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Experimental measurements of weak-shock profiles in the alloy 6061-76 Al are analyzed by irreversible-
thermodynamic finite-strain theory to obtain a complete description of the flow process through the shock
compression, including the entropy production and the relations among the flow variables of shear stress, plastic
strain, and plastic strain rate. The primary quantities, the normal stress and the normal strain, are determined
entirely from the equations of motion and the shock-profile data; the secondary quantities, the shear stress, plastic
strain, temperature, and entropy, are then determined by thermodynamics. It is shown that infinitesimal strain
theory gives unreliable results as soon as the plastic strain becomes of the same order of magnitude as the elastic

strain.

I. INTRODUCTION

A rich source of experimental information on
dynamic deformation processes in solids is shock
profiles in the weak-shock region'; the term
weak shock is here used to mean a shock whose
velocity is not greater than the elastic precursor
velocity. The profile measurements are capable
of determining the particle velocity as a function
of position and time in a solid through which a
planar shock is propagating. This gives a one-
variable map of the shock-induced deformation
process, since the particle velocity is one of the
several variables which are coupled into the pro-
cess. The complete process is governed by three
coupled subsets of equations®: the equations of
motion, which express conservation of mass,
momentum, and energy; the thermoelastic equa-
tions, which are relation among stresses, elastic
strains, temperature, and so on, and whose co-
efficients are reasonably well known experimen-
tally in the weak-shock region; and the plastic
constitutive equation which relates the plastic-
flow variables. The plastic constitutive relation
is experimentally the least-known material
property involved in the whole process. ~Experi-
mental shock profiles have generally been ana-
lyzed by constructing parametrized dislocation
models to represent the plastic flow. The decay
of the elastic precursor in iron® was so analyzed
by Taylor* and by Rohde,® and in aluminum by
Arvidsson et al.° In a series of papers on single-
crystal LiF, the Washington State University
group developed a model based on nucleation and
growth of dislocation loops.” A detailed numeri-
cal study of dislocation multiplication effects on
profile shapes has been carried out by Herrmann
and co-workers at Sandia.®

In the present work we take an alternative
approach: Given the weak-shock profiles and the
relevant thermoelastic properties of the solid

under consideration, we set out to extract from
this information the constitutive relations govern-
ing the plastic flow. The results so obtained can
be considered experimental results, independent
of a dislocation-dynamics theory. A profile
analysis of the present kind is made possible by
the great increase in experimental precision in
recent years, as illustrated by the example of
6061-T6 Al: The 1963 measurements of Lunder-
gan and Herrmann,® with a time resolution of
approximately 2 us, gave a value of 6.4 +0.7 kbar
for the Hugoniot elastic limit; the 1969 measure-
ments of Johnson and Barker!’ with resolution of
a few ns gave 4.1 kbar.

The Johnsonand Barker data are analyzed in
the following section, and the flow variables,
which are the shear stress, plastic strain,-and
plastic strain rate, are determined with respect-
able precision through each shock profile.

II. PROFILE ANALYSIS
A. Shock velocity and particle velocity

We have chosen to study 6061-76 Al because
there are available a set of shock profiles and
also measurements of the polycrystal third-order
elastic constants. The profile data of Johnson
and Barker'® are shown in Fig. 1, in the form of
the particle velocity as a function of time ¢,
where {=0 when the elastic precursor arrives at
the aluminum surface. The measurements were
accomplished with a laser velocity interferometer
looking at the aluminum through a fused-quartz
window; a small impedance-difference correction
was applied to transform surface velocity to
particle velocity.

The qualitative character of the profiles is
illustrated in Fig. 2, where the various states in
the shock compression process are lettered,
from the initial state ¢ at zero stress and room
temperature to the final state e. The experi-
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FIG. 1. Data of Johnson and Barker (Ref. 10) for six
impact experiments on 6061-76 Al.

ment supports the following description: The
front from state a to state b, called the elastic
precursor, is a steady wave; the region from
state b to state ¢, which we call the plastic pre-
cursor, is nonsteady; the plastic wave from state
¢ to state e is steady with velocity D. We gener-
“ally refer to D as the shock velocity.

A precision method for measuring all three of
the adiabatic polycrystal third-order elastic con-
stants ¢, £, v was described by Clifton.'! His re-

t

FIG. 2. Schematic representation of a shock profile
moving as two steady waves and an intervening unsteady
region. Particle velocity v as a function of time ¢.

sults for these for 6061-76 Al, and also for the
two adiabatic second-order elastic constants 2,

. (the Lamé constants), and for the initial-state
density p,, are

p,=2.703 g/em?®, =-1.40 Mbar,
r=0.544 Mbar, &=-2.82 Mbar, (1)

©=0.276 Mbar, v=-4.69 Mbar .

The first step in the analysis is to determine
the shock velocity for each profile. For the first
five shots of Fig. 1 (all but 926), the original
data time record runs from impact time; hence
it is possible to compute for these shots the elas-
tic precursor velocity ¢, (in mm/ us):

¢,=6.46+0.01, ()

where the +0.01 represents merely the experi-
mental scatter. This velocity is considerably
faster (1.4% faster) than Clifton’s value!! of the
longitudinal sound speed ¢, (in mm/ us):

¢, =6.37. (3)

The difference is mostly due to finite-strain
effects in the elastic precursor: The normal
strain on the precursor is ¢, =0.0037 and this is
not exactly infinitesimal. With the elastic con-
stants of Eq. (1), I calculate a velocity of 6.43
mm/ us in finite-strain theory for a steady wave
of this strain amplitude.

Since the profile analysis is going to be based
on the treatment of the plastic wave of each pro-
file as a steady wave, the appropriate velocity D
has to be computed from the difference in arrival
times of two similar steady waves. This pro-
cedure eliminates any nonsteady effects which
may have been present in the time immediately
following impact. In this way we obtain one
velocity from the two shocks at 21 kbar and two
independent velocities from the three shocks at
37 kbar. Comparing these results with velocities
determined from the arrival time of each separ-
ate plastic wave shows small differences (of order
1%) for the 21-kbar shocks and no differences
(random scatter of order 0.2%) for the 37 kbar
shocks. It is therefore safe to compute the
shock velocity for the 89-kbar shock from the
precursor velocity (2) together with the profile
time record shown in Fig. 1.

A well-established experimental result for
shocks up to the Mbar range is that shock veloc-
ity is proportional to the final-state particle
velocity v,.” In the present work, where one D
is computed from two profiles, we assign the
corresponding value v, as the average for the
two profiles; there is no averaging for shot 926.
The resulting collection of four D(v,) points is
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plotted in Fig. 3, along with the least-squares-
fitted straight line

D=5.26+1.4Ty, mm/ps. (4)

Also shown for comparison is the result of Marsh
and McQueen®? for 6061 Al of unspecified hard-
ness; they measured D for shocks of 70 to 680
kbar and fitted the data to the line D=5.29
+1.38v,. The agreement is good in the pressure
region of comparison. In the subsequent analy-
sis, we take D from the relation (4).

B. Integration of the equations of motion

The equations for conservation of mass and
conservation of linear momentum in plane-wave
geometry are given in Ref. 2, Eqs. (40) and (41),
in a mixed Eulerian-Lagrangian form; it is con-
venient here to use the Lagrangian forms

O ov

3= ox’ ®)
o0 ov

ax = "Pa3p? (6)

where X is the Lagrangian coordinate, i.e., the
position in the initial configuration of a material
plane, e=1-p,/p is the normal strain, o is the
normal stress, all variables are functions of X
and ¢, and v(X,t) is the particle velocity, i.e.,
the velocity in the shock propagation direction

of that material plane whose Lagrangian coor-
dinate is X.

We define a steady wave as one which propa-
gates at a fixed velocity without changing its
shape; in mathematical terms this means v(X, ¢)
is a function of only one variable, namely X - cf,
where ¢ is the propagation velocity:

(X, H=v(X - ct). (7

If a wave is steady, or if any portion of the wave
in a fixed range of the particle velocity is steady,
then we can argue that the flow process is steady

.in that rahge, i.e., each successive planar slab

of material passes along the same physical path
while the steady wave passes over the material
plane. This means each thermodynamic variable
is also a function of only X — ¢, and in particular

e=¢e(X -ct),
o=0(X~ct).

(8)

Under the conditions (7) and (8), the equations
of motion (5) and (6) become the total differential
equations

de =c™'dv, ' 9)
do=p,cdv. (10)

Equations (5) and (6) can now be integrated
through the profile illustrated in Fig. 2, as
follows.
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FIG. 3. Shock velocity versus particle velocity for 6061-76 Al. Data points are from the Johnson and Barker pro-
files, the straight line is a least-squares fit to these points, the dashed line is the fitted result of Marsh and McQueen

(Ref. 13).
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Elastic precursor. The front is steady and
moves at velocity c¢,; the initial conditions are
€,=0, 0,=0; Egs. (9) and (10) then give

€ =0p/Cps (11)
Oy =PyCpVs - (12)

Plastic precursov. States b and ¢ are charac-
terized by constant values of v, and v, moving at
the velocities ¢, and D, respectively; an approxi-
mation compatible with the experimental data for
v(X, t) between states b and c is the straight line

I —-X -D
1)='Ub+(vc-vb)(C’X5 )y 6=CA‘,I) . (13)

For this function, (5) and (6) integrate to

V=1, 6(v— vb))
€6 c, ( 2(v,-1,)/)’ (14)
o=0, +p,c V=Y In 1+M) (15)
b a~p 5 (vc — vb) ¢
Plastic wave. We can again use the steady
wave forms (9) and (10) to integrate from ¢
toward e and find
e=e,+D(v-1v,), (16)
o=0,+pDw-7,). %))

It may be noted that we have relied heavily on
the experimental data in devising the above inte-
gration procedure. For the six profiles of Fig. 1,
v, lies in the range 0.023-0.026 mm/us, with
nothing in the data to indicate a dependence on
either the shock strength or the propagation dis-
tance. ‘As for the value of v, this can be chosen
somewhat arbitrarily, but all the profiles are
consistent with v,=0.050 mm/us, which was
used in the present calculations. For the v(X,t)
curve in the unsteady region from b.to ¢, we are
fortunate that experiment provides a simple ana-
lytic approximation. This also allows us to see
clearly a result which may be expected to hold
in general: For the unsteady flow region, the
Rayleigh line, which is the o(e¢) relation, is not
a straight line. The Rayleigh line is straight for
a steady wave; this is obvious from the combina-
tion of Egs. (9) and (10) to give do=p,c*de. But
for o and ¢ on the plastic precursor, the combina-
tion of (14) and (15) produces a o(e) relation
which is slightly curved (concave downward) in
this region.

We used the above equations to calculate ¢ and
€ as functions of v for each of the six profiles.
The raw data points for v were used. The re-
sults for the two profiles at 21 kbar, and for the
three at 37 kbar are in excellent internal agree-
ment.

C. The flow behavior

The thermoelastic differential equations for
the normal stress ¢ -and the shear stress 7 for
plane-wave geometry are given in Ref. 2, Egs.
(37) and (38). The independent strain variables
are the total normal strain ¢ and the plastic
strain y. Since the strains are small in weak

‘shocks, it is convenient here to integrate do, dr

and express o, T as power series ine¢, . This
can be done in either of the following two ways:
(a) Expand the stress-strain coefficients in pow-
ers of elastic strains, convert toe, ¢, and inte-
grate do, dt or (b) expand the internal energy in
powers of elastic strains and calculate stresses
from their thermoelastic definition as strain
derivatives of the internal energy.!*!®> We carry
the expansion of g, 7 only to second order in
strains because coefficients of third-order terms
involve the fourth-order elastic constants, whose
values we do not know.

In addition to the strain terms, the equations
for do, dt contain the following terms in the
entropy: py,TdS in do and $p(y, = v,)TdS in dr,
where T is the temperature, S is the entropy
per unit mass, and y, are the anisotropic
Griineisen parameters. Since 7'dS is propor-
tional to 7dy,® and since 7 is of lowest-order
linear in strains, 7dS is a second-order quan-
tity. Hence to express the above T'dS terms
correct to second order, % may be evaluated to
lowest order in strains, which means y; may be
taken as the ordinary Griineisen parameter eval-
uated in the initial state y,. The completed re-
sults for ¢ and 7 to second order in strains are

o=(+2u)—2up— (3N +3u+ L +2£)?
(4N + 100+ 4E)ed — GA+ 6+ 3£+ Lu)R

€,
voy, [ e, vaw, (18)

T= (e = 39) - (L + Zu+ £
+(E+gut it ive- (Fu+gv)P. (19)

The integral in (18) is the entropy contribution to
o; an entropy contribution to 7 would appear in
third order.

By integrating the equations of motion, we have
already determined the variables o, € through
each shock profile; note for a given profile the
variables correspond to a fixed Lagrangian coor-
dinate, i.e., to a fixed planar slab of material.
With o, € given, Egs. (18) and (19) were then
solved for 7, . Because of the dezp in (18), it
was necessary to solve (18) and (19) simultane-
ously by numerical iteration. For y,, we used
the value for pure aluminum,!4
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7, =2.16. (20)

The results for 7 as a function of ¢ through each
shock profile are shown in Figs. 4-6. Since the
time variable through each profile is also known
from experiment, it is possible to calculate zﬁ,
the Lagrangian time derivative of . These re-
sults are also shown in Figs. 4—6. The shaded
area at the top of each zp curve is meant to indi-
cate the experimental scatter there; this scatter
is not significant in the overall analysis since we
have ¥ spanning a range of four orders of magni-
tude.

It is seen from Figs. 4-6 that the shear stress
increases rapidly, and drives up the flow rate, at
the beginning of the flow process; toward the end
of the process the plastic flow slows, and it
finally stops when the material reaches the
static state e, where ¢ reaches its maximum.
For the 89-kbar shock the rise of the plastic
wave was possibly too fast to be followed by the
instrumentation, so the observed rise time of
5 ns is an upper limit (see Fig. 1); therefore the
maximum plastic strain rate of 107 s™ in Fig. 6
may be only a lower limit. The flow curves of
Figs. 4-6 support two qualitative conclusions for
6061-76 Al, as follows:

(a) The rapid increase of the shear stress at
the flow front is due mainly to strain-rate effects.

(b) Except for possibly the weakest shocks, the
shear stress decreases in the approach to static
equilibrium behind the shock.

We comment now on the errors in the 7,7
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curves. At the front of each curve the error in
7 is small since the total strain there is mostly
elastic. Later, however, 7 no longer increases
even though e continues to increase strongly.
This is because the metal is flowing in such a
way as to keep the shear stress from increasing,
i.e., plastic flow is canceling out much of the
increase in the anisotropic part of the purely
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FIG. 6. Plastic-flow process for the 89-kbar shock.
The four points indicated were interpolated as a straight
line in particle velocity versus time on the plastic wave
front (see Fig. 1).
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elastic strain. Because of this subtle cancella-
tion, the error in our computed 7, which comes
ultimately from errors in our thermoelastic
stress-strain relations, can be significant in the
late stage of each shock compression profile
(near the final state). The effect depends in a
complicated way on the coupling between the
equations for ¥ and 7. To learn something about
this we computed ¥ and 7 at the final state in in-
finitesimal strain theory; that is, from equations
(18) and (19) with the second-order strain terms
omitted. The results are compared with the
second-order calculations in Table I. It is seen
that infinitesimal strain theory produces unac-
ceptable results for all the shock groups. It is
further obvious that inclusion of the next-higher-
order strain terms, corresponding to fourth-order
elastic constants, would be desirable for the 89-
kbar shock.

D. Constitutive relations

In addition to the steady-wave profiles analyzed
above, Johnson and Barker!® also presented a
series of 9.5-kbar profiles which show the decay
of the elastic precursor through a material dis-
tance X of 4 to 38 mm. In these experiments they
measured the free surface velocity, which gives
quite-accurately the particle velocity at the pro-
file point b through the relation: v, equals half
the free surface velocity at b. These data can be
analyzed by Taylor’s theory,* which is based on
the observations that the elastic precursor travels
on the lead C, characteristic and that {y=0 there.
With the characteristic velocity c,, the equations
of Ref. 4 give

leZO,

J = _PaCs AUy
b L odx -

(21)

From this and (19), the shear stress is
Ty = Hey — (N + 31 + £)e3, (22)

where ¢, is given inleading order by (11). Thusfrom
the elastic precursor datafor v,(X), we canfind the

TABLE 1. Final-state values ¢,, 7, as calculated
in infinitesimal strain theory and in second-order
theory, averaged for each shock group. Also the en-
tropy contributions to ¥,, 7,. 7, is in kbar.

Shock

Infinitesimal Second order Entropy contribution

rou

(gkba:) Yo Te ¥, Te R Te

21 0.010 2.6 0.013 1.6 1% —4%
37 0.016 5 0.024 1.8 1% -9%
89 0.016 18 0.055 3.5 3% -25%

7,3 relation on the line §=0.

The flow relations we have determined are
shown in Fig. 7 as curves of 7 vs g at fixed .
The y=0 curve is from the elastic precursor
decay, Eqgs. (21) and (22). The curves for ¢
=0.001,0.002,0.004 are each composed of three
points; one from the 21-kbar shocks (Fig. 4),
one from the 37-kbar shocks (Fig. 5), and one
from the 89-kbar shock (Fig. 6). Though the
values of § are very small, all of these curves
are quite accurate; recall that cancellation errors
in 7 are not important when  is small. A set of
points at the largest plastic strains we could
determine were taken from near the end of the
89-kbar shock; these have i values of 0.048-
0.054, and we expect them to be accurate in 3 and
zi) but possibly in significant error in 7. It should
also be noted that these points represent material
under a pressure of approximately 84 kbar and
at a temperature of about 380 K. Results re-
ported recently by Herrmann,'® based on analysis
of part of the same experimental data through a
relaxation function formalism, differ significantly
from the present results, presumably due to the
inclusion here of third-order elastic constants
and entropy effects (the two methods are com-
pared analytically in Ref. 2). The plastic-flow
behavior of 6061-76 Al was measured by Holt et
al.*” for P up to 0.08 and 3 from 1073 to 10° s™!;
they observed essentially no strain-rate depend-
ence at all, and a mild strain hardening. The
curves of Fig. 7, extrapolated to low strain rates,
are consistent with the measurements of Holt
et al. Note that in the extrapolation to low strain
rates, the four curves for small ¢ values will all
cross, giving 7 as an increasing function of § at
a fixed 9 of say y=10% s™.

E. Temperature and entropy

The theory of Ref. 2 also enables us to calculate
the temperature and entropy through the shock
profiles by means of the equations

TdS=2Vrdyp, (23)
TdS=C,[dT + Ty,dIn(1 —€) + T(y, —v,)dp], (24)

where V=p™ is the volume per unit mass and C,
is the heat capacity at constant elastic configura-
tion. The anisotropic Griineisen parameters may
be expressed as derivatives of the stresses 7,
with respect to the internal energy U at constant
elastic configuration®'4:

psz—(%)n. (25)

A set of approximations which simplify the
numerical integration of (23) and (24), and which
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are of acceptable accuracy for the present calcu-
lations, are

Y1=Y2=7,
C,=Cy,
C,=0.88x10", (26)

py =constant=p,y,,

where the C, for 6061-T6 Al is measured in erg/
gm K. The first approximation expresses the
idea that the thermal energy exerts outward
forces in an essentially isotropic way, i.e., it
contributes nearly equally to all three principal
stresses [see Eq. (25)]. C,=Cy is the same sort
of approximation. To support taking C, constant,
we note that for any characteristic temperature
theory, as e.g., the Debye theory, with charac-
teristic temperature © a function only of the vol-
ume, the relations hold:

S=5(e/T), o=06(V);

then S = constant implies 6/7 = constant, which
implies C,=constant. Since entropy generation
is small in the weak-shock region, the thermody-
namic states are not far from S=S,, and C, is
not far from its value in the initial state, which
is the value given for 6061-76 Al in (26). Fin-
ally the approximation py =constant is in keeping
with dlny/dInV= ~1 for pure Al,’ and with the
extensive shock-related study of Neal'® for Al

and Al alloys for compressions up to a factor
of 2. -

The initial temperature for our calculations
was taken as T,=295 K. The values of T and
S - S, in the final state, along with stresses and
strains at some intermediate profile points, are
listed for each shock group in Table II.

III. DISCUSSION

The application of the general thermoelastic—
plastic-flow theory to accurate one-dimensional
strain experiments on 6061-76 Al has been shown
to be relatively simple. With the velocity profiles

TABLE II. Thermodynamic quantities at state » and
at the final state e. Averages are listed for each shock
group. Stress is in kbar, temperature in K, entropy in
10° erg/gmK. T,=295K. The number in parentheses
is the last significant digit.

Quantity 21 kbar 37 kbar 89 kbar
€, 0.0036 0.0038 0.0038
o 4.0 4.1 4.1
s 1.0 1.0(6) 1.0(6)
€, 0.0240 0.0414 0.089
o, 21.0 36.7 89
Yy 0.0127 0.0244 0.055
T, 1.6 1.8 3.5
T, 313 327 380

S,—S, 0.5 1.2 5.3
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divided into steady and self-similar parts in the
stress range 20-90 kbar, only algebraic compu-
tations are required. For more general profiles
the analysis will be more complicated. A more
complex space- and time-dependent representation
of material velocities is required for the initial
evolution of shock profiles, as illustrated by the
data of Johnson and Barker!® at approximately

9 kbar.

Lipkin and Asay'® have recently reported veloc-
ity measurements on 6061-7651 Al at 20 kbar
which are approximately self-similar throughout,
implying a very weak flow-rate dependence for .
The present analysis also shows a small strain-
rate dependence at the 21-kbar stress level (Figs.
4 and 7). In addition, Asay and Lipkin®® used the
same reshock and release measurements to esti-

mate the shear stress for 6061-7651 Al in the
shocked state at 20 kbar. Their result for Y =27
is 2.6 kbar; the present result from Fig. 4 at 21
kbar is 27=3.1 kbar. The difference is not un-
reasonable in view of uncertainties in either
analysis. A new experimental method for propa-
gating large one-dimensional shear waves at high
stresses?! should provide valuable new data for
improving our knowledge of the flow functions of
metals.
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