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Dynamic deformation of solid materials is described in terms of nonuniform material motion and simultaneous

thermoelastic strain and plastic flow. For deformations of arbitrary form and magnitude in an initially isotropic

solid, an approximate expression for the entropy production is given, and the interrelations among the

thermodynamic variables of stresses, elastic and plastic strains, and temperature and entropy are derived. The theory

is specialized to plane-wave geometry, appropriate for describing a weak planar shock, and is compared with the

relaxing solid model which has previously been used to analyze plane shocks in solids. A qualitative examination of

the mechanics of elastic strain and plastic flow indicates that a thermodynamic description is accurate for many fast

deformation processes in solids.

I. INTRODUCTION

The dynamic flow processes of solids have come
under careful study in recent years with the devel-
opment and use of high-speed, high-stress diag-
nostic capabilities [for a recent review see Ref.
1(a)]. The resulting data, have in turn provided
the main basis for new developments in both mi-
croscopic and macroscopic theories for the equa-
tion- of- state, transport, and flow properties of
solids at high stresses. Dislocation theory for ex-
ample has been extensively used in modeling the
flow properties of crystalline and polycrystalline
materials. However, it is first of all necessary to
obtain a clear macroscopic characterization of
material flow properties exhibited in the experi-
mental data. This necessitates an extended contin-
uum mechanic flow formalism for solids, whose
general formulation and thermodynamic validity is
studied in this paper.

The purpose of this paper is to present a phys-
ical description of fast deformation processes in
solids. The description is mechanic and thermo-
dynamic; it is embodied in a coupled set of equa-
tions which governs the motion of the material and
the simultaneous thermoelastic and flow processes.
Before going into the formal theory, some discus-
sion of the nature of these processes is useful.

In a thermoelastic process, the material passes
through a sequence of equilibrium states, i.e.,
states characterized by zero entropy production,
and the process is reversible. The variables are
the anisotropic stresses and elastic strains, the
energy, temperature, entropy, and so on; these
variables are related in differential form by the
standard equations of thermpelasticity. ""' ' The
question arises: What are the limitations on the
space and time rates at which system variables
may change and still be treated by reversible ther-
modynamics? An answer in the spirit of statistical
mechanics is that in space the system variables

must change by a small amount over a region large
enough to contain many atoms, and in time the
variables must change slowly in comparison with
the characteristic rate (or rates) at which the sys-
tem approaches equilibrium. Such restrictions do
not rule out some rather fast thermoelastic pro-
cesses; in transmitting an adiabatic sound disturb-
ance with wavelength of order 10 ' cm and period
of order 10 ' s, a solid can be described as a large
number of material elements, each passing through
a sequence of near-equilibrium states under the in-
fluence of slowly varying stresses imposed by nei-
ghboring material elements.

For the second type of process, a general and for
the moment not complete definition is as follows:
Flow is any dissipative rearrangement of the atoms
within a material. When thinking of solids, we us-
ually call this plastic flow. Such a process is by
definition irreversible. It can still be described in
thermodynamic terms, however, if the rate= of-
change limitations mentioned above are satisfied.

hen the material passes through a sequence of
states which are close to thermodynamic equilib-
rium states and, hence, the state of the material
is always described to a sufficient approximation
by thermodynamic variables. To complete the de-
scription of the process, it is required to devise
an explicit expression for the entropy production.
'These two requirements are at the base of the the-
ory of irreversible thermodynamics. '4 For ex-
ample, imagine a polycrystalline material with a
shear stress ~ applied and slowly increased from
zero. At first the material deforms elastically,
and when 7. reaches the appropriate static yield
value the flow, as measured by a plastic shear
strain p, begins. The flow is irreversible and en-
tropy production is positive. A phenomenological
relation' of the form ~ ~ p does not hold because T

reaches a finite value while g is still zero This.
essential nonlinearity cannot be treated by standard
i.rreversible thermodynamics; nevertheless there
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is a driving force and there is a reciprocal flow,
and it is possible in principle to relate these quan-
tities to the entropy production. Further, such a
relation can be determined, or verified, by experi-
ment.

It is interesting to compare time-rate effects for
the two types of process discussed. A thermoelas-
tic process is rate independent (up to some limit},
which means for example the stresses change "in-
stantly" in response to changes in the elastic
strains and the entropy. Flow, however, is in-
trinsically rate dependent. In the plastic shear ex-
periment mentioned above, there is a functional
relation, generally called the plastic constitutive
relation, among the variables 7, g, and P, where

g is the time derivative of p at a fixed material
point. Formally it is f(r, tit, g}=0, which means the
driving stress T depends explicitly on how fast the
flow is being driven. We note in passing that the
indicated dependence on g is to account for strain
hardening, and that the plastic constitutive relation
depends also on the thermoelastic state variables.

Now with regard to time-rate effects, a point of
some significance is as follows. A thermoelastic
process can be very fast and still be, to a good ap-
proximation, reversible. On the other hand, again
with reference to the plastic shear experiment, it
is possible to control T so that p is arbitrarily
small, but the flow is still irreversible'. Entropy
production accompanies the process no matter how

slowly it proceeds. Hence the thermodynamic re-
versibility of a process is not determined by its
rate.

In the following section the general theory of dy-
namic deformation processes in an initially iso-
tropic solid is presented. The theory is special-
ized in Sec. III to plane-wave geometry, appropri-
ate for describing a planar shock, and the theory
is compared in Sec. IV with the relaxing solid mod-
el. In Sec. V we discuss in qualitative terms the
question of local thermodynamic equilibrium. In
applying the present theory to shocks in solids, we
limit consideration to weak shocks, i.e., ones in
which the shock velocity is not greater than the
elastic precursor velocity, which means shock
stresses up to one hundred kbar or so.

II. GENERAL THEORY

A. Equations of motion

We consider a spatially continuous isotropic sol-
id. The definition of isotropic solid is given in Sec.
IV, but it should be noted in advance that such a
material can support anisotropic elastic strain and
in such a configuration the material is physically
anisotropic. At any time t the location of a given
infinitesimal mass element of the material is x(t)

We also use x as an independent variable denoting
location in laboratory coordinates; for example,
divv in the laboratory system is (Bv;/Bx,.)„where
i =1,2, 3 are Cartesian indices and repeated indices
are summed.

The material density is p, the stress tensor
components are T&j, and both are functions of X, t,
or equivalently of x, t. The equations of motion are
conveniently expressed in mixed Lagrangian-
Eulerian form as follows'.

Conservation of mass:

Conservation of linear momentum:

(3)

Conservation of angular momentum:

(4)

There is also an equation for conservation of energy.
We can write the total energy of each mass element
as a sum of two parts, the translational kinetic en-
ergy and the center-of-mass energy. It is easy to
show that the translational kinetic energy is equal
to the translational work done by the stresses, be-
cause of Newton's law which is Eq. (3); the energy
balance for each mass element is then reduced to
center-of-mass contributions, which are discussed
below.

B. Thermoelasticity +~~

Consider an incremental process, in which the
material goes from the current state to the next
state in an incremental time dt. The incremental
displacement (motion) of each mass element is
given by the field variable du(X, t); the incre-
mental displacement gradients are

related to the velocity gradients by

du, j =v,.&dt, (5b)

where v, &
= (Bv,./Bx&), . The du,.

&
are precisely the

in laboratory coordinates; at some initial (refer-
ence} time t, it is x(t, ) =X, so@at X is the Lagran-
gian coordinate of the mass element. The fieM
variable which denotes the whole material configu-
ration is x(X, t) for all X, t T. he velocity field
v(X, i) is the velocity in laboratory coordinates of
each mass element:

(sx)



22 IRREVERSIBLE THERMODYNAMICS OF FLOW IN SOLIDS 1479

same as the displacement gradients u, &
of Refs.

1(b) and 2, when those u,.~ are limited to infinitesi-
mal magnitude and are always measured from the
(continually changing) current configuration, in-
stead of from a fixed Lagrangian configuration. In
the incremental process, the work done by stres-
ses in a local center-of-mass system is dW
=p '&,.&du,.&

per unit mass of material, and by con-
servation of energy this equals the increase dU of
thermodynamic internal energy per unit mass (we
are neglecting heat transport):

T are

BU
~iy=p

~ eij
at constant 8, and

at constant e',.~. Hence Eq. (10a.) is

dU = p '7,.
&

dq',.
&

+ Td$ .

dU = d S = p '7, , du„. (6)
In a similar way the variations d7,.~ and dT may be
calculated and expressed as

This equation, as with all thermodynamic equa-
tions, is Lagrangian in the sense that it holds for a
given mass element, no matter how the mass ele-
ment moves; hence (6) is equivalent to

Agy =Bippy dcpi + dI )
—py] - QdS ~g CtP&

dV' = —ry „de';, + ( T/C, )dS,

(12)

(13)

where the dot signifies a Lagrangian time deriva-
tive: U = (s U/s f)-„.

The strains may be expressed as symmetric plus
antisymmetric parts, where the symmetric part

de;g =
2 (du~g +dugg)

where C „ is the heat capacity at constant elastic
configuration, B,,-„are the adiabatic stress-strain
coefficients, which can be measured in stress-
strain experiments or in adiabatic sound-wave ex-
periments, and y, , are the anisotropic Gruneisen
parameters defined by'

measures the pure strain and the antisymmetric
part

"1 i i

S
(14a.)

d&u, , =-,' (du, , —duj,.)

measures the pure (rigid) rotation. Further, the
pure strain is presumed to result from a combina-
tion of elastic strain de', , , and some "flow" or
"plastic" strain de~i& which is due to an internal re-
arrangement of the atoms of the material. As long
as the process is infinitesimal, the two strain con-
tributions are additive:

ciE']y = ckqy+ dE']g ~

The meaning of the d&~„. will be made precise a lit-
tle later. We first set out the thermodynamic the-
ory which is coupled to the elastic strains d&'„.,
ignoring the explicit presence of the plastic
strains.

In the theory of thermoelasticity, a complete set
of variables which specify the thermodynamic state
of a material {the state variables) are the ela, stic
configuration and the entropy. In differential form
these variables are de',.

&
and d$, where S is the en-

tropy per unit mass. Then the differential of any
thermodynamic function, e.g. , U, can be written as

dU = — de'-. + dS.8 4JE'i J
(10a)

Repeated indices are summed; in each partial de-
rivative with respect to a given variable, all other
independent variables are held fixed. Thermoelas-
tic definitions of the stresses and the temperature

Derivatives at constant elastic configuration equi-
valent to (14a) are

=-C '
Pyf J g gay 8U

(14b)

The rotation coefficient (s~„/Bu&») in (.12) is given
in Ref. 1(b); this term in d7,-,. accounts for simul-
taneous incremental rigid rotation of a mass ele-
ment and the stress tensor.

The thermoelastic equations (11)-(13)are not all
independent. In fact, they form a hierarchy of cou-
pled equations: The coefficients in dU, namely, 7,.&

and T, are first derivatives of U with respect to
independent variables; the coefficients in d7;& and

dT, namely, B;&&&, y;, , and C„, are second deriva-
tives of U with respect to independent variables;
and so on. In order to break the hierarchy at this
point, we regard the second-order coefficients as
known functions of the state variables.

A comment is in order concerning the convenient
choice of thermodynamic state variables. In a the-
ory which includes both elastic and plastic strains,
the elastic configuration is a complicated nonlinear
integral function of the total and the plastic-strain
increments, d&,.&

and Q&~, While it is easy to use
de',

&
and dS for differential state variables, as

above, if integrated state variables are desired, it
is most convenient to use the equivalent complete
set r, j and S (equivalent because stresses are
elastically supported). The stresses are easily
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calculated by integratingdv;, , and with 7;, and S spec-
ified, all other thermodynamic functions, including
the elastic configuration, are uniquely determined.
To complete the thermodynamics, we need an

equation for d$; this is obtained below.

in+ =d+g~ =dc (15)

where V=p ' is the volume per unit mass. dlnV is
then a sum of elastic and plastic contributions, and

the plastic contribution is set to zero:

dq', , = 0. (16)

The second condition is the Prandtl-Reuss flow

rule, 9 which requires some definitions. The aver-
age compressive stress is P, and the stress devi-
ators are s,&.

s;J =&;~+P5;; .
An effective shear stress 7, w hich is a measure of
the stress which drives the plastic flow', is defined

by

=s S]~ S.
g

2=3 ~ 0 (18)

The Prandtl-Reuss flow rule then allows the sev-
eral variables de~& to be expressed in terms of a
single measure dg of the plastic strain:

de', J =-,' (s,,/~)dy. (19)

Since the definihons (17) imply s, , =0, then (17)
and (19) together contain (16). Equation (19) repre-
sents the intuitively reasonable idea that the plas-
tic-strain increments ought to be isotropically pro-
portional to the stress deviators; it has some ex-
perimental verification for cases of complex
flow." Finally, the effective plastic-strain in-
crement dg is determined by the von Mises cri-
terion' in terms of a generalized flow function K:

& ~K(P, P, T)~, S) . (20)

his equation has the following meaning: If 7 &K,
the process is elastic and d$=0; if T is on the flow
surface, dg&0 and is determined by the condition
~ =K. g= jdg is the integrated plastic strain, and

the dependences of K on y and p represent, re-
spectively, strain-hardening and strain-rate ef-
fects. E also depends on the thermoelastic state

C. Thermoplasticity

The mechanical theory of plastic flow is well de-
scribed in textbooks. ' It is based on two condi-
tions on the plastic-strain increments; the first is
the experimental observation that plastic strain is
volume conserving. To express this, note that Eq.
(2) for conservation of mass is precisely equivalent
to

variables r, &
and $, as indicated.

The thermodynamic theory of plastic flow re-
quires, in addition to the above equations, a ther-
modynamic description of the energy associated
with the process. This energy can be identified as
part of the total center-of-mass energy. In Eq. (6)
for the conservation of total energy, because 7„

the antisymmetric parts of du,-& sum to zero,
giving

dR =p '~, de„=dW'+dW~, (21)

where dg ' and dR'~ are work increments done
against elastic and plastic strains, respectively:

de'= p '7&~ de';j,

dW~= p '&„de~~ =2V&dg.

(22a)

(22b)

The last form in (22b) follows by using (17)-(19).
In a classic experiment on metals, Farren and

Taylor" observed that 87-95% of the plastic work
was dissipated; we expect this same qualitative be-
havior for deformations involving dislocation mo--

tion, twinning, or viscous rearrangement of atoms
in amorphous solids. Because it is a good approx-
imation, and because it simplifies the theory con-
ceptually, we assume that the plastic work d~~ is
entirely dissipated:

TdS = 2VTdg.

The plastic flow is now completely defined. It fol-
lows the flow rule (19) and is totally dissipative. It
includes any process which approximates these
conditions. Further, the combined thermoelastic
and thermoplastic theory is internally consistent,
since the energy partition given by (21)-(23) makes
the thermoelastic equation (11) for dU identical
with (6).

As a matter of fact, in a real flow process in a
real solid, a small part of the plastic work may go
into creating a change in the defect structure of the
material; for example, energy may be stored in

the elastic strain field of an increased number of
dislocations. Such stored energy is presumably
responsible for work hardening (strain hardening).
'This energy is not included in ordinary thermo-
elastic theory, hence an explicit accounting of it
will require a redefinition of the thermoelastic co-
efficients. Suppose, for example, that 90//~ of dW~

is dissipated in a given process, while the rest is
stored; the entropy-production and energy-conser-
vation equations then read

TdS =0.9d W',

dU = p '7,)(dec)+O, Id'~)q)+ TdS.

Comparison with (ll) shows that the first-order coef-
ficients &@ and 7 are no longer given by the thermo-
elastic definitions (10b) and (10c). The effect carries
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on to Eqs. (12) and (13), changing the definitions of
the second-order coefficients B,~», y, &, C„, and so
on. Thus in making the total dissipation approxi-
mation (23), we obtain a significant simplification
of the theory, in exchange for introducing small
errors into our thermodynamic computations. On
the other hand, the majcr effect of hardening is
properly contained in the theory, through the de-
pendence of the flow function K on the total plastic
strain p. It may also be noted that when a solid
melts, the defect structure anneals, and the energy
stored there is recovered as equivalent heat.

III. PLANE-WAVE GEOMETRY

The theory is much simplified when it is special-
ized to the geometry appropriate for describing a
plane compressive wave, such as a weak shock.
This is an example of "principal axis. flow": The
principal axes coincide at all X, t with a single in-
variant orthogonal (not necessarily Cartesian) co-
ordinate system. Since the stress tensor is diag-
onal in this coordinate system, then for an iso-
tropic solid both the elastic and plastic strains are
diagonal; it is then convenient to express strains
in terms of the transformation matrix e which
transforms the initial configuration X to the cur-
rent configuration x at any time f (Refs. 1(b), 2):

(24)

Because all strain measures are diagonal, we can
use the Voigt indices P = 1, 2, 3 to replace ij
= 11,22, 33, respectively, and write

formation &' and the plastic transformation &~,

as the following calculation shows:

lng = dge = dna + ding

= lnaa+ lne&8,

or in matrix form

(2'I )

e, 0 0

0 e, 0

0 0

&e 0

0 o.'
0 0

CV3

0

e

e~ 0 0

0 e~ 0

0 0 +3~

(28)

In plane-wave geometry, the wave propagates
along Cartesian coordinate 1, and coordinates 2, 3
are equivalent transverse directions. Hence, e,

+3 and so on. The transform ation of a mass ele-
ment is shown in Fig. 1, from the initial configura-
tion of density p„ to an intermediate configuration
of density p, , to the current configuration of dens-
ity p. No physical meaning is to be attached to the
intermediate configuration; it is not reached in the
physical process unless it coincides with the cur-
rent configuration. The mass element has thick-
ness d in direction 1 and width I in the two trans-
verse directions. The initial dimensions d„gg, are
presumed known, so there are four independent
strain variables in the transformation, namely

g, , gg, , d, gg. In terms of these we can write

~~& = ~e&~g

d6~y =dEg5]g ~

(25) o.', = d/d, , e', = d;/d, ,

n, = u /u. , u,' = w,./u, ,

of =d/d, ,

n., = w/w,P— (29)

We now have d~=d&z, and the relation

dip = din&p. (26)

The logarithm appears in (26) because the ee are
measured from a fixed (initial) configuration,
while the && are measured from a continually vary-
ing (current) configuration. Again because the
strain measures are diagonal, the total transform-
ation e is a matrix product of the elastic trans-

Plane-wave geometry requires the boundary condi-
tion that the total transverse strain of each mass
element is zero:

R =K~. (30)

The volume conservation of plastic flow, Eq. (16),
can be written

(31)

wa

Pg

dg

P
I

e =1 —p, /p =1 —V/V, ,

y =-Inn. ~.
(32)

(33)

With these conditions we are left only two indepen-
dent strain variables, and for these we introduce
the conventional plane-wave variables e, g, both
positive in compression and defined by

FIG. 1. Two-step transformation of a mass element
in plane-wave geometry.

The flow strain g is the same as the natural or
logarithmic plastic strain in simple tension or
compression experiments. The transformation co-
efficients now become
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a, =(1 —e), n18=(1 —e)e~, n12=e ~,
e =e «2 e&=e«2

2 9 2 2

(34)
(4o)

The stress system is also simple in plane-wave
geometry. 'The conventional variables are the nor-
mal stress g and the shear stress 7, both positive
in compression and defined by

(35)

B11 B12 B12

B21 B22 B23

B21 B23 B22

B44

0 B„O
0 B66-

(36)

The Griineisen parameters, Eqs. (14), have the

symmetry y,.z = y&5, , , and the thermoelastic equa-
tions for stresses and temperature reduce to

do = py1TdS —B,1d In(1 —e) —(B» —B,2)dp, (37)

dc = 2 p(y, —y, )TdS-2 (B» —B»)din(1 —e)

2 (B11 2 B22 2 B22 B12 B21)dP s ( )

dT = C„TdS—Ty1d ln(1 —e) —T(y1 —y2)dg. (39)

The equations of motion (2) and (3) for conserva-
tion of mass and linear momentum, respectively,

These stresses are shown in Fig. 2. Note that the
above definitions are completely consistent with the
general thermoplastic theory of Sec. II: We have
incorporated the volume-conserving condition (16),
the shear stress T of (35) satisfies the definition
(18), and the plastic strains de&~ =dlnn82 satisfy the
flow rule (19). ln fact the Prandtl-Reuss rule is
superfluous in the case of plane-wave geometry be-
cause here we have only one independent plastic-
strain variable.

Under the stress system (35), an originally iso-
tropic solid has tetragonal symmetry, and the
stress-strain coefficients B 2 (Voigt indices) have
the symmetry

(41)

where z is the laboratory coordinate and p the ma-
terial velocity, both in the propagation direction.
The Eqs. (37)-(41), together with the entropy pro-
duction equation (23) and the flow criterion (20),
are sufficient to calculate any dynamic flow pro-
cess in plane-wave geometry, provided the coef-
ficients C„,y&, B &

and the flow' function

K(P, it, o, ~, S) are known. The conservation of en-
ergy equation, which is uncoupled from the above
system unless U is taken as a state variable, re-
duces to

dU=-odV=oV, de. (42)

IV. COMPARISON WITH RELAXING SOLID MODEL

A. Expansions for small anisotropy

In order to make a comparison with other mod-
els, w'e need to approximate the thermoelastic co-
efficients in the present theory. A systematic ap-
proximation can be based on the condition that the
stress system is always close to isot'ropic, or
equivalently that the anisotropic part of the elastic
strain is small. We first construct a working def-
inition of isotropic solid.

Consider an isotropic solid under arbitrary iso-
tropic pressure P; take V, S for state variables, so
P, 7, U, and so on are functions of V, S. Through-
out this thermodynamic space, the solid is phys-
ically isotropic. Now from any state, say state 1,
in the isotropic thermodynamic space, change the
stress system to an anisotropic 7,.&

at constant 9;
this brings the solid to a state of anisotropic elas-
tic strains 1)',, , where 1)',, =-,' (n'„.n„',.—5,,) and all
strains are measured from state 1. The depen-
dence of any thermodynamic function on the strain
matrix g' can be expressed in terms of the three
rotation invariants of g', which are

eI1 Qjf &

7p
1E

I, = conj, ,

I, =detg',

(43)

FIG. 2. Stresses in plane-wave geometry.

where cofg~j stands for the cofactor of gz~. The
above observations constitute a definition of iso-
tropic solid. A strain expansion of the internal en-
ergy is given in Ref. 1(h), and this serves to define
the second-order adiabatic Lame coefficients g, p, ,
and the third-order adiabatic Murnaghan coeffici-
ents g, $, v:
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p, &(V, v) f, , S) = p, &(V, 0, S)-PI, + [-,' (X + 2 p. )I', —2p I, ]
+ [—, (t + 2$)I ~~ - 2 p, I2 + vI ] + ~ ~ ~,

TdS = 2Vvdg,

dT = (Cy'TdS —rTdln(1 —e)] [1+O(v'/G)] .
(53)

(54)

B = V(B-P/s V)z = X+ —,
'

p, + ,' P, —

G = B44 =
p (Bv, —B») = p —P .

(45)

(46)

For application to the present theory of dynamic
flow processes, it is convenient to restrict expan-
sions such as (44) to the condition of fixed V; then

V, S are the same in the elastically anisotropic
state (the current state), as in state 1 where all
coefficients are evaluated. Hence V, 9 evaluated in
the current state serve as state variables for the
coefficients. For the case of plane-wave geome-
try, we have expanded the second-order thermo-
elastic coefficients at constant V, $', and expressed
the results in powers of v/G, which should always
be small. Results for the stress-strain coeffici-
ents are

B„=(B+3 G)-3 (2A, +5p, +2) —P)(v/G)+

l (B»-B»)=G —(&+4p, +t'+ —'. ~--'. P)(~/G)+

2 (B,2 —B~,) =v,

3 (B~, + ~ B22 + 2 Bmv —B,2 —B2~)

(47)

=G- (p, +-'. ~- lP)(v/G)+ "
where + ~ ~ means terms of relative order '/vG'

and higher. For the remaining coefficients, with
terms of order v/G represented by O(v/G),

c„=c„[1+o(~/G)],

r, -r. =o( /G),

r = r[1+ o(v/G)]

(48)

where C~ is the heat capacity at constant volume,
and y is the ordinary Gruneisen parameter,

(49)

We now gather up the thermoelastic and thermo-
plastic equations of the preceding section for
plane-wave geometry, put in the above expansions,
and write each equation explicitly to leading order
only as follows:

dg =-(B+—, G)din(1 —e) —2Gdg+ O(v din(1 —e), vdp),

(5o)

dv =-G [din(1 —e) + adf] + O(v din(1 —e), vs), (51)
v' ~K(P, P, V, S), (52)

(44)

where p, is the density at state 1, and the coeffici-
ents ( of the strain functions) are all evaluated at
state 1. 'The adiabatic bulk and shear moduli, B
and G, respectively, at state 1 are" '

Note pTdS=0(v dp); the terms O(v.din(1 —e)) and

O(vdp) in (50) and (51) are the TdS terms from
Eqs. (37) and (38), and the terms of first order in
T from Eqs. (47).

B. Relaxing solid model

In 1867, Maxwell" wrote a constitutive equation
for a material which shows instantaneous elastic
response plus stress relaxation according to a re-
laxation time. Malvern, ' in studying plane-vERve
propagation in infinitesimal strain theory, gener-
alized the Maxwell model by introducing a stress
relaxation function. Taylor" investigated the shape
of weak plane shocks with a constitutive equation
which. is a special case of Malvern's. Herrmann"
has used the relaxing solid model extensively in
analyzing plane shocks; his equations are the most
general since they allow for finite strain and in-
clude the shear stress T. Equations (6) or (7) and

(9) or (10) of Ref. 15, transcribed to the present
notation, "are

dg =-(B+4 G)din(1 —e) —2Gdg,

dv = —G [d ln(1 —e) +-,' dP],

$=g (gs&)s

(55)

(56)

(57)

V. THE QUESTION OF EQUILIBRIUM

A macroscopic treatment of a material process
without thermodynamics is conceptually difficult.

where g'(g, e) is the stress relaxation function,
with g' for compressive loading and g for unload-
ing.

By comparison withEqs. (50)-(54), it is seen
that the system (55)-(57) neglects all effects due to
entropy, and neglects all terms O(vdln(1 —e)) and

O(vdg) in dg, dv. In plane shocks we generally have
T «0', this means the terms of order T neglected in
(55) are formally small, and (55) should integrate
to give a reasonably accurate value of o throughout
the process. Terms of the same order are not
negligible in (56), however, and the integral of that
equation wil) give a value of 7. with an error form-
ally of order v. With regard to the plastic-flow
constitutive equations, it is interesting to note
there is a formal equivalence between the von
Mises condition and the relaxation function. Equa-
tion (52) can be inverted to P=f(v, $, V, S), and
sinoe v, g, V are coupled by one equation, they can
be replaced by two variables, say g, e, giving P
=f(g, e, S); finally, if S is neglected a,s an indepen-
dent variable, a relation of the form (57) is ob-
tained.
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Theory has to be founded in mechanical variables,
which are specified in terms of atomic motions and
interactions. For a given mass element containing
a fixed assembly of atoms, or at least a fixed num-
ber in the case where mass transfer is allowed,
the mechanical energy is always defined, and so
are mechanical stresses in the form of forces act-
ing across surfaces. Mechanical work is defined,
but temperature and entropy are not. In order to
examine the question of thermodynamic equilibri-
um, we have to imagine that we are first able to
find a complete mechanical solution to the problem
of motion; then we can study the space and time
variations of the solution.

We begin by constructing a picture of continuum
mechanics. The material is divided into mass ele-
ments which are macroscopically small but which
still contain many atoms. 'The mass elements are
considered as interacting mechanical systems, and
the entire flow problem is expressed in terms of
variables which give total mechanical properties
of each mass element, for example, the position
of the center of mass, the configuration, the ener-
gy, momentum, and stresses. These are macro-
scopic variables because they average the atomic
properties over all the atoms in a mass element;
they are functions of the time. To help bridge the

gap between mechanics and thermodynamics it is
useful to divide the deformation into two separate
parts, defined as follows at any instant of time.

he homogeneous deformation is that part of the
deformation which is essentially constant over a
mass element; this means the measure of strain
varies by only a small amount over a region large
enough to contain many atoms (at a fixed time), and

hence it applies to the strain in any reversible
thermoelastic process such as an adiabatic one, or
a nonadiabatic one where the heat flux is spatially
slowly varying. The other part of the deformation,
that due to plastic flow, is heterogeneous on an
atomic scale; this heterogeneity does not appear in
detail in the macroscopic mechanical variables,
only the average appears, but it is nevertheless
important in the question of thermodynamic equi-
librium. Incremental contributions to stresses,
strains, and energies from the two types of de-
formation are additive.

The next step is to construct a physical model of
an individual mass element as a mechanical sys-
tem. A solid material is composed of ions and band

electrons; the choice of which electrons are to be
put in the ion cores and which in the bands is some-
what arbitrary and does not affect the present dis-
cussion. The mechanical states are quantum
states. The ground state is a function only of the
configuration, which is specified by the positions
of the ions, and it is the T =0 thermodynamic

state. For a given configuration, we may think of
a distribution of quantum states with a unique
ground state, such that the system's mechanical
properties are represented by some average over
the distribution. The mechanical variables are then
written as a ground-state contribution plus an ex-
citation contribution. For a thermodynamic equi-
librium distribution of states, the excitation con-
tribution becomes a thermodynamic quantity, gen-
erally called the thermal contribution, and is
characterized by the temperature and the configu-
ration. Thermodynamic variables are then written
as a ground-state (T =0) contribution plus a therm-
al contribution.

We now ask the following question: If the con-
figuration is suddenly changed, at what strain rate
can the ground state still be considered a thermo-
dynamic state? Or, how fast do the ground-state
electrons respond to a sudden motion of the ions?
If the ion motion is a homogeneous strain, i.e., it
is characterized by a wavelength long compared to
the interionic distance. The band electrons respond
collectively in a time of the order of an inverse
plasma frequency, ""say in about 10 ' s. The
polarization response of the ion cores should in

principle be faster, but it will in practice be lim-
ited to the same rate as the collective response.
Finally, for a short-wavelength (localized) motion
of the ions, we expect the ground-state electron
resporise to be equally fast, so for all practical
purposes thermodynamic equilibrium can be as-
sumed for the ground-state contributions to system
variables.

'The response of the excited states can also be
estimated for near-equilibrium conditions. In the
customary approximations of solid-state physics,
the excitation modes of the ion-electron system are
the phonons and the one-electron Fermi-Dirac ex-
citations. Among the phonons, in a distribution
w'hich is anywhere near thermodynamic equilibrium
at room temperature and above, practically all of
the excitation energy is carried by short-wave-
length motions, i.e., wavelengths of the order of
one or two interionic spacings. We may assume
that at room temperature and above, the lifetime
of such phonons is limited by phonon-phonon colli-
sions; experimental measurements for metals"
give Tpp( 10 12 s, and Pelerls20 has estimated Top

(10 " s for nonmetals at room temperature.
These lifetimes should decrease as temperature
increases. Long-wavelength phonons have much
longer lifetimes, but we should be able to neglect
their influence as long as we avoid low-tempera-
ture problems. For metals there are also elec-
tronic excitations. From the theory of thermal
conduction at temperatures of the order and above
the Debye temperature, ' ' and from the measured
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thermal-conductivity values, the relaxation time
which describes the approach to equilibrium of the
electrons due to collisions with phonons in equilib-
rium is estimated as v.,~-10 "-10 ' s. This
should decrease .with increasing temperature. 'The

electron-electron relaxation time is rather long at
room temperature, "'"v -10 " s, but it is ex-
pected to decrease with temperature as T '.

We can now draw the following conclusion: For
a homogeneous deformation process, the electron-
phonon system ought to be able to maintain itself
near equilibrium as long as the deformation at any
material point changes little in a time of order
10 "s; this means strain rates of order 10" s '
are easily allowed. Such strain rates are well be-
yond those induced by weak shocks. This result is
helpful because in many fast deformation proces-
ses the homogeneous part gives the major contri-
bution to thermal functions, and together with the
ground state it represents the dominant contribu-
tion to thermodynamic functions. For the example
of a 100-kbar shock in Al, the ground-state de-
formation and the thermal adiabatic homogeneous
deformation account for 9(P/~ of the increase in in-
ternal energy and 9F/& of the increase in the stres-
ses.

The last barrier to a complete thermodynamic
description of dynamic deformation processes is
the heterogeneous nature of plastic fl.ow. On the
finest scale, the flow is localized to atomic-sized
regions, as in dislocations, which act as dispersed
moving sources of mechanical excitations. The
problem is to determine how long it takes this
mechanical energy to become thermalized. We
might imagine that the higher the rate at which
plastic flow is driven, the finer the scale of this
heterogeneity, and that near thermal equilibrium
couM be maintained for plastic strain rates up to
the same order as those which limit homogeneous
deformation processes. This argument then im-
plies approximately local equilibrium in the pres-
ence of heterogeneities on a larger scale. Evidence
for large scale thermal and mechanical inhomo-
geneities in the fast deformations of very brittle
solids has been discussed. "

If the assumption of thermodynamic equilibrium
fails, it is possible to identify the errors which
can result. To illustrate, consider the passage of
a plane compressive shock through a polycrystal-
line material; assume the material remains in lo-

cal thermodynamic equilibrium except for those
mechanical excitations generated by plastic flow.
'The initial and final states are equilibrium states,
and we will use the thermodynamic theory of Sec.
III to calculate thermodynamic variables in the fin-
al state. The first step is to integrate the conser-
vation equations (40) and (41), to find the normal
stress o as a function of the normal strain g

through the process. The result for a(e) is the

proper thermodynamic value in the final state. The
same is true for U(e) in the final state, computed
by integrating Eq. (42). Through the process,
however, o(e) is a mechanical variable; its value
is given correctly by the conservation equations,
but it does not represent material in thermodyna-
mic equilibrium. We thus make an error when we

use thermodynamics to calculate 7 and g from
u(e). But the error should be small, at most of
the same order as the contribution of the entropy
to the stresses. For a 100-kbar shock in Al, this
is not greater than 1/f). This now becomes the
measure of the error in all thermodynamic quan-
tities we calculate. As for the increase in the tem-
perature from the initial to the final state, most is
due to homogeneous adiabatic compression. The
calculation of the entropy in the final state, and of
the temperature increase due to dissipative heat-
ing, is based on integrating the inexact differential

ader [see Eqs. (22b) and (23)] along a path defined
by i and p, so the error in the integral is at most
of the same order as that in 7. and P along the path.
From this point of view the assumption. of thermo-
dynamic equilibrium is seen as an approximation
of very good accuracy.

VI. CONCLUSION

In this work we have shown that within the con-
ventional assumptions of plasticity theory, the
complete thermoelastic-plastic equations of flow
can be expected to have a wide range of applicabil-
ity. Evaluation of these equations for general flow
problems would require a large computer. " How-
ever, for one-dimensional strain problems a rela-
tively simple system of equations results. These
equations wil1. be applied in the following two pa-
pers to experimental data on an extensively studied
Al alloy in order to obtain model-independent in-
formation concerning its flow function and equation
of state.
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