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Singularities near the bifurcation point of the Ashkin-Teller model
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Singularities in the cl =2 Ashkin-Teller model;ire inalyzed by writing down flow equ itions

based upon the Gaussian model in the presence of suit ible fields. A scaling function for the

coherence length, (, is set up in terms of coordinates 6 ind t which describe devi'itions from the

four-state Potts point. At that point, codepend's on the reduced temperature as e
x [Inrun

The Ashkin-Teller (AT) model is known to have' a

bifurcation of the form shown in Fig. I (a) in which

the line of continuously varying critical points which

occurs in region I breaks up into two Ising critical
lines. In this plot t = 2&'~T+ b&T —1 measures devia-
tions from the self-dual line while xAT = 3 —2b AT/c AT

measures positions on that line, with x&T = 1 being
the four state Potts point. Figure 1(b) shows how

the AT model might be considered to be a slice in a

diagram for a Kosterlitz-Thouless multicritical point
of a generalized Gaussian model (GM), ' The specific
mapping4 is one in which v {the fugacity of the
Kosterlitz-Thouless model) describes an tt = + 4
spin-wave excitation, t is a field for an tt = + 2 excita-
tion, and x describes the GM coupling via

x = —2+ 8/(27rK). The Hamiltonian density for the

model is then —,K ('Vtt )'+ r cos2$ + v cos4tt. In this

representation, cosQ describes the product of the two

spins in the AT model„o-''' o-"'. The lowest-order
vortex excitations are left out because they represent
a breaking of the symmetry between the spins o-' i '

and cr" '. H igher-order vortex excitations are
neglected because they are irrelevant in the interest-
ing range x =0.

Near the multicritical point, at x = v = t = 0, one
can write approximate renormalization-group (RG)
flow equations'
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lines in two-dimensional systems. Thus„ for exam-

ple, these equations should describe equally well the
AT model's bifurcation, the planar model's infinite-
order critical point, the q-state Potts model" near

q = 4, the P'-8rr limit of the sine-Gordon theory,
etc, However, in each case these flow equations
must be supplemented by additional relations like the
last member of the set (1), which describe the partic-
ular field which occurs in the individual problem of

dx
V
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dv = —XV
dt

dt =( X V)!
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X=O

The derivation of these equations is given in the Ap-

pendix. The first two of these equations provide the
standard description of flows near the Kosterlitz-
Thouless phase transition, These equations may be
expected to be universal features which reappear in

the many different examples' of bifurcation of critical

I IG. 1. Ph ise di igr ims. In ('i), we h ive the st ind;ird AT

model ph'ise diagr im. The horizontil line;it t =0 is self-

du'il; the two br'inches to the right of the bifurc ition h;ive

'in Ising ch'ir icter. In (b) this ph ise di igr im is shown in-

serted is the i = 1 pl'ine in the. vt t sp;ice of the gener'ilized

GM.
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interest. For the AT case, the particular field is t, the
reduced temperature which describes the deviation
from self-duality. Reference 5 describes the calcula-
tion of the critical index for this quantity and this im-

plies a flow equation of the form listed in Eqs. (1).
Equations (1) are not accurate for the real AT model,
which is roughly the y 1 limit, but they do describe
in a semiquantitative fashion what happens to flows
near the origin. Later on, we shall have to supple-
ment these equations by statements about behavior
for large x, y, and t.

The standard RG flow methods determine a scaling
form for the coherence length, (, starting from Eqs.
(1). The result is

$
2/3

/6())/3M(5, r)
y x+y

= (exp —U)M'(5, r) (2)

which is an invariant version of the orthogonal coor-,
dinate which measures T —T, near this line. Here U

takes three different forms depending upon the re-

gion of the diagram

, iK
sinh ', region I

45 y

, i:s
sin '

—5, V

region II

sinh, region IIII . iJB
5 y

These regions (see Fig. 18 of Ref. 3), respectively,
are described by 5 & 0, x & 0 (region I); 5 & 0 (re-
gion II); 5 & 0, x & 0 (region III). To make these
regions fit together smoothly, choose the branch of
sin '4—5/y to give m as 5 0, x & 0 and conse-
quently to give zero as 5 0, x ) 0.

So far the calculation is very similar to a parallel
analysis carried out by Nauenberg and Scalapino,
who wete interested in the analogous bifurcation of
the q-state Potts model. The two problems differ in

the structure of fixed points far from x =y = t = 0, a
difference which must be put in "by hand. "

By looking at the structure of the phase diagram in

Fig. I, one concludes that the only singularities in g
must occur at r=0 in region I and r=+r, (5) in re-

gions II and III. In region III, r, (5) is of order unity
and is analytic in 8. But, since there are no singulari-
ties in passing from region II to region III, M must

Here 5 and ~ are the two invariants which do not
change in the course of the flows of Eqs. (I). They
are, 5 =x' —y', which is an invariant measure of the
distance from the multicritical point measured parallel
to the line of continuously varying exponents and

T=tv ' 4(( x+yl) ' 'exp( —3U/2)

have the same form in both regions, and therefore
the same condition for criticality holds. As 8 0, to-
ward the left-hand end of region II, the Ising critical
temperatures are therefore + t, (5), with9

t, (5) =r, (5)(4y) ' 'i5i' 'exp [—(3n )/(2v' —5)]

—(I —x~r)' 'exp[ —', 8/(—1 —x„T)' '] (4)

M {T)' 7'= e
1/2 ' 3/4

But for fixed t, as y 0, ( should be finite and non-
singular in y. Thence, for small 7

Mo(r) —( lnr+ —lnlnr+ )' '

Hence, for 5= 0 and small t, the singular part of the
free energy is

]4/3

[—lnt+ ( —)ln( —lnt) + ]4

(6)

Equation (6) is an AT model result which holds at
xAT= 1. Notice the extra factor which appears in Eq.
(6) beyond the t /', which is expected from naive
scaling. These extra terms perhaps explain why
series' and real-space renormalization-group" calcu-
lations do not give numerical evidence for the o. = —,

expected" in the four-state Potts model.
Equation (6) was first derived in the context of

Potts model studies. ' Since the AT model and the
q-state Potts model exactly reduce to one another
when, respectively, xAT = 1 and q = 4, it is gratifying
to notice that the flow equations exactly reduce to
those used in Ref. 8 when the appropriate limits are
taken.

In the second line of Eq. (4), we have expressed our
result in terms of AT model parameters, i.e. , y —1,
5= —(vr'/8')(I —xAr), where 8 is a constant to be
determined. By the same logic, one concludes that
for y —I in region III ( '(5, r ) is expandable in a

power series in 5 and v2 in which all the coefficients
are of order unity. Hence, so is M'(5, r). Near the
left-hand end of region II, if t =0 and 5 0, we

find ( ' = M'(0, 0) e / ~. Consequently, in the
AT model, if t =0 and xAr I, ( —exp[8/
(I -xAT)'/'].

To find B, notice that the critical index v is directly

given by Eq. (1) as v = —,
—t5/4, when y =0.

Therefore, in region I, in AT model language
v

' = —+7r(x„T—I)'/2/48 as xAr I+. From Ref. 4,

we then conclude 8 = %2m'/4.
Finally, focus upon region I in the limit 5 0. For

fixed t and y this limit must exist and give a scaling
function of the form

I
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notices that in the AT model vp actually refers to a

half-integral vorticity field coupled in part to a disor-
der variable, and hence is not present in the usual
Hamiltonian for this model.

Nonetheless this field is useful because it permits
one to use the techniques of Ref. 5 to describe the
structure of the-multicritical point. Entering this
point there are several fixed lines, one at very small

v, vp, and t but fixed x having )inearized flow equa-
tions

cfy—= —XV
dl

dyp = XVp
dl

(A2)

APPENDIX: DERIVATION OF FLOW EQUATIONS

To derive Eqs. (1), reach back to Ref. 3, Eqs.
(5.17l. In the notation of the earlier work, r is pro-
portional to y 2, y to v 4, w hile the meaning of K
remains unchanged. Ho~ever„ the earlier paper also
contained a vortex field, yp, which we do not need in

the AT model calculation but which will be useful in

our derivation. After suitable scale changes, the flow

equations read

cft—=(———X)t
d/

(X + V Vp) = (V + Vp)(X + V
—V())

d

dl

d—(X —
V + Vp) = ( V + Vp) (X y +.V())

dl
(A3)

Another fixed line occurs at fixed values y + v() and
small values of y —vp, x, and t. For this fixed line,
the linearized flows read

—= —
V +Vp +At

d/

—= —XV+Btdy

d/

—= ( ———x)t + Ctv
cft 3

dl ' 4

dVp = XVp
dl

(A 1)

—=[—+ —&(v+v )I)cft

dl

According to the work of Ref. 5, the fixed lines
described by Eqs. (A2) and (A3) are essentially
identical, or rather can be mapped into one another
under the transforms

V X+V Vp

In writing this result, one assumes that the equations
in these variables are indeed analytic at the multicriti-
cal point x —y = t =yp=0. These equations now in-

clude on the right-hand side all the quadratic terms
which are permitted by the symmetry of the problem.
We do not need A and 8 for our analysis. The value
of C is crucial ho~ever.

In the real AT model, the vorticity yp is zero. To
see this one refers back to the mapping of Ref. 4 and

~X y +yp

t t
(A4)

.V + Vp

To make this mapping hold, the constant C must be
equal to —0.5. To complete the derivation of Eqs.
(1), set yp = 0 and neglect terms of order t' in Eqs.
(Al).
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