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An investigation of the ground-st ite configur;ition of isotopic fermion-boson mixtures is re-

ported for both two 'ind three dimensions. A detiiled numerical study of systems inter'icting

with Lenn;ird-Jones-type potentials is presented, en'ibling one to interpert these results in terms

of i picture of the fermion-boson mixture is being built up from in "underlying" boson-boson

mixture. It is thus possible to irgue th it the presence of Fermi-Dirac st itistics in one of the

constituents is a necessary condition for miscibility in the ground st;ite of in isotopic mixture.

Further;i criterion is presented for the fermion chemic;il potenti ils which is used to distinguish

those mixture systems whose ground st'ite is complete sep ir ition from those systems whose

ground state is it le ist pirti illy mixed. I.in illy the;in ilysis is ipplied to the helium ind spin-

pol irized hydrogen isotopic mixtures (in two ind three dimensions) ind, wherever possible,

the calcul'ited numbers;ire comp;ired to experiment.

I. jNTRODUCTION

Since the first report of phase separation in 'He-
'He mixtures by Walters and Fairbank in 1956, the
isotopic quantum liquid mixtures have undergone in-

tensive experimental and theoretical scrutiny, A

milestone in the understanding of these systems
came with the suggestion by Edwards and Daunt' in

1961 that the phase separation was incomplete at low
'He concentrations. Cohen and van Leeuwen" in-

vestigating a mixture of isotopic hard-sphere fer-
mions and bosons also found indications of the possi-
bility of an incomplete phase separation at T =0 K.
In 1965 the existence of a partially mixed ground
state was confirmed by Edwards, Brewer, Seligmann,
Skertic, and Yaqub. ' However, most of the theoreti-
cal attention to the mixture system (at low tempera-
tures) has not been addressed to the phenomenon of
incomplete separation per se but rather to the eo».se-

que»ees of this phenomenon: i.e. , the existence of' a

Fermi liquid whose density and temperature can be
easily varied. 6 Indeed, other than the molecular
dynamics of Hansen and Schiff, ' calculations of the
properties of 'He- He mixtures' ' have been con-
cerned with the difficult task of obtaining the 'He
effective mass, the 'He-'He effective interaction,
etc.

In this paper we address the question of the
ground-state configuration of 'He- He mixtures and
the general question of phase separation in boson-
fermion mixtures. We have been motivated into
reexamining this problem by several developments.

(i) There is at present a large experimental effort'
to examine the possibility of producing (meta-)stable
samples of atomic hydrogen interacting in the b X„+

state. " Hydrogen has, of' course, three isotopes of
which 'H and 'H (half-lil'e 12.3 yr) are expected to be
composite bosons and 'H a composite f'ermion. Thus
we might ask about the ground state of' deuterium-
hydrogen and deuterium-tritium mixtures. (The
hydrogen-tritium or boson-boson mixture has been
treated previously. ")

(ii) In recent years the 'He- He system has been
studied in various geometries from thick films to
physisorbed submonolayers. These sytems are diffi-
cult to study formally because of' their intrinsic inho-
mogeneity (i.e. , the presence of defining walls).
Thus one would like to have available a basic under-
standing of the btilk mixture ground state to serve as
a guide f'or choosing those elements necessary for a
model description of the inhomogeneous ground
state.

In this paper we have investigated the ground-state
configuration of a large class of binary fermion-boson
mixtures using standard computational tools. Slater-
jastrow wave functions, hypernetted chain (HNC)
,r;(r)'s, etc. We show that the question of whether or
not there is mixing of fermions in bosons can be
answered by examining the "underlying" isotopic
boson-boson mixture. An important feature of' our
picture of the mixing process is that one may draw
conclusions concerning the mixture using ones
knowledge of the chemical potentials of the pure
phases. We support this picture with the results of
detailed numerical calculations of the ground state of'

two- and three-dimensional mixtur:es.
The plan of the paper is the following, In Sec. II

we outline the Slater-Jastrow approach to calculations
of the properties of fermion-boson mixtures and
derive those formulas we have employed in calculat-
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ing the energy, enthalpy, chemical potentials, etc. , as
functions of pressure and concentration. In Sec. III
we discuss a general class of fermion-boson mixtures
using a scaled set of units with appropriate fermion
and boson de Boer parameters. We introduce a pic-
ture of the mixing energetics that builds up the fer-
mion system from the boson system and provides a

definite answer to the old question concerning wheth-
er it is mass or statistics which drives the phase mix-

ing. This picture also permits us to establish a simple
criterion for determining whether or not a mixture
has finite solubility, completely phase separates, etc.
This criterion is verified by detailed calculation of the
properties of mixtures, We specialize, in Sec. IV, to
the He- He system and describe the results of calcu-
lations of many mixture properties: the maximum
solubility as a function of pressure, the Bardeen
Baym, and Pines {BBP)'4 parameter n, the 3He zero-
concentration chemical potential as a function of
pressure, the position of the spinodal line as a func-
tion of pressure, and the osmotic pressure. Section V
contains a brief review of our results and some re-
marks about the limitations of the analysis we have
presented.

The energy expectation value is calculated using a
Stater-Jastrow wave function Psq

N

4s/=F4 = gf //(r';, ) Q g~ ' /((m/), (2.4)
i&j j 1

where $ is a Slater determinant of plane waves and
spin functions, ( (Sis the antisymmetrizer f'or the
Nr fermion labels), and the pair function f // is writ-

ten in parametric form:

u g(r)/2 (b aar/r) —/2
(2.S)

with b p a variational parameter. In principle we can
choose a different b for each type of pair; however,
after investigating this point in detail, "we found that
in those mixtures where the potentials have the same
"core" sizes, o- p, one achieved a negligible reduction
in energy by using the pair-dependent f //. Thus all

of the calculations discussed in this paper use b p=- b.
Calculating the expectation value of the Hamiltonian,
Eq. (2.1), we find

E = (I —x)2Eas(x) +2x(1 —x) E//r(x)

II. THEORY

In this section we derive the formal expression for
the energy, enthalpy, chemical potentials, etc. , of the
mixture systems that are employed in our numerical
studies.

%e consider a homogeneous, isotopic mixture of
the N// bosons and Nr fermions (with v equally pop-
ulated Fermi seas) confined to a d-dimensional box of
volume V where N = N~ + NF and d = 2, 3. The
Hamiltonian for the system is

NF

+x' E„(x)+$ Er(x)

where x = Nr/N is the fermion concentration

E //(x) = —,p ~ g /j(r) V //( r) d r

and

h
V //(r) = V a(r) — V'u //(r)

4m p

(2.6)

(2.7)

(2.8)

N N
g2 B g2 F

H = — $'7;~ — $ '7;t+
2m'; 1 2mF 1~i&j~N~

Vs// {rr/)

In Eq. (2.7) p is the d-dimensional number density,
g &(r) is a mixed two-particle radial distribution
function defined by'

+ X Var( r&) +
1+i &jCNF

VFr{r/) (2.1)
N (N/t —8 /t)

grr/t{rr/) =
j „ lks&l d "(i&)

PaPpl
(2.9)

'12
~ap

V.p =4&.p
I

6
~ap

(2.2)

where, for isotopic mixtures, ~gg = 6gF = EFF-= 6 and
o-»=cr&F =OFF

———cr. In Sec. IV where we consider
helium we use the de Boer-Michels values

a=10.22 K, cr =2.556 A (2.3)

where V ~ is the potential function. (Here and hen-
ceforth we use greek subscripts n and p to stand for
Bor F.) In this paper we shall consider systems of
particles interacting with a Lennard-Jones-type 6-12
potential

1 1 1 1+
map 2 ma mp

(2.10)

and we have retained a generalization notation with

type labels on the potential and pair function. The
terms labeled Er(x) in Eq. (2.6) are the cluster-

where p is the partial density of species o. , I is the
normalization integral, and the notation in the in-

tegrand indicates that i and j are not to be integrated
over, where i C (n I and j C lP }. Thus g //(r„)is a"
measure of the probability of finding particle j of
species p a distance r„from par"ticle / of species n
which is known to be at the origin. In Eq. (2.8) we

have defined
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expansion form of part of the kinetic energy,

WF

x' X EF(x)

2
'F
X k + —1F2('vp' '0d)dr'v

4&nFN, .
&

I 4

g p(r) =gap(r)+X p(r) (2.12)

where gap(2) is generated by the "Jastrow" part of
the wave function, F' only, and X & represents the
"statistical" contributions. Each g p(r) has a cluster
expansion with statistical contribution because any
two particles can interact indirectly through two or
more fermions,

In this paper we have truncated the expansions in

Eqs. (2.1 1) and (2.12) after two-body exchange.
Thus we have

(2.11)
The radial distribution function g & and the kinetic
energy contributions of Eq. (2.11) are evaluated by
means of the statistical cluster expansion introduced
by %u and Feenberg. " Thus, we can formally write
the g &in the form

H(x, P) =E(x, p)+ P( z p)

p
(2.17)

where P is the pressure. In order to implement this
Legendre transform we need to be able to calculate
the pressure accurately. It has been shown' that the
virial theorem pressure is identical to the "thermo-
dynamic" pressure, p'(BE/Bp)„, for a pair function
of the form of Eq. (2.5) at the variational minimum,
(BElBb)e„=0. Thus we have

2

3 ('KE 366+6&12) (2.18)

does not affect the basic qualitative behavior which
we are trying to describe.

We have chosen to use the hypernetted chain
(HNC) approximate integral equation to relate ~i (I )
to g"(I ). The integral equation approach to finding
g (i) is of computational importance because the ex-
treme precision with which this equation can be
solved allows us to assess the small "excess" energies
which determine the mixture ground state, The solu-
tion of the HNC equation and its ~pplic ~tion to liquid
helium is discussed in Ref. 16.

If the liquid phase separates, the two phases will be
at the same pressure. Thus it is convenient to use
the enthalpy H to describe the systems,

gpp(2) =g'(r), gpF(2) =g'(2) .

k&FF(r) =g (r) 1 — I'(krr)—1

V
2

(2.13)
where the e's are the constituents of the energy,
E =KKp 66+6]2. Once the enthalpy as a function
of x and P is known, the chemical potentials can be
immediately obtained from

where we have omitted the type indices on the g "~
since we on)y use a single b, v is the number of
equally populated Fermi seas, and

(jHp~=H +xp
gX~

t

(2.19)

N k.-
l(kFr) = $e

NF, )

(2.14)

where I.F is the Fermi momentum and the sum
depends on whether d =2 or 3. Similarly, for Eq.
(2.11),

The chemical potentials as function of x and Pare
the direct, route to mixture information since regions
of negative concentration gardient signal material
instability and phase separation. Thus ii g E

H p, and p, (x, P) is examined to learn about the
mixtures.

F

E, (x) =
2i&FN,

&

(2.15)

III. ISOTOPIC BINARY FERMION-BOSON
MIXTURES

and

E,(x) = E1(x) 1

2m'

dx, EIX2x~2 S kFx~2 1 (2.16)

where 5"(k) the liquid structure function, is the
Fourier transform of g (r) and the integrals are tak-
en over unit circles (d=2) or unit spheres (d=3).
Three-body exchange could a)so be included, howev-
er, we found that its contribution to the energies

H(P, q xqFp)= —=E+H g P'
p

(3.1)

where qa and 'gF are de Boer parameters and are de-

ln order to treat arbitrary (Lennard-Jones)
fermion-boson mixtures we shall introduce a scaled
set of units such that lengths are measured in units
of o- and energies are measured in units of ~. The
first application of this idea to quantum systems was
made by de Boer and co-workers" and is known as
the quantum theorem of corresponding states. If we
denote scaled quantities by an asterisk then the
en tha lpy can be wri t ten:
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fined by tion derivative of the enthalpy"

k2
gQ

m acr
(3.2) Q H

QX2 p

((V) +Pn)„,
1 +x25)22 QX2

(3.4)

we have also used P'= Pa /e and p" = po. . The
beauty of Eq. (3.1) is that by calculating H' as a
function of P' and x for various values of q& and qF
one can effectively examine the ground-state config-
uration of all isotopic Lennard-Jones fermion-boson
mixtures. (In Table I we show the values of rt for
the helium and hydrogen istopes. ) We now define a

concentration-dependent de Boer parameter, q„,

ri„= ( I —x )ps +x qF . (3.3)

If we were describing an isotopic binary boson mix-
ture then q„would contain all of the explicit concen-
tration dependence of the enthalpy. However in the
present case the statistical correlations in the fermion
component contribute a further explicit x depen-
dence. Nevertheless, for our purposes the impor-
tance of Eq. (3.3) is that it is a linear relationship
between g„and x (this is only true for an isotopic
mixture'3) so that concentration derivatives are pro-
portional to q derivatives.

We now need to consider the isotopic boson-boson
mixture. The ground state of this mixture is co&nplete

phase separation. This result was obtained by Ches-
ter' using a perturbation expansion of the partition
function. It is supported by detailed numerical calcu-
lations" on various boson-boson mixtures similar to
the calculation described in Sec. II. Here we shall ar-

gue for this result. Consider the second concentra-

where the boson isotopes are labeled I and 2,
b, m =—m, /m2 —I, ( V) is the potential energy, and II
is the volume per particle. Let us examine the case
in& ) m2. Then increasing x2 moves us from a

heavy-mass system to a light-mass system. However,
since both the potential energy and the volume per
particle are monotonically decreasing functions of
mass, ' the derivative on the right-hand side of Eq.
(3.4) is positive semidefinite. Thus ff is a concave
function of x and the system completely phase
separates.

We can thus draw the general conclusion: (a)
bosoi2-bosoi2 isotopic mixtures completely phase sepaiate
and the corollary (b) fermion statistics are a necessary
condition for miscibility in the ground state of isotopic
fermio)2-bosoi2 solofl Oi2$.

Let us now investigate how the fermion nature of a
constituent can induce mixing. We can imagine the
mixture process occurring in two steps. In step I, we
have an isotopic mixture of heavy and light bosoi2s,

the "underlying" boson system. We know that the
ground state of this system is complete phase separa-
tion. In step II, we take the light-mass system and
"turn on" its Fermi-Dirac nature. Operationally this
means that we can regard the A'L light-mass atoms
(the fermions) as having a variable number of spin
degrees of freedom. The light-mass system is a bo-
son system when the number of spin degrees of free-

TABLE I. The de Boer parameter q for various substances (H t, D t, and Tt denote spin-

polarized hydrogen, deuterium, and tritium, respectively). Also given are the masses, coupling
constants e, "core diameters" a., ~/o. , and Npa-3. e used A =1.05430 & 10 erg sec and

Np =6.02252 & 10 particles/mole.

Substance
ill

(amu)' (K)b (A)
e/cr3

(atm)

Np3

(cm' / mole)

Ht
Dt
'He
Tt
4He

He

H2

D2
Ne
A

1.008
2.014
3,016
3.016
4.003
6.019
2.016
4.028

20.18
39.95

6.46
6.46

10,22
6.46

10.22
10.22
37.0
37.0
35.6

120.0

3.69
3.69
2.556
3.69
2.556
2.556
2.92
2.92
2.74
3.41

17.5
17.5
83.39
17.5
83.39
83.39

202.5
202.5
235.8
412.3

30.2
30.2
10.06
30.2
10.06
10.06
15.0
15.0
12.4
23.9

0.547
0.274
0.2409
0.183
0.1815
0.1207
0.0763
0.0382
0.0085
0.00088

'1 amu = 1.66024 & 10 g. k& =1.38054 x 10 ' erg/particle K.
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dom is WL and each light atom has its own Fermi
sea. ' Thus, "turning on the Fermi statistics" means
we decrease the number of spin degrees of freedom
and the number of equally populated Fermi seas, v,
from v = / ftL to 2. In Fig. 1 we illustrate schematical-
ly the two steps of the mixture process. The boson-
boson enthalpy as a function of x is shown as a solid
line. It is concave by the argument above, Eq. (3.4),
and we have bounded it from below by the dashed
line. The dot-dashed line that begins at the left at
the heavy-mass boson enthalpy has slope
(BH/Bx) p p and is the extrapolation to xL = I of
the zero-concentration limit of the enthalpy first
derivative. From Eq. (2.19) we see that this line in-

tercepts the xL = 1 enthalpy axis at a point which cor-
responds to the zero-concentration fermion (or light-
boson) chemical potential. We denote this point by

p. '(0). [The value of p'(0) is independent of the
statistics of the light-mass constituents because the
derivative (BH/Bx) p, as x 0, is a single particle-

property of the system. ) On Fig. I we also show the
change in the chemical potential of the light-, mass,
boson system that follows upon turning on the fer-
mion statistics. Note the arrow on the right-hand
axis pointing from Ha(1) to H~(1), i.e. , from
Ha(1), the value of the light-mass, boson system's
chemical potential, to H'(I), the value of the light-

mass, fermion system's chemical potential. In this

figure we have illustrated the case in which turning
on the fermion statistics results in a chemical poten-
tial, p"-(I) = H" (I), that is greater than pF(0). A

giveI& mixture system can be characterized by the re-
lative size of@'„.(1) and p, "-(0) [or (BH/Bx) p„. o). If

p'(I) & p'(0) the enthalpy must bend downward as
p, (x) evolves from p, a(0) to p, F(1) and there must
be some phase separation. The;ei o-i o»i e'»fI a(io»
enthalpy second derivative is always positive because
it is dominated by the Fermi kinetic energy; thus, if

p, "(I) & p, F(0) then there must be some mixing. "
We are thus led to the condition p, ,-(I) = p, F(0) as
separating those systems in which there must be mix-
ing from those systems in which there must be
separation. Below we shall show through detailed nu-
merical calculations that, in fact, all systems for
which p, , (1) & p, F(0) cotnplerelv phase separate.

In the discussion above we chose H, (I) ) H„(-1).
In our numerical studies of boson and fermion sys-
tems we always. obtained HF(1) & H„(1). We are
unable to find any counterexamples. In addition
there are several models in which this behavior can
be exhibited analytically (e.g. , hard-sphere fermions
and a Stoner model). Furthermore, if one makes an
expansion of the energy, Eq. (2.6), in powers of I/v
then one can show that the derivative (0E/Bv) in

the neighborhood of I/v =0 is always positive.
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FIG. 1. Schematic plot of enthalpy vs concentration. The
solid line shows the enthalpy of an isotopic binary boson
mixture. The boson-boson mixture completely phase
separates as shown by the dashed line, its convex envelope.
The dot-dashed line, the extrapolation ot (98'/9xL ) p,

L
intercepts the xL = 1 axis at p, &(xL = 0)—the zero-concen-
tration fermion chemical potential. e illustrate here a case
in which turning on the f'ermion statistics in the light-mass
system produces some mixing since p~( I ) ) pp(0).

FIG. 2. Reduced boson and fermion energies as f'unctions
ot' q f'or 2D systems at zero pressure. The termion energy
intercepts (points 8' and D') of' a tangent to the boson en-
ergy curve (at the point 3) represent the places where
p, I;(0) = p, I;(1 ) and thus correspond to the limits of systems
which are miscible in the boson system at zero pressure (see
text). Therefore termion systems A

'
and E' show complete

phase separation while fermion system C is partially mixed.
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We shall now introduce a simple construction
whereby one may find all systems satisfying the
equality p, r(1) = p, r(0) from a knowledge of the
behavior of the pure boson and pure fermion sys-
tems. Using Eq. (3.3) in Eq. (2.19) we find

(3.S)

OH'

,
~'9x p~

t 'I

HF —Hg

9F
(3.6)

This equation embodies the geometrical statement
that a tangent through the boson enthalpy curve at
the point (qa, Htt ) should intercept the fermion
enthalpy curve at the point (qr, Hr") In F.ig. 2 we
show a plot of Ett and Er as functions of rt (for d =2
and P =0.0). A tangent has been drawn through a
point on the boson curve labeled A which intercepts
the fermion curve at points 8' and D'. From the
above discussion we can predict that a fermion sys-

Thus, (r)H'/r)q„) ~ contains the same information as

(BH/I)x)e. The condition pr(1) = pr(0) thus corre-
sponds to pt, r'(qr) = p, r'(qa) and yields

tern with an q between that of systems 8' and D',
such as point C', must show some mixing whereas a
fermion system with an q outside of this region, such
as A' or E', must show separation.

In Fig. 3, we show the results of the numerical
analysis of the ground state of a large number of
d =2 isotopic boson-fermion mixtures as described in
Sec. II. On the (qa, gr) plane, where we can locate
all boson-fermion mixtures, we show numbers that
correspond to the maximum solubility of fermions in
bosons at P =0.0. We note that there are two re-
gions in the figure in which the fermions are com-
pletely immiscible in the bosons. The boundaries of
these I egions correspond exactly fo those obtained fi.om

the construction shown i~i Fig. 2 and described above.
Thus examining boson system A of Fig. 2

(ps =0.22), we indeed see that mixtures with fer-
mion systems A

'
and E' completely phase separate, a

mixture with fermion system C' shows mixing, and
mixtures with 8' and D' are on the complete separa-
tion border. We may thus conclude that the locus of'

systems obeying p, r(0) = p, r(1) separates those mixtures
whose ground state is complete separation from those
fnixtures whose ground state is at least partially mixed.

The de Boer parameter q is a rough measure of the

0.25

0.20

0. 15 0.20 0.25 7cB

F16. 3. Maximum fermion solubilites in (qa, gF) space on the P =0.0 plane for isotopic mixtures in d =2. The boundaries
separating those mixture systems with zero solubility from those systems with finite solubility were obtained from the construc-
tion of Fig. 2. The points labeled (A, A'), (A.B'), etc. , correspond to those same points in Fig. 2. The point labeled (4,3) is
He- He which, in 2D, completely phase separates. The points on the axes labeled p, && and p, L+ are the largest values of q for

which boson and fermion systems, respectively, have many-body bound states (see text).
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relative importance of kinetic energy to potential en-
ergy. Thus by increasing q sufficiently one can ob-
tain systems with no many-body bound state. This
zero-temperature liquid to gas phase transition is dis-
cussed in Ref. 22. In Fig. 3, those boson systems
with g ) qra ( =0.26) and those fermion systems
with q ) HALF (=0.19) are unbound at zero pressure
and, therefore, the large region labeled gas corre-
sponds to systems at zero density. The influence of
this gas region is pervasive since it is not possible to
extend the complete mixing region past qLq (or 'gcB).

In Fig. 4 we show the results, analogous to Fig. 3
for d =3, of the numerical study of a large number
of d =3 isotopic, boson-fermion mixtures. The
boundaries between the regions of complete separa-
tion and finite mixing were obtained by the construc-
tion of Fig. 2 (using d =3 Ea"s and EP 's from Ref.
19). In addition to liquid and gaseous phases we
show the location of the zero pressure solid (the po-
sition of which was taken from Ref. 23). The region
of complete mixing straddles the diagonal, q~ = qq,
and is influenced importantly by the presence of the
zero density gas phase. Figures 3 and 4 have a

corresponding-states type of universal aspect: for iso-
topic' fei'mion-bosot& t)rixtures the )naxitnutn solubility

deper~cls only on qa and vyq, Thus, for cS =2 and 3,
Figs. 3 and 4 effectively show all possible zero pres-
sure ground-state configurations for (Lennard-Jones)
isotopic fermion-boson mixtures.

We note that, as in Fig. 3, the region of complete
mixing cannot penetrate the q~ = qL~ line, Thus
even along the diagonal, qa = q~, which corresponds
to "isotopic" mixtures of equa/ mass fermion and bo-
son constituents, there is phase separation if
q& ) HALF. This phase separation must be due to the
difference in volumes per particle of the constituents
since all other parameters are equal. In Fig. 5 we
show the maximum solubilites (of Fig. 4) as func-
tions of the reduced densities of the pure phases.
Those systems with large miscibilities are clustered
about the diagonal p& = p~. Therefore it is the rela-
tive volume per particle of the pure phases which
determines the extent of mixing. [The difference in

masses plays a role only (indirectly) through the
volume per particle. ] We point out that although this
"matching" of volumes per particle is intuitively pleas-

0.5

o
0.4

O

C
O
tll
O

X)

0 3

iW~

O
1

N

0.2

0.2
I I I I I I I

0.4 ~CB

Zero- pressure ferr' i on sol id

0.3 0.5

FIG. 4. Maximum fermion solubilities in (p&, pz) space on the P =0.0 plane for isotopic mixtures in ct =3. The boundaries
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ing it is a property of isotopic mixtures and not
necessarily mixtures in general: it is simple to con-
ceive of mixtures whose pure phases have identical
volumes per particle and yet completely phase
separate. '

IV. 3He-4He

We shall begin tI&is section by discussing 'He- He
mixtures in two dimensions. In Fig. 3 we showed
that at zero pressure the mixture is completely phase
separated. From our discussion in the previous sec-
tion we can conclude that this is due to the gaseous
ground state of (d =2)3He. This result plus the fin-

ite pressure behavior had previously been con-
sidered as a model of the physisorbed He- He sys-

tem studied by Hickernell, McLean, and Vilches"
(HMV). The prediciton of phase separation in the
mixture ground state is not clearly supported by the
(specific-heat). data of HMV. By invoking the re-
cent work of Carlos and Cole, and Wang, Senbetu,
and Woo," it may be possible to understand the
complicated system studied by HMV. Carlos and
Cole, by analyzing He scattering experiments from a

graphite surface, were able to determine an empirical
graphite-He potential function. This potential per-
mits more substrate normal motion than the previous
potentials and also enhances the effects of the period-
ic maxima and minima. Using this potential, Wang,
Senbetu, and Woo found that the epitaxial solid
phase was energetically favored over a fluid ground
state. It thus appears likely then, that HMV were
studying a sublimation like coexistence between gase-
ous and registered solid phases and not a liquid mix-
ture.

In Fig. 4 we showed the P =0 maximum fermion

30—

I I I I I I I I

Maximum He Solubility3

as a Function of Pressure

25—
0

20

l5—
L.
0

IO—

ard spheres

I I

0.0 O. l 0 0,20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 l,00

He Concentration

FlQ. 6, Maximum 3He solubility as a function of pres-
sure. The experimental data are from Ref. 29. The line la-

beled theory is the result from the procedure of Sec. Il. The
line labeled F is an alternative cluster expansion (see text)
and the dashed line is the result for hard spheres in lowest
order. The maximum in the maximum solubility is ex-
plained by appeal to the model of the "underlying" boson-
boson mixture.

solubilites for d =3 mixtures. In addition to 'He-
'He, we also labeled the positions of the spin-
polarized hydrogen mixtures (Tf,DI) and (Hf, Df).
We note that these results are for v =2 Fermi seas;
however, deuterium has a spin-one nucleus and can
therefore populate v =3 Fermi seas. Thus although
Fig. 4 indicates that both (TI,DI) and (Hf, Df) com-
pletely phase separate, this statement can be made
with confidence only for the latter system.

At zero pressure, Fig. 4 shows that the calculated
maximum 'He solubility is 0.18, a factor of three
larger than experiment. ' Nevertheless, the qualitative

physics is correct: 'He has a small solubility in He at
zero pressure. Indeed in this section we shall show
that the simple calculational method discussed in Sec.
II can be employed to satisfactorily obtain a number
of ground-state properties of the mixture.

In Fig. 6 we plot the maximum 3He solubility as a
function of pressure. The theoretical results are
compared to the experimental data of Watson, Rep-
py, and Richardson, ' the results for a hard sphere
'He-4He mixture (in lowest order) and an alternative
cluster expansion (to be discussed below). The out-
standing feature in the theoretical results is the max-
imum in the maximum solubility which occurs at -4
bars. This behavior is also present in the experimen-
tal data but in a more subdued manner. A qualita-
tive explanation of this behavior can be made in

terms of the underlying (in the sense of the discus-
sion in Sec. III) boson-boson mixture. As the pres-
sure is increased the "statistical" part of the energy,
which crudely goes like p', becomes relatively less
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important than the "interaction" part, which crudely
goes like p. Thus as the pressure is increased the
mixture tends towards its underlying boson-boson
mixture whose ground state is complete separation.
This behavior can be seen analytically in the hard-
sphere mixture (dashed line in Fig. 6). For this sys-
tem there is a lower critical pressure4 below which
there is complete mixing and above which the system
increasingly separates due to the decreasing relative
importance of the Fermi statistical constituents in the
energy. However, as discussed by van Leeuwen and

Cohen, 4 the very large compressibility in the hard
sphere system makes it difficult to map quantitatively
onto real He- He. The influenc'e of fermion statis-
tics can also be gauged by examining the quantity

p3F (1 ) +3(0') as a function of pressure. This is

shown in Fig. 7 along with the maximum solubility
(dashed line) and the quantity p3s(1) —p3(0) (trian-
gles) where p3s(1) is the chemical potential of a

pure boson He system. Because p3(0) is indepen-
dent of the statistics of the mass-3 constituent, the
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dent. This is interpreted as supporting our picture (see Sec.
III) relating the cost in energy of Fermi-Dirac statistics to
the miscibility.

(p(x) —p4)

p4
(4.1)

where p4 is the 'He density and p(x) is the density at
concentration x and both are at a given pressure.
The experimental data are from Ref. 29, The agree-
ment between theory and experiment is gratifying
and shows that the theory gives a reasonable account
of the volume excluding short-range order effects.
Good agreement between theory and experiment has
also been obtained by Massey and Woo ' and Davi-
son and Feenberg. "

in Fig. 10 we compare our calculated (zero-
pressure) osmotic pressures with the results of Lan-

dauu,

Tough, Brubaker, and Edwards. " Osmotic
equilibrium is defined by the equality p4(P, x)

I I r
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I I
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FIG. 8. He zero-concentration chemical potential as a

function of pressure. The curve labeled experiment is a line
through the data of Ref. 28,

quantity p3F(1) —p3(0) is a crude measure of the
importance of Fermi statistics. The correlation
between p3F(1) —p3(0) and the maximum solubility,
as shown in Fig. 7, is dramatic. The quantity

4 3a ( 1 ) Jll3 (0) is qualitatively independent of pres-
sure, however, its behavior appears somewhat erratic.

The relationship between the pure phase quantities
[p4(0) and p3(1) I and experiment has been con-
sidered in detail elsewhere. ' In Fig. 8 we show the
quantity p3(0) as a function of pressure as calculated
here and from the experiments of Edwards and co-
workers. " The calculated curve is the same mono-
tonic function of pressure as the experimental curve.
However, the theoretical value of p, 3 is 0.8 K too
high at zero pressure and approximately 2 K too high
at 20 bars.

In Fig. 9 we show the excess volume or BBP'
parameter o. , defined by
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= p4(P —n, 0) where n is the osmotic pressure. If
we expand the right-hand side about P we find

0
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FIG. 11. Position of the spinodal point measured with

respect to the maximum solubility as a function of pressure.
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(4.2). The calculated osmotic pressure rises too
quickly as a function of ~, thus, by x = 0.05 the cal-

culated m is 50% larger than the experimental m. We
do find that vr(x) is only a weak function of P which

is in agreement with experiment. '
A mixture is absolutely unstable to phase separa-

tion in a region where the enthalpy curvature (T =0
K) is negative; i.e., (Ilp3/Bx3) p (0. Because of the
nature of' the "double-tangent" construction, (9N3/
Bx3)p is positive at the maximum solubility and for
an extensive region beyond. Within this region one
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can form homogeneous mixtures in unstable equili-
brium. ' supersaturated solutions. This behavior has
been observed in the laboratory. " The limiting con-
centration at which (Bp3/Bx3)e =0, is known as the
spinodal point. In Fig. 11 we plot the position of the
spinodal point relative to the maximum solubility as a

function of pressure, The dependence on pressure is

very weak: a line through the points is practically
vertical. It is not clear, because of the scatter in the
points, whether the spinodal point is at all sensitive
to the maximum in the maximum solubility.

The thermodynamic conjugate variable to the 'He
concentration is 5=—p3 —p4=(BH/Bx)e. In Fig. 12
we plot the position of the phase separation line in

terms of the fields Pand 4. The curve is a line of
first-order phase transitions and the region below the
curve is the homogeneous mixture. The dashed line
is the locus of spinodal points.
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FIG. 13. Excess enthalpy as a t'unction of' concentration at

p =0.0 and 10.0 bars.

V. CONCLUSiON

In this paper we have been concerned with trying

to discover those aspects of bosons and fermions

which are important in determining the mixture

ground state, In S.ec. III, by examining a general

class of mixtures in (its, gr) space we were able to

construct a picture of the mixing process that permit-

ted us to assess mixture behavior. In order to test

this picture we carried out a series of calculations of
mixture systems. These calculations give support to

the physical picture we have of the important ener-

getics in mixing. In Sec. IV we showed that the com-

putational scheme employed in Sec. III describes the

properties of 'He-"He mixtures quite well.

In this section we shall discuss some of the approx-

imations that have been used in our calculations and

the limitation they place on the significance of our

results, Mixtures are more sensitive to calculational
-details than pure systems because the essential infor-

mation about the mixture ground state is contained

in energy differences, e.g. , the enthalpy second
derivatives. That is, from a variational perspective, a

reasonable enthalpy upper bound does not necessarily

imply a reasonable second derivative. Alternatively,

it is the excess enthalpy,

H, „(x)—= H(x) —[(1—x) H(0) —xH(1) j

which determines the mixture ground state and in

Fig. 13 we show H,„at P =0.0 and 10,0 bars for 'He-
4He. We note that ~H, „~ & 40 mK which is two or-
ders of magnitude smaller than the enthalpy in the
pure phases. The two approximations which we dis-
cuss below are the use of a cluster expansion and the
use of a single u (r) for each type of pair.

There are two aspects to the question of the cluster
expansion: (a) the effect of truncation and (b) the

use of a particular cluster expansion. 'We can esti-
mate the effects of truncation by including three-
body exchange in the enthalpy. Since this has the ef-
fect of lowetint; the 'He energy (while leaving the He
energy unaffected) the maximum solubility de-
creases. Thus for 'He-'He at zero pressure the max-
imum solubility decreases to 12%. That is, the
change is small and in the right direction. In Fig. 6
the line labeled %F is the maximum solubility calcu-
lated with the origina1%u-Feenberg expansion. "
That is, u(t) in Eq. (2.5) is chosen to minimize the
energy of a fictitous boson system at the same
number density as the fermion system. Clearly the
behavior of the maximum solubility is sensitive to
the treatment of the fermion statistics. The
molecular-dynamics calculations of Hansen and
Schiff' used this %F cluster expansion; however,
they included three-particle exchange. Hansen and
Schiff report the same sort of monotonically increas-
ing maximum solubility only shifted downward to
smaller concentrations. Thus, we find that the ef-
fects of truncation are small: lowering the 'He ener-

gy a small amount relative to the "He, lowers the
maximum solubility. However, the maximum solu-
bility is clearly a sensitive test of the particular cluster
expansion. An attractive possibility is to generalize
the Fermi hypernetted chain integral equation ap-
proach for use in the mixtures.

There are two basic ways that one may generalize
the simple pair-independent pair factor of Eq. (2.5).
First, as indicated in Eq. (2.5), one may include a

different u(r) for each type of pair; second, one may
make u(r) state dependent so that it correlates
spin-parallel pairs of fermions differently than spin-
antiparallel pairs. The simple Slater-Jastrow wave
function of Eq. (2.4) is the more or less conventional
approach to the boson or fermion ground state. One
can generalize this by including various projection
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operators in the Jastrow part, by considering a linear
combination of Slater determinants by using Feen-
berg functions (three- or more-body correlations) in-

stead of the simple Jastrow function, etc. The basic
rules, however, are: (i) by lowering the fermion en-
ergy relative to the boson energy the maximum solu-
bility is decreased and (ii) by lowering the energy of
the mixture relative to the pure phases, the max-
imum solubility increases. The effects of generalizing
u(r) to a pair-dependent form have been tested
quantitatively for the zero-concentration chemical po-
tentials" where it was found, for example, that the
more general wave function lowered p, 3(0) by only
2 —3%. %e thus believe that although more compli-
cated wave functions may change the boundaries of
Figs, 3 and 4 quantitatively the essential physics has
been found and understood. In summary, then, our
basic conclusions from Sec. 111 are (i) Fermi-Dirac

statistics in at least one component are a necessary
requirement for miscibility in the ground state of an
isotopic mixture. (ii) The locus of systems satisfying
p, q(0) = p, r(1) separates those mixture systems
which completely phase separate from those mixture
systems which exhibit at least partial mixing in the
general (ga, q~) space. (iii) The relative volume per
particle of the pure components determines the ex-
tent of mixing in isotopic fermion-boson systems.
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