units
0 {I,)

Total energy (hartree)b
Spherical Converged
surface surface

Eigenvalues (hartree)
E'0

11
12
13
14

177
201
225
249

-0.16597
-0.16589
-0.16585
-0.16585

-0.166 88
-0.16675
-0.16672
-0.16671

-0.280 01
-0.280 12
-0.279 87
-0.279 57

-0.014 40
-0.01199
-0.01123
-0.01097

Using the atomic orbital from Ref. 18 and a lattice constant of a = 5.343 A.
Isolated atom energy with effective potential is -0.1819 hartree.

in the region near the Fermi surface.
The result of lattice optimizations are shown in

Table XI where the optimum lattice constant for
lithium is found to be 5.17 A, 1'7% larger than the
experimental value, and the system is unbound by
0.2 e7 per atom. The calculated bulk modulus of
8.3't & 10"dynes/cm~ is comparable to the experi-
mental bcc value34 (11.8 & 10'0 dynes/cm'} and is
quite weak, indicating that large changes in bond
distances will be accompanied by relatively small
energy changes. Thus we might expect significant
improvements in the calculated value of a with
modest improvement of wave-function quality.
Similar considerations apply to the sodium lattice.
Here, the calculated lattice constant is expanded
by 11% relative to the estimated fcc value, and
the lattice is unstable by 0.3 eV.

VI. DISCUSSION

A. Comparison with other methods

The high symmetry and infinite periodicity of a
three-dimensional lattice allow the crystalline
HF problem to be considered from within a variety
of different representations. Of those investigators
who have formulated the problem in real space,
Calais and Sperber" have described a method that
bears the closest resemblance to our own. They

arrived at the same choice of repeating density
unit through consideration of the properties of the
density matrix~' "', however, their evaluation of
the total energy was quite different. Vfhereas we

have chosen to integrate the field experienced by
a single unit cell over all space, Calais and Sper-
ber integrate the field due to all atoms in the lat-
tice over a single Wigner-Seitz cell. While ele-
gant, the resulting integrations are difficult and
make self-consistent evaluation of coefficients
and the Fermi surface less practical.

Euwema et a/."have carried out calculations
on the diamond lattice using the spherical cluster
method. Some consideration is given in that paper
to the definition of a minimum set of two-electron
integrals within the constraints of the method, As
mentioned earlier, they approach the problem of
charge imbalance inherent in the spherical cluster
method through the application of monopole and di-
pole corrections to the potential. The calculations
so defined are carried out self-consistently, pro-
ducing optimum orbital coefficients and zone point
weights for the integration in k space.

Several methods utilize a Fourier representa-
tion. Mauger and Lannoo~' utilize the Fourier
transform of an LCAO (Bloch) wave function.
Brener and Fry ' expand the Coulomb potential
in a Fourier series and the exchange operator as

TABLE IX. Overlap values using optimum basis sets.

Shell num-
ber

Shell coor-
dinates (in

lattice units) (110) (211) (310) (321)

10

(330)

12

(420)

Sodium
Lithiumb
Hydrogen c

0.359 68
0.444 54
0.298 43

0.060 08
0.10453
0.037 03

0.01321
0.029 45
0.005 04

0.003 32
0.009 15
0.000 70

0.00090
0.003 01
0.000 10

0.000 48
0.001 76
0.000 04

~ Lattice constant = 5.343 A.
" Lattice constant= 4.370 A.

Lattice constant = 2.439 A. (Two-Gaussian expansion with f = 0.958.)



221546 THOMAS H. UPTON AND WILLIAM A. GOD DARD III

0.005—
TABLE X. Comparison of k& valvalues between calcu-

lated and spherical (free-electron) Fermi surfaces.

~ o.oo4-

C3

X
& o.oos-I—

I—
0.002—

LLI
Ci

0.001—

System
k& values at symmetry points
K X

Hydrogen~
Lithium"
Sodium
Free electron

0.777 59
0.782 77
0.776 21
0.781 59

0.769 15
0.784 57
0.781 42
0.781 59

0.825 85
0.776 59
0.796 70
0.781 59

~ Vsin P = 3 basis set and a = 2.44 A.
O

S ing
sis and a =4.370 A."Vsin optimum four-Gaussian a '

~V ' o timum four-Gaussian a '
sing

sis anda = 5.343 A.S111g

rcome slowlya double Fourier integral. To overcom y
converging sums, the overlapping atomic potential
approximation is invoked to obtain the core con-
tributions to the sums.

The met o oh d f Harris et al. ' is most directly
comparable to the one described here, as it is
formulated with the intention of providing results

aid limit and has been applied to both
s discussed her e.the h drogen and lithium problems discusse ere.

The have chosen a formalism in w
'hich the Cou-

1 b otential is expressed as a Fourier trans-om po
f roducing energetic quantities in
wei hted lattice sums of orbital products.weig e a i
method involves consider able numerica pr' al corn lex-
ity an is imid

' l' 'ted to systems involving a sing e
d ' "' As current Fourjer represen-occupied band.

ef-tation met o s o nh d d ot permit the use of ab initio e-
fective poten ia ec it' l t hniques a zero-differential

0.8

LIJ
4J

0.4
0

C3

w o.0
LIJ
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-&t (SODIUM)

-0.4—
r X K

FIG. 5. Conduction-band spectra forr sodium and lithi-
um along symmetry directions. Both calculations in-

mental face-cen-1 d 249 charge units at the experimenta
tered-cubic lattice separation and both were cacarried out
using the optimized basis sets.

I

2.0 4.0 6.0 80
DISTANCE FROM CENTER (BOHR)

FIG. 4. Orbital density function and local density func-
tion for a face-centered-cubic ar yion o - ' ra of lithium atoms.
The experimental lattice param eter of a=4.370 A was
used in a calculation with N= 249.

overlap approximation is invokee in the tr'eatment
as, so(a)of core states.

Unlike the real-space techniques, the method o
Harris et a. is a el

' able to economically utilize Slater-
typeor ias, anb't l and this is done in the studies of hy-
drogen an i ium.d l'th In Fig. 3 we show the cal-
culated band spectrum for hydrogen obtained by
this method for comparison with our own. - While
the shapes are quite similar, there is clearly a
discrepancy in the absolute position o eof the band
spectrum. Although Harris et al. do not report
energies near the C" point, total energies are

unded bquoted and the system is found to be unboun y
a measure (0.9 eP) identical to that obtained here.

ted HFSince total electronic energies of a restricted H
wave function may be expressed as

NP/JF

E= Q f(e-„„+hg„-„„)/2,

the similarity in total energies and disparity in
~ ~ r calculated lat-band spectra ar'e surprising.

tice constan ont of 2.44 A is somewhat longer than
stud andthe 2. 24 A obtained in the Harris et al. study, an

rs of 0.96 and -1.25,th optimum scale parameters oe
n therespec ive y,t' el are quite different. Based on

l theorem one would expect an unboun s s-
m and itm to ield a f smaller than the free atom,

is difficult to understand why their valu ge is lar er.
somewhatThese differences could arise from the so

different form of Bloch wave functions employed
as

Because of the use of a single (contracted) s
function on each atom, our lithium results are of
limited quantitative value; however, some com-
parisons wiith the results of Kumar et al.' are
valuable. In that study, numerical instabi ities in

'ttin results tothe normal procedures required fi ing
a free-electron, logarithmic exchange term in
order to obtain ~ „.bt Thus full band spectra weret
not reported; however, the limiting values e& and
'E

p were quo e . ep t d Th ir band spectrum is shifted
upwards by a oub - t 0 1 hartree relative to our com-
parable results at the optimum lattice spacing
shown in Table XI. The calculated bandwidth in
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TABLE XI. Lattice-constant optimization for sodium and lithium. Pf = 135.)

Lattice
constant

Energy
(hartree) Eigenvalues (hartree)

Ep Eg

Bulk
modulus

(10~P dynes/
cm)

Sodium 5.244
5.774
6.303

-0.16377
-0.3.69 05
-0.167 76

-0.296 6
-Q.302 5
-0.287 5

-0.0073
-0.0383
-0.0497

7.67

5.934
Optimum values

-0.17136 -Q.285 32 -0.0455

Lithium 4.688
5.005
5.323

-0.185 39
-0.187 68
-0.187 72

-0,319 3
-0.326 1
-0.328 9

-0.0022
-0.0245
-0.0453

8.37

Optimum values

5.169 -0.188 11 -0.332 0 -0.039 4

that study of 0.265 hartree is also somewhat dif-
ferent from our own (0.292 hartree). While these
differences may be due to choice of basis set, it
is relevant to note that the optimum lattice pa-
rameter obtained in that study is 5.45 A, con-
siderably larger than that obtained here. A sim-
ilar discrepancy is observed in comparing the bcc
results of Calais and Sperber""' (a= 7.0 a.u. )
with those of Kumar et al."(a=8.2 a.u. ). This
comparison is particularly relevant in that both
methods employ Slater-type atomic orbitals, dif-
fering only in the treatment of core orbitals and
the form of Bloch expansion used. While Kumar
et al."attribute the discrepancy to the differences
in Bloch expansions, the extremely small change
in energy obtained with variation of a raises some
concern about the validity of the core approxima-
tion used by Kumar et al. '

B. On generalization to lesser periodicity

'
As mentioned at the outset, the development of

this HF procedure was conceived as a first step
in producing more general methods capable of
dealing with lesser periodicity. Emphasis has
been placed on numerical simplicity and stability
and maximizing the use of existing, mathematical-
ly straightforward techniques of theoretical chem-
istry. There are a variety of ways in which this
formalism might be generalized to two-dimension-
al systems:

(1) Two-dimensional Bloch basis functions of
the form

(p',. ([,r) = Q e'"ii' ~Ry'( —r K„—I, )
II ll

may be used, where R, determines the origin of a
particular layer in the slab, H„ is measured from

that origin within the layer, and k„ is a two-di-
mensional wave vector. One-electron wave func-
tions are

4f. .. ( )=&R. ,- Z CI. + e.,(E)&a, (E r)

where a separate coefficient C;„ is needed to de-
Crtg

fine oscillations in the direction perpendicular to
the surface (there will be l values of q for each
bound n). Within the formalism defined here, such
functions would lead to the definition of a two-di-
mensional local density function and manipulation
would be much the same as discussed above. For
slabs of a sufficient number of layers, the local
density functions at one face could be constrained
to be those of a bulk calculation, thereby eliminat-
ing the artificial "thickness" phenomena charac-
teristic of a slab calculation.

(2) For systems in which localized bonding or
pair correlation effects are important, it would be
more effective to define a basis for a compound
unit cell extending through the thickness of the
slab,

y', (~, r)=Q C; (fP(r —R„—5„),
where P„ locates the compound ceil origin and the
R„ locate atoms within the cell from that origin.
There will be as many values of q, as there are
atoms in the cell possessing a particular P'(r).
The coefficients C; are fixed and are chosen so
as to make the y', (~, r) orthogonal for a given
choice of a and m. One-electron functions become

x QC'„. Q C;„y,' ((g, r)~.
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In this way, all the information relevant to a sin-
gle compound cell may be isolated by the terms
in brackets. Linear combinations of such orbitals
could be used effectively in describing correlation
effects in a generalized valence bond wave func-
tion. '

(3) Noting that the matrix elements H;;,~ &, dis-
cussed in Sec. IVB contain all of the Hamiltonian
information relevant to a pair of atoms separated
by ~R, —R, &» ~, one may design a finite-cluster
method in which the atoms are "unaware" that
they are set in a finite lattice. Using these ele-
ments to define a zero-order Hamiltonian matrix
between atoms, the finite cluster would experience
the field of an infinite surrounding array (when
corrected for the neighboring atoms included ex-
plicitly). Thus interstitial migration or vacancy
formation could be-treated rigorously as a cor-
rection to this Hamiltonian.

Loss of periodicity in the direction perpendicular
to the surface necessarily leads to the generation
of more nonunique two-electron matrix elements
in methods (1) and (2). From the results of both
semiempirical' slab calculations and ab initio
cluster calculations"" it appears unlikely that suf-
ficient layers will be required for this to be of
serious consequence.
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