
PHYSICAL RE VIE% 8 VOLUME 22, NUMBER 4 15 AUGUST 1980

Equation of state from weak shocks in solids
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The Rankine-Hugoniot jump conditions for the increases across a shock of the normal stress, normal strain, and
internal energy are not valid for weak shocks in solids. Correct jump equations for a solid can be obtained by
integrating the equations for conservation of mass, momentum, and energy along the Rayleigh line through the
shock process; these jump equations then depend on the details of the shock profile. Further, because a uniaxially
compressed solid supports a nonzero shear stress, the locus of thermodynamic states reached behind planar shocks,
which we call the anisotropic Hugoniot, requires for its description two stress variables and two strain variables. In
the present paper the thermodynamic description of the anisotropic Hugoniot is given, and for the example of 6061-
T6 Al the shock-profile jump equations are derived, the weak-shock equation of state is computed, and the pressure
on the principal adiabat is found to differ from the results of Rankine-Hugoniot theory by several percent in the
range 0-100 kbar.

I. INTRODUCTION

Shock experiments have been extensively used
to determine equations of state of solids. '~ The
quantities measured are the shock and particle
velocities, and from these the Hugoniot equation
of state, a pressure-volume-energy curve, is
computed by means of the Rankine-Hugoniot jump
conditions. Since these jump conditions were
constructed specifically to describe shocks in
gases or liquids, ' ' their use to analyze shocks in
solids represents the neglect of differences in
solid and liquid behavior. This situation has been
recognized in the past, ' 4 but the theory and the
experimental data needed to correct for solid-
liquid differences were not available. In the pre-
sent paper we present the needed theory for the
case of weak planar shocks in initially isotropic
solids.

It is helpful at the outset to identify the charac-
teristics of shocks in solids which are to be ac-
counted for in this work. The Rankine-Hugoniot
jump conditions and related thermodynamic analy-
ses' ' will be referred to as "liquid Hugoniot
theory. " This theory assumes that the shock is a
single steady wave, which means the jump con-
ditions can be calculated by the black box treat-
ment: The entire shock front is considered a
black box of fixed thickness which moves at the
shock speed; ahead of the box is material in the
initial equilibrium state and behind the box is uni-
formly moving material in the final equilibrium
state. Without knowing any details of the shock
structure it is still possible to apply conserva-
tion laws: Whatever flows into the box must flow
out. In this way conservation of mass, momen-
tum, and energy give relations among the fol-
lowing three quantities: the normal strain from
initial to final state, the corresponding change

in the normal stress, and the change in the in-
ternal energy. Since these are thermodynamic
quantities, by the assumption of initial and final
equilibrium, it is then possible to calculate the
increase in entropy through the shock, a very
appealing result of the theory. Unfortunately,
however, the black-box treatment does not work
for a weak shock in a solid. For since the elastic
precursor travels faster than the plastic wave,
the entire shock front is not a steady wave; it
spreads continuo~sly and takes in an ever in-
creasing mass of material, and momentum and
energy. This means the shock is a sink for these
quantities, and the steady Rankine-Hugoniot jump
conditions across the shock do not hold: All of
what flows in does not flow out. Conservation of
mass, momentum, and energy still hold on the
local scale, but the total change in these quantities
across the shock will depend on the spreading of
the shock profile.

The other approximation of liquid Hugoniot
theory is that the material behind the shock is in
a state of isotropic pressure. This means there
is only one stress variable and one strain variable
on the Hugoniot, namely the pressure and the
volume, and the liquid jump conditions are suf-
ficient to specify these uniquely. A solid, how-
ever, after uniaxial compression by a planar
shock, presumably supports a nonzero shear
stress, so the final state is characterized by two
stress variables and two strain variables; jump
conditions on the normal stress and the normal
strain are insufficient to determine all four of
these stress and strain variables.

In Sec. II we set up a thermodynamic descrip-
tion of the anisotropic (tetragonal) Hugoniot for a
solid; this description is not limited to weak
shocks. In Sec. III we show how the weak-shock
Hugoniot can be constructed from shock profiles,
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and carry out the construction for 6061-T6 Al.
Once the anisotropic Hugoniot is determined, it
is possible to calculate isotropic pressure curves,
including the principal adiabat; the theory for this
is also derived in Sec. III, and the adiabat for
6061-T6 Al is compared with the corresponding
curve calculated from liquid Hugoniot theory.

II. ANISOTROPIC HUGONIOT THERMODYNAMICS

p, /p = V/V, =detn' = o.', o."o.' (2)

where V=p ' is the volume per unit mass. As
shown in Fig. 1, there is also an increase in the
entropy, from S, in the initial state to S in the
final state.

The term Hugoniot will be used here to mean
the sequence of thermodynamic equilibrium states
reached behind each shock for a sequence of dif-
ferent-strength shocks from a given initial state.
Our first job is to specify the Hugoniot in terms
of thermodynamic variables. Since they are equili-
brium states, they may be reached by a thermo-
elastic (reversible) process from the intial state.
For an initially isotropic solid in plane-shock
geometry, the stress and configuration variables
are shown in Fig. 1. Cartesian coordinate 1 is
the normal (propagation) direction and coordinates
2 and 3 are equivalent transverse directions. An
element of mass in the initial configuration has
dimensions d„zo„anddensity p„and zero ap-
plied stress; in the final configuration it has di-
mensions d, sv, density p, and normal compres-
sive stress 0 and transverse compressive stress
0 —2v'. The final shear stress is r. The con-
figuration transformation from initial to final
state is given by the elastic transformation matrix
o.',"whose elements for the simple transforma-
tion of Fig. 1 are (Uoigt notation)

& ~
= d/dg q CE2

- (Xs
=W/Wg q

o, ' = n' = o.' = 0

The conservation of mass equation for n' is'

e =1 —V/V, ,

g = —1no.~. (4)

The elastic strains are then related to e and g by

~e e-0/2
2

(5)

(6)

For the moment, however, let us forget about
shocks. We consider the Hugoniot to be an equili-
brium thermodynamic curve of states reached
through anisotropic elastic compression by a
tetragonal stress system, while some reversible
heat dQ =TdS is put in from an external source.
For stress-strain variables on the Hugoniot we
take the set o, v, n'„a2, or what is equivalent
through Eqs. 2 and 3, o, 7., V or &, ', . Then we

proceed to find relations between these and other
thermodynamic functions. Note the use of the
variable V does not imply that the compression
is isotropic or that the stress system is isotropic.
Also note that there is no plastic flow on the Hu-
goniot; nevertheless the material must be pre-
sumed to be hardened in some way, so as to sup-
port elastically the shear stress v. This point
will be examined at the end of this section.

The thermodynamics of elastically anisotropic
materials -is well described in textbooks. '" For
the geometry of Fig. 1, the combined first and

second laws are

TdS =dU+adV —4Vv'd ln~~, (7)

There is a different process by which the ma-
terial can be brought from the same initial to final
states shown in Fig. 1. This is the dynamic (ir-
reversible) process which occurs during planar
shock compression. '" It is characterized by
simultaneous elastic strain a' and plastic flow
at', so there are four strain variables, but with
the restrictions that the total transverse strain
is zero and the plastic flow is volume conserving,
there are only two independent strain variables,
which can be taken as the total normal strain &

and the plastic strain g:

Wg

pa. Sa p, S

d—

where U is the internal energy per unit mass, S
is the entropy per unit mass, and T is the tem-
perature. An independent equation for dS is the
identity which results from considering T as a
function of S and the elastic strains,

TdS =C„dT+TC„[y,dlnV —2(y, -y, )dine. ,'], (8)
da

FIG. 1. Thermoelastic transformation of a mass ele-
ment from the initial state to a final state which is on the
anisotropic Hugoniot.

where C„is the heat capacity at constant elastic
configuration and y„y,are the anisotropic
Grtineisen parameters (Uoigt indices, see Ref.
9 or ll for definitions). Between Egs. (7) and (8),
T and S can be calculated by integrating up the
Hugoniot if the other quantities are known on the
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Hugoniot. The entropy is small in weak shocks,
but not as small as in liquid Hugoniot theory. In
particular, because g and 7 are of lowest-order
linear in strains LEqs. (9) and (10) below], the
lowest-order terms in (7) and (8) are of second
order, and these terms do not cancel in fdS, so
S -S, on the Hugoniot is of second order in strains.
In liquid Hugoniot theory, ' ' because T =0 on the
Hugoniot, the second-order terms cancel and
S -S, is of order q' at small &.

Another useful set of equations results from
considering o and v' as functions of S and the elas-
tic strains, and calculating variations:

do =py, TdS -B»dlnV+2(B» -B»)dlno,2, (9)

dr = —,'p(y, y2)Td-S —2(B„-B21)dlnV

(Bll 2B22 2B B12 B21)

where Bz, are the adiabatic stress-strain coef-
ficients. Equations (9) and (10) hold everywhere
for the configuration change of Fig. 1, i.e. , they
hold for arbitrary strains and entropy, or for
arbitrary stresses and entropy. For the present
tetragonal geometry, two of the B~„arerelated by

B2j -8,2
—2v.

If enough were known of the quantities on the Hu-
goniot, Eqs. (9) and (10)could be used to find in-
formation about the Bz„coefficients; this is ana-
logous to the calculation of the bulk modulus in
liquid Hugoniot theory. '

In the small strain region the B8„canbe ex-
panded at constant S in terms of the two adiabatic
second-order elastic constants A. , p. and the three
adiabatic third-order elastic constants f, $, v, as'

B» =X+2p. —(4~+8p. +2) +4))& —(8X+20p, +8))inc. 2, ,

B» -B» =2p. —(4X+10p, +4))e —(6A. +24', +68+ v)inn'2,

B„-B»=2p, —(4X+8p. +4))& —(6A. +18p, +6)+v)inc. ,',
B»+2B22+2B„-Bl,-B„=&p—(3&+9p +3)+-,'v)e —(18il +Sv)lnl2', .

(12)

(12)

(14)

(16)

Equations (12)-(15) are correct to first order in
strains at constant entropy; they are also correct
to first order in strains in the region of the Hugo-
niot, because entropy contributions are formally
of second order there.

We can now clarify the point of work hardening
on the Hugoniot. The Hugoniot described by Eqs.
(V)-(10) is entirely thermoelastic; the elastic
strains are presumed homogeneous (or at least,
slowly varying on an atomic scale), and the energy
stored in these strains is recoverably by reduc-
ing the stresses to zero. In the conservation of
energy, Eq. ('f), no energy has been allotted to
work hardening. However, when a real solid is
shocked to the Hugoni. ot, a small amount of energy
is used to accomplish the work hardening and re-
mains stored in the defect structure of the solid.
Such energy is elastic in nature, inhomogeneous
on an atomic scale, and recoverable by annealing;
it does not correspond to the same stress-strain
relation, or any other thermoelastic relation, as
does the energy stored in homogeneous elastic
strain. Now in our dynamic theory of the shock
process, the energy associated with work harden-
ing is -accounted for through conservation of
energy, but it is not stored in any "recoverable"
form; it is instead assigned as part of the dis-
sipation. Hence if we use the dynamic theory and
shock data to calculate the thermodynamic varia-
bles in the shock-compressed state, we construct
a Hugoniot which is the same as the one described
by Eqs. (7)-(10) and which approximates the real

l

physical Hugoniot by replacing energy stored in
the defect structure by heat. The error is small,
as discussed in Ref. 9.

III. THE SHOCK EQUATION OF STATE

A. Construction of the Hugoniot

We proceed now specifically for the case of
6061-T6 Al and base our calculations on the pro-
file measurements of Johnson and Barker" and
on the methods previously developed for analy-
zing them. " The experimental profiles are de-
scribed by three regions on the graph of particle
velocity v as a function of time (Fig. 2):

(1) The front from state a to state b is the elas-

FIG. 2. Schematic representation of a shock moving
as two steady waves and an intervening unsteady region.
Particle velocity v as a function of time t.
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v, =0.0236 mm/p. s, v, =0.050 mm/p, s,
c =6.46 mm/gs,

D =5.26+1.47v, mm/p, s.

(16)

The jump conditions for &, 0, U are obtained
by integrating the conservation equations through
the profile with the following results. "

At b.
e ~ =v~/c~ ~

+b La y b~

Ub —U =2c2q2b.

At c:
=c v +~2c (v~ -v~)5 ~

v =p cv ——'p c(v —v)5+''',
a ~ c ~ a y c b

U —U = —c'e' —'Dc (e —c—)'5+
a & y c 3

p c b

At e:
e, =e, +D '(v, —v, ),
0, = (x, + p, D(v, —v,),
U, —U, = a D'(e2 —e2) + a c'e,'

+Dc [(e +e~)(e —E)'
——,'(e, -e, )']5 +

The small quantity 5(5«1) is

(17)

(18)

(19)

(20}5=(c, -D)/D,

and in (18) and (19) the +' ' represent terms
of second and higher order in 6 which arise from

tic precursor, a steady wave moving at velocity
c; vb =constant.

(2) The plastic precursor is an unsteady region
from state b to state c; v, =constant.

(3) The plastic wave extends from state c to the
final Hugoniot state e, is steady, and moves at
velocity D.

The experimental profile data needed here are

v =& =o =0
a a a

a series expansion of o(v) in the unsteady region
from state b to state c. The expansion was made
to facilitate analytic integration of the internal
energy dU= V,cree. The final-state particle ve-
locity v, may be eliminated from Eqs. (19) in
favor of the shock velocity D by the experimental
relation (16). The shock velocity is not defined
for v, & v, .

Equations (17)-(19)constitute the jump condi-
tions for e, 0, U, from the initial state a to the
final Hugoniot state e. Final-state values for
6061-76 Al up to v=100 kbar are listed in Ta-
Me I.

The equations for the shear stress v and the
plastic strain P through the profile are the same
as Eqs. (9) and (10), with TdS replaced by the
dynamic entropy production 2 Vrdg and with d lnn82

replaced by —2dg according to (6). It is not pos-
sible in principle to find jump conditions for v

and P because the equations for them a.t state e
contain f;~d(, the integral to be evaluated along
the path of the process. In practice this problem
can be eliminated by constructing an approximate
jump condition for the integral itself. We expect
the integral to be roughly proportional to e', , since
S, —S, is of second order in strains. For 6061-T6
Al the integral was evaluated numerically in
Ref. 10 for six shock profiles ranging from 21
to 89 kbar; a check of these integrations shows

e
~+=(32+3)e', ,

a

(in kbar) for all the profiles. We therefore cal-
1

culated r and Inn', = —a(t on the Hugoniot, from
integrals of Eqs. (9) and (10) with the expansions
(12)—(15) for the Bz„ceoffici net sthe resulting
equations being the same as (18) and (19) of Ref.
10. We also used the function 32',' kbar as an
interpolation approximation for the integral (21)
and the experimental elastic constants of Clifton. '

i

TABLE I. The anisotropic Hugoniot for 6061-&6 Al in the weak-shock region.

D 0 U-Ua 7' T S —Sa S-Sa
(mm/pe) (kbar) (109 erg/g) —Inn f (kbar) (K) (105 erg/g K) (Liquid theory)

0
0.0037
O.OO82b

0.020
0.040
0.060
0.080
0.100

5.3335
5.364
5.596
5.775
5.966
6.169

0
4.1
8.2

17.7
35.4
55.4
77.9

103.4

0
0.003
0.013
0.072
0.274
0.63
1.17
1.92

0
0
0.0009
0.0049
0.0117
0.0183
0.0247
0.0305

0 295
1.1 297
1.6 3O0
1.7 310
1.8 326
2.2 345
3.1 368
4.7 398

0
0
0.07
0.4
1.2
2.4
4.3
7.4

0
0
0.003
0.04
0.31
1.1
2.7
5.4

Corresponds to profile point b.
Corresponds to profile point c.
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The results are listed in Table I.
With the energy and the stresses and strains

known, it is possible to integrate Eqs. (7) and

(8) up the Hugoniot to find T and S. The thermo-
dynamic coefficients in these equations were
evaluated by a set of approximations whose justi-
fication 'was discussed in the prof ile analysis, '
and which are of sufficient accuracy here as well:

y, =y2= y, py= p~, y =2.16,

V» = VH,

4 = ~H 2(-~/b) 7H,

~I ~H 7

I'. =~~ -2I(Bii -Bi2)/f ~~H ~

(29)

(30)

(31)

(32)

The differen'ce o„-P»at a common value of V and
S is approximately 3 ra,' Eqs. (12)-(15) can be
used to make a small-strain expansion of (32)
to, find

C„=Cr=0.88 x 10' erg/g K.
(22)

oH-&I=a&&tl-u '(& +2u +&-—6~)

Values of temperature and entropy on the Hugoniot
are also listed in Table I.

B. Construction of isotropic pressure curves

The next problem is the following: Given 0, r,e'„n,' on the Hugoniot, construct a.P -V curve. This
can be done in different mays by carrying out a ther-
moelastic strain from the anisotropic Hugoniot
to conditions of isotropic pressure. We could,
for example, hold o constant and increase the
transverse compressive stress until it equals
0, adiabatically. An alternate process, which we
use here because of its simplicity in plane-wave
geometry, is to bring the shear stress to zero
under conditions of constant density and entropy.
The thermoelastic process is described by equa-
tions of the preceding section, in particular
(7)-(10), specialized to dV=0 and dS=0:

dU= 4Vd inn&,

dT=2T(y& -y2)d lnn2,

do= 2(Bii Bi2)d inn2,

d&= bd ln0. 2,

where b is the combination
1 1Bii + 2B22 + ~ B23 -Bi2 B2i

(23)

(24)

(25)

(26)

(27)

S» =SH (28)

For abbreviation, the P-V curve to be constructed
will be called the isotrope. Equations (23)—(26)
are to be integrated from a point on the Hugoniot
(denoted by subscript H) to the corresponding
point on the isotrope (denoted by subscript I).
The independent variable of the integration is 7,
which goes from 7„to 0; Eq. (26) may be used
to eliminate d lnn2 in favor of dr in (23)-(25).
Since the integration ranges are small increments
(the isotrope is close to the Hugoniot), the B~„are
taken constant for each integral. To integrate
dT, the approximations (22) for the anisotropic
Gruneisen parameters are used, which implies
dT =0. The isotrope may then be calculated from
the Hugoniot by the equations

ln p~/p, = —1no.e» —2 inn,'z .
However, as there is only one stress measure
to the isotrope, namely P», there is for an iso-
tropic material only one strain measure, , say
V, or p», and it is not necessary to evaluate n',
and n,'. In other words, a', and n,' become equal
on the isotrope, and (34) and (35) are not inde-
pendent. " The change in the material configura-
tion in going from the Hugoniot to the isotrope is

TABLE II. The isotrope and the principal adiabat
for 6061-T6 Al.

p
(g/cm')

Isotrope
E T

(kbar} (K)

Adia bat
P T

(kba r) (K)

, 2.703
2.713
2.725
2.758
2.816
2.876
2.938
3.003

0
2.7
6.1

15.5
32.9
52.4
73.7
97.0

295
297
300
310
326
345
368
398

0
2.7
6.1

15.4
32.7
51.9
72.8
95.4

295
297
300
308
322
336
351
366

X (6 +31n(X2H) + '' ']
= '-, r„[1—p, -'(X+2p. + ( — v)

x (r„/p)+ ].
The term of order v„/p, should usually be quite
small.

To evaluate the isotrope for 6061-T6 Al, me
used the expressions (12)-(15) for the B~„and the
elastic-constant data of Clifton. " This constitutes
a neglect of contributions to the B~„from the en-
tropy on the Hugoniot and from fourth-order elas-
tic constants. The thermodynamic functions so
calculated are listed in Table II. Regarding the
principal elastic strains o, ', and o.,', we have avail-
able two equations from which they may be evalua-
ted on the isotrope: the integral of Eq. (26),

ln(n', „/n,') =5 'r„,
and Eq. (2) for conservation of mass,
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-shown in Fig. 3.
It is now straightforward to calculate the princi-

pal adiabat, which is the pressure-volume curve
at constant entropy S =S,. A convenient process for
going from isotrope to adiabat is to reduce S from
SI to S, at constant V by extracting reversible heat
from the material. Qrdinary P-V thermodyna-
mics gives"

50- IOO

dU=TdS -PdV,

TdS =C~dT +pyC&TdV,

-=(::),

(38)

(37)

(38)

From these equations, the differentials at con-
stant V are

I- 20

dU= TdS =C~dT =(py) 'dP. (39)

In going from the isotrope to the adiabat, the in-
dependent integration variable is S. Again since
the integration ranges are small increments, the
coefficients C~ and py can be set constant for each
integral. The adiabat, denoted by subscript A,
may then be calculated from the isotrope by the
equations

IO

0
0 0.0 I 0.02 0.05 0.04

S~ =S, ,

T„=T~ exp[- (SI -S,)/C~],

(40)

(41)

(42)

FIG. 4. Stresses as a function of elastic strain: 00
and 7'H are on the anisotropic Hugoniot, Pr is on the iso-
trope, and P& is on the principal adiabat, and represent-
ing liquid Hugoniot theory, PH (liquid) is on the Hugoniot
and P& (liquid) is on the principal adiabat.

I'~ =I'I +»Cv(T~ —Ts»

U„=U, +C,(T„T,)- (43)

(44)

0.05

0.04

~ 0.03
KI-

0.02

O.OI

The principal adiabat for 6061-T6 Al is listed
in Table II. The stresses on the anisotropic Hu-
goniot and the pressure on the isotrope and. the

adiabat, as functions of the compression, are
compared graphically in Fig. 4.

C. Approximate P-V curves

Having carried out an accurate calculation of the
weak-shock equation of state for 606' -T6 Al, it is
interesting to calculate the same property by
means of liquid Hugoniot theory based on the same
experimental data. The difference of liquid Hu-
goniot theory' ' from the present anisotropic Hu-
goniot theory can be made clear in two separate
steps.

(1) Liquid Hugoniot theory says the elastic and
plastic precursors do not exist; jump conditions
for a single steady wave then follow. These jump
conditions may be obtained as a special case of
Egs. (19) by eliminating the elastic and pie.stic
precursors, i.e. , by setting v, =v, =0:

0
0 20 40 60 80 I 00 I 20 I 40 &8= e~

&e =paD&e ~ (45)

FIG. 3. Change in the elastic-strain variables in going
from the anisotropic Hugoniot to the isotropic pressure
curve. The density pi on the isotrope is related to the
elastic strains on the isotrope by Eq. (35).

(2) Liquid Hugoniot theory then says v, =0, which
means the Egs. (45) determine an isotropic pres
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sure curve with O. I 0

g =P.
When the shock velocity is a linear function of the
final-state particle velocity, the above equations
of liquid Hugoniot theory simplify to'

0.08

0.06

D =c +sr, ,

P, =p,c'q, (l -sq, ) ',
U, —U, =~Vj',&, .

(47)

0.04

0.02

We used the experimental shock-velocity-par-
ticle-velocity relation (16) to calculate the pres-
sure and energy as functions of compression on
the liquid Hugoniot for 6061-76 Al. We also cal-
culated T and S on the liquid Hugoniot by inte-
grating Eqs. (7) and (8) and then constructed the
principal adiabat by means of Eqs. (40)-(44), all
using the same approximations (22) for y and C„
as before. The liquid results are compared with
results of the anisotropic theory in Fig. 4.

A well-known approximation for the P-V curve
is due to Murnaghan"; this is simply a first-
order Maclaurin expansion in pressure for the
bulk modulus and we will apply it here for the
adiabatic bulk modulus on the line of constant
entropy:

B(P,S,) =B,+B,'P, (48)

where B is the adiabatic bulk modulus, B, is B at
P =0 and S =S„andB,' is (sB/sP) z at P = 0 and
S =S,. Equation (48) integrates to the Murnaghan
form for P(V) in the present case along the prin-
cipal adiaba. t,

P(V, S,) =; (
—') —1 (49)

For 6061-T6 Al at room temperature and zero
pressure, Clifton's" measurements give

B~ =728 kbar,

B,' = 5.275.
(50)

p„(v}„„.„-p„(v) (51)

D. Errors

On the Hugoniot, the relations o(e) and U(e) -U,
are determined entirely from shock-profile data,
through the profile jump equations (17)-(19), and
these relations as listed in Table I should be quite
accurate, v to within 1% and U —U, to 2%. The

The differences from our accurate adiabat of the
Murnaghan approximation and of the adiabat con-
structed. from liquid Hugoniot theory are shown in
Fig. 5, in the form of AP„ata fixed volume, de-
fined by

0
:0 20 40 60

PA (kb~l )

80 IOO I 20

FIG. 5. Relative difference hP& in the pressure P&
on the principal adiabat for two approximations as com-
pared with the accurate calculations of the present
paper. EPJ, is defined by Eq. (51).

main source of error is expected to be the shock-
velocity -particle -velocity data. The error most
significant in specifying the Hugoniot, and in de-
termining the isotrope and the adiabat, is the
error in v'. This arises mainly from errors in the
&r(e) relation and in the Bz coefficients. We have
not attempted to estimate the fourth-order-elastic-
constant contributions to B~„;it is hard to ima-
gine, however, that the 7 values listed in Table I
can be in error by more than 25% up to 50 kbar
and by more than 50% up to 100 kbar The .error
in S =S, on the Hugoniot comes from our approxi-
mations for y and C„and from evaluation of the
profile integral J;ader. The latter is determined
with good precision, say of order 10%, indepen-
dently of larger errors in v in the final state.
S -S, should be accurate to within 2F/~ on the Hu-
goniot.

In transforming from the Hugoniot to the iso-
trope, the process is approximately equivalent
to replacing the stress system g, 7 at each den-
sity and entropy by a pressure P, = 0 -'-, 7. Hence
the error in P on the isotrope is essentially the
sum of the errors in g and v' on the Hugoniot.
Finally in going to the adiabat, the pressure
change P~ -PI will be in error by about the same
percentage as is S„-S„givingan error in P~ by
at most a few tenths kbar at 100 kbar. All in all
the pressure on the adiabat, Table II, should be
accurate to 1 kbar at 50 kbar and to about 4 kbar
at 100 kbar.

The error in liquid Hugoniot theory can be es-
timated with more precision, by comparing its
results with those of the anisotropic Hugoniot
theory, because the same shock-velocity —par-
ticle-velocity relation was used in both calcula-
tions, and the same approximations for y and C„



l502 DUANE C. WALLACE 22

as well. There are two differences between the
two theories: The anisotropic Hugoniot has non-
zero r (the major effect) and it has a slightly lar-
ger entropy than the liquid Hugoniot. The role of
these two effects is easily seen at the point where
the shock velocity is equal to the elastic precursor
velocity because here the z, 0, U jump conditions
are the same for both theories [compare Eblis.
(17)-(19)with (45) for the case D=c ]. At this
value of q, then, 0 is equal for the two Hugoniot
curves, at about 143 kbar for 6061-T6 Al. Inte-
grating out the shear stress from the anisotropic
Hugoniot, say at constant &, reduces the pressure
by about -', v below the liquid Hugoniot. Integrating
out the entropy from either curve to reach the
adiabat also reduces the pressure, but more so
in the case of the ani. sotropic Hugoniot because it
has the higher entropy. Both effects work in the
same direction, although in the present aluminum
calculations the entropy effect is only about 5% of
the 3 7 effect. These comments, and our numeri-
cal results, are summarized as follows:

(a) For shocks in the neighborhood of D =c,
liquid Hugoniot theory produces a pressure which
is too high by about 3 Y.

(b) For the 6061 T6 Al adia-bat from 0 to 100
kbar, liquid Hugoniot theory produces a pressure
which is too high by several percent (Fig. 5).

The Murnaghan adiabat (49) was evaluated en-
tirely from elastic constant data, Eq. (50). In the

low-pressure region this represents the most
reliable determination of the P~(V) curve .It is
gratifying to find that the anisotropic Hugoniot,
which is mainly determined by shock data, gives
a P„(V),after integrating out the sizable shear
stress, in agreement with the Murnaghan curve
in the low-pressure region.

E. Stronger shocks

The relative error in using liquid Hugoniot
theory for solids depends primarily on the value
of r/o on the anisotropic Hugoniot. In the present
analysis this ratio is roughly constant in the range
50-100 kbar, but it is reasonable to expect it
eventually to decrease as a function of shock
strength, and hence to expect liquid Hugoniot
theory to become more accurate for stronger
shocks.

IV. CONCLUSIONS

A method for extracting true thermodynamic
information from a wave-profile analysis has been
illustrated with data on 6061-T6 Al. In addition to
obtaining proper thermodynamic variables of the
material undergoing fast one-dimensional deforma-
tion, an equation of state for the material can be
measured at stresses intermediate between the
low values obtained in static experiments and the
higher values in shock experiments where strength
corrections presumably become smaller.
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