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Impure Heisenberg systems with biquadratic interactions
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The purpose of the present paper is to study an impure Heisenberg ferromagnet governed by

the Hamiitonian H= —J X;a[S;'S;+a+tt(&;' &,+a) ) —2jp ga (So' Sa+&o(So' Sa) )

where J is the host-host bilinear exchange constant, 2(J + Jp) is the host-impurity bilinear ex-

change constant, a and ap being the corresponding biquadratic coupling parameters, and 5, a

nearest-neighbor vector. S and Sp are the host and the impurity spins, respectively. Through

utilization of the Dyson transformation, it is shown that at low temperatures the effect of the bi-

quadratic terms is simply to renormalize the bilinear exchange constants J and Jp by

1+2nS(S —1) and 1+Op(2SSp —S —Sp), respectively. Some qualitative discussions on the

scattering processes are presented. The method of Green's function is then employed to discuss

the criteria for the existence of localized modes in the system. The situations appearing in

KMnF3, RbMnF3, KNiF3, and MnF2 doped by impurities are critically examined. Some nu-

merical estimates of the biquadratic parameters n and np are also made which are found to

agree satisfactorily with those obtained by previous authors.

I. INTRODUCTION

The effect of impurities on the spectrum of ele-
mentary excitations of a magnetically ordered crystal
lattice has been studied in great detail using a

bilinear-type exchange Hamiltonian. ' " But there
exist some experimental data in the literature which
clearly point to the fact that the host system should
have, in addition, an appreciable biquadratic ex-
change. When the impurities Ni++ are embedded in

the host lattice of KMnF3, it would be clearly in-

correct to examine their data on the basis of bilinear
exchange only since KMnF3 does have some biqua-
dratic exchange in appreciable magnitude. ' It may be
noted that in the above example, only the host-host
interaction may contain a significant biquadratic part,
while the host-impurity interaction may still be re-
garded as a bilinear type, since KNiF3 does not con-
tain any biquadratic exchange. '6 In similar manner,
one finds that in KNiF3.Mn++ the host-host interac-
tion is a pure bilinear isotropic type, but the host-
impurity interaction should contain both bilinear and
biquadratic exchange. An approximate theory based
on random-phase approximation (RPA) Green's
function approximation was developed by the au-
thor" where it was shown that the presence of biqua-
dratic exchange sometimes enhances and sometimes
hinders the formation of localized modes. But due to
the oversimplifications involved in the theory this
general result should be critically examined in the
light of more realistic and reasonably accurate formal-
ism.

In order to discuss the effects of impurities in both
of the two kinds of situations stated above, we in-

clude biquadratic exchange-in both the host-host and

host-impurity interactions so that one may write
down the following Hamiltonian:

H = —J $ [S; S;+a+a(S; S;+a)2]
i, d

2Jp $ l(sp Sa) + no(So Sa)'j

where J is the host-host interaction, 2( J + Jp) is the
host-impurity interaction and o. and np are the corre-
sponding biquadratic coupling parameters. S; is the
spin operator at the ith lattice site and S;+d'is the
same at the neighboring site, 5 being a nearest-
neighbor vector. The impurity is assumed to be sit-
uated at the origin and the impurity spin is denoted
by Sp, while the host spin is denoted by S. In Ref.
17 it was assumed J =2Jp and op =0 and these ap-
proximations are mainly responsible for crude over-
simplifications in the theory.

We utilize the Dyson transformations for both the
host and the impurity spins to express the above
Hamiltonian in terms of boson creation and annihila-
tion operators. The transformed Hamiltonian is
found to convey some important information regard-
ing the physical properties of the system. These are
elaborately studied in Secs. II and III. The method of
two-time thermodynamic Green's function is then
employed in Sec. IV to discuss the localized impurity
modes appearing in the system. The higher-order
Green's functions are decoupled by a Hartree-Fock
approximation, and the linearized equations of mo-
tion are solved to find the criteria for the existence of
Sp modes. The existence of localized modes in

KMnF3, KNiF3, RbMnF3, and MnF2 is then dis-
cussed on the basis of present theory and compared
with the existing observed data of literature.
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II. TRANSFORMED HAMILTONIAN

The Dyson transformations for both the host and
the impurity spins may be written in the following
forms:

S, =S —a;a;, S'=S —a a

SI+=(2S)' a;, Sp+ =(2Sp)' ap

S; =(2S)' a; [1 —(1/2S)a; a;]

Sp =(2Sp)' ap [1 —(1/2Sp)apap]

(2)

where a;, a; create and destroy bosons at the lattice
site i and are the corresponding operators attached to
the impurity 'spin situated at 0.

We shall reexpress our basic Hamiltonian in terms
of boson operators using the transformations written
above. Utilizing the usual boson commutation rela-
tions successively, we rearrange the boson operator
products in such form that all the creation operators
stand in the left and the annihilation operators stand
in the right. The procedure is indeed very lengthy
and tedious. The result obtained is

H = R,JS X (a; a, + a;+aa;+a —a; a;+a —a;+aa, )
i, d

a; a;+da;a;+d. For i AO, it is implied that

Ai=A2 =1 MI=0;=NI=m;=q;=1

but for i =0,

At =At, A2 =A2, Mp=(Sp/S)@, Np ——@,

gp=Sp/S, mp=@(Sp/S) i, q =2(Sp/S)'i2

where all the symbols are explained as follows:

R2 = 1+n(2S —1)(3S —1)

R3= nS—(2S —1)1

R2 =1+np(6SSp —
2

S —
2 Sp+1)5 5

R3 = npS(2S——1)

$ = (2Sp —1)/(2S —1)

At=(1/Ri )(Sp/S)' [1+np(2Sp —1)(3S—1)]
A 2

= (1/R ) ) (Sp/S) [1 + np(2S —1)(3Sp —1) ]

III. LOW- TEMPERATURE EFFECT

(8)

+2R t Jp X [Sapap+ Spa aaa —(SSp)' apaa

—(SSp)'i'aatap] + V+ Vp, (3)

Rt =1+2nS(S —1)

R t = 1 + np(2SSp —S —Sp)
(4)

The third and the fourth terms of Eq. (3) refer to
magnon scattering processes. The involved interac-
tions Vand Vp are given by

V= —J $ [R2V)(i, 5) +R3Vq(i, 5)]
i, d

Vp =—2Jp X [R2 Vt(0, 5) +R3 V2(0, 5) ]
d

(5)

where

Vt(i, 5) =—(i i +lb i i +h) —-A) (i +5 i+5 ii +5)
—

2 A2 (I, l, l, i +5) (6)

Vq(i, 5) (i,i,i,i) + M;(i + h, i + A, i + h, i + 5)

+N(i i i+hi +b)+Q(i +5 i +hi i)

2m, (i,i + A, i—+ A, i + 5) 2q, (i,i +A, i,i)—

The symbol (i,i +i)„i,i +b) stands for the product

where the first two terms refer to the low-

temperature region and R ~ and R j are two renormal-
ization factors given by

The transformed Hamiltonian as shown by Eq. (3)
conveys some important basic physical information
regarding the effects of biquadratic exchange. In the
present section we shall mention the important ef-
fects at low temperatures. Since the magnon scatter-
ing is insignificant at very low temperatures the
transformed Hamiltonian would correspond to

H~&&= R]J X(S;' S a) —2R] Jp X(Sp' Sa), (9)
i, d

which implies that the presence of biquadratic terms
simply renormalizes the bilinear exchange constants
at low temperatures where the magnon scattering
processes can be ignored, the renormalization factors
being R ~ and R ~ in the case of host-host and host-
impurity interactions, respectively. It is relevant to
remark that in the case of a pure system with bilinear
and biquadratic coupling the effect of the biquadratic
term, at low temperatures, is to renormalize the bilin-
ear exchange constant J by the same factor R ~, pro-
vided the interaction between two spins becomes iso-
tropic.

We conclude this section by pointing out some in-
teresting effects of biquadratic exchange on the local-
ized modes in the system described by Eq. (9). Fol-
lowing Wolfram and Calloway' or Hone and Callen
one can have the following condition for the ex-
istence of a localized mode:

R & Jp 1.96S —0.96Sp
R

&J 1.96S +0.96Sp

If S = 2, Sp = 1 one therefore gets the condition for
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the localized mode

Jo 0.67 +5.025 e
J 1 +1.5ao

(10)

band at finite temperatures, and therefore the effects
of scattering'terms have to be considered. We shall
discuss these effects in subsequent sections.

When no =0, which corresponds to the situations in
KMnF3.'Ni++ one finds that a negative n enhances
the possibility of formation of a localized mode and a
positive n hinders it. In the case no ~0 which may
correspond to the situations in KMnF3.'Eu++ the ef-
fects of ~ and no would be reverse. If S =1, So = —,

5

the condition for the appearance of a localized excita-
tion at T=0 K becomes

I jo/J I
& 0.2/2 +3&o

which is free from n, but depends on cxo. The in-

crease (decrease) of up enhances (hinders) the possi-
bility of appearance of a localized mode. This condi-
tion may correspond to the case KNiF3'. Mn++. The
above two conditions are valid at 0 K but localized
excitation is also found to split off the spin-wave

IV. GENERAL STUDY OF SCATTERING PROCESSES

t m t tH ~ 6(Jaj a& + ~ V~~pga; a& a a„
ij ijmn

(12)

where ~,& is the dominant interaction at 1ow tempera-
tures given by

Before discussing the effects of scattering terms on
the localized modes we shall present some general
study of different scattering processes so as to eluci-
date their implications on impure biquadratic systems.
The emphasis is given to the discussion of transla-
tional invariance of the system due to the presence of
biquadratic terms in the scattering matrix.

Equation (3) can be written in the form

So So
aj = 2R i JS x (Sj;—Sj;+d) + (ct —1 )5 pSjp+ ci——1 5;dSjd —ct —1 (5 pSJd + SidSjo) ~

i i

(13)

and V& „ is the magnon scattering matrix

I ijan R2J x [(Sji+dSmiSn i+a SjiSmi+dSn i+d) + 2(C2 I ) SipSjdSmpSNd
4

—(C2A t
—R2/R i) 5;dSjdS~dS„d —(C2A2 —Rg/R i) SipSjpS~pS„d]

2R3J $ {—(Sji SJi+d) (SsuStu +5~ I+dS„i+d) + (C3 1)SioSjoSmoSno

+ [C3(Sp/S) —1]SidSjdS~dS„d + [C3(Sp/S) —1]5;dSjdS~pS„p+ (C3$ —1)SioSjdS~dS„d

2 [C3(Sp/S) 1 ]S,pSjdS~dS„d 2 [ C3@(Sp/S) 1 ] 5;pSjdS~dS„p} (14)

where

R] Jo R2 Jo R3 Jo

Various possible diagrams representing magnon
scattering processes may be discussed in terms of
creation and annihilation of magnons at two adjacent
sites. Restricting only to nearest neighbors one can
draw the diagrams representing two-magnon, three-
magnon, four-magnon, and higher-order scattering
processes. These are shown in Fig. 1. In relevance
with the present problem we suppose i =0,j= 4 so
the two-magnon scattering diagrams are those in Fig.
2. The matrix elements for different interactions
shown in Figs. 2(a) and 2(b) can easily be found out
from Eq. (5) or from Eq. (14). These are shown in

Table I. An inspection of the table exposes some
salient features of the problem. We find that if 0 and

etc.

FIG. 1. Diagram representation of various two-magnon,
three-magnon, and four-magnon scattering processes.
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~0O~&

(a)

(iv)

(b)

(i v)

FIG. 2. (a) Typical two-magnon scattering diagrams.
Only the magnon creation and annihilation occurring at the

impurity site 0 and its neighboring site 6 are considered.

VOOOd, VOdOd VOOdd and VOdOO are the resPective interac-

tions. (b) Two-magnon scattering diagrams reverse of (a).

5 are both host sites the situations represented by
the diagrams of (i) —(iv) of Fig. 2 become identical,
since the interactions in each case are equal. This is
what one expects from the symmetry of the lattice.
However, when 0 happens to be an impurity site two

classes of diagrams become possible: (i) symmetry
class, as a result of interchange of 0 and 6 the di-

agrams of Fig. 2(a) and those of Fig. 2(b) remain
identical; (ii) asymmetry class, as a result of inter-

change of 0 and 4 the diagrams do not remain identi-
cal.

In the case of two-magnon scattering which is our
present consideration the diagrams (i) of Fig. 2(a)
and 2(b) correspond to the symmetry class since one
finds &pdpd= &dpdp= &pddp. All other diagrams
drawn in Figs. 2(a) and 2(b) correspond to the asym-

metry class if the biquadratic coupling is taken into
account. When u=o.p=0 all the diagrams fall to the
symmetry class since then one would find one-to-one
correspondence between the diagrams of Figs. 2(a)
and 2(b). The inclusion of biquadratic interactions

destroys this correspondence in certain cases. It is

found that the diagrams of the symmetry class
remain unaffected. We find that in these diagrams
no exchange takes place between the host and the
impurity sites, bosons being created and annihilated
at 0 and 4 independently. But in the diagrams of the
asymmetry class the exchange of bosons occurs
between the host and the impurity sites. Topological-
ly equivalent diagrams of the symmetry class demon-
strates the translational invariance of the lattice,
whereas it breaks down in the case of the diagrams of
the asymmetry class. This breakdown of translational
invariance is clearly due to the perturbation caused by
the impurity spin on the neighboring host spin and
we therefore categorize the diagrams of the asym-
metry class as strong-coupling cases. The diagrams
of the symmetry class may conversely be regarded as
those representing the weak-coupling case. To dis-
cuss the. effects of these diagrams on the spin-wave
modes we may follow the arguments of Hone et at. 7

We note that the diagrams of the symmetry class
(weak-coupling case) cause additional small perturba-
tion of the spin-wave band downward in the vicinity
of the impurity, the top of the band remaining practi-
cally unchanged, while the diagrams of the asym-
metry class (strong-coupling case) provide an addi-

tional small distortion of the spin-wave band upward
in the vicinity of the impurity, but the spin waves at
the bottom of the band are not appreciably influ-
enced. Furthermore, it is interesting to note that if
ap=0 all the diagrams of Fig. 2 fall to the symmetry
class, thus decreasing the perturbing potential at the
impurity, and thereby distorting the spin-wave band
downward. We see also that for spin-half case the ef-
fect of biquadratic exchange on the scattering process
is nill and in all other spins the effect of increase (de-
crease) of a is to increase (decrease) the perturbing
potential at the impurity which renders additional
small distortion of the spin-wave band upward
(downward).

TABLE I ~ The matrix elements for different interactions
corresponding to Figs. 2(a) and 2(b), We have units in

which JZ =1. V. LOCALIZED SPIN-WAVE MODES

Two-magnon scattering matrix

Voood

Vodod Vdood

Voodd

Vodoo

Vdddp

dodo Oddo

Vddoo

Vdodd

Matrix elements

1

2 R2+R2A20

—R2 —2R2
—2R3

4R3[1+C3(SO/S)' ]
1

2 R2+R2A
—Rp —2R2

—2R3 —2R3 (Sp/S)
4R 3[1 + C3@(SO/S) ]

In order to examine the effects of biquadratic cou-
pling on the spin-wave impurity modes we employ
the method of Green's function which may still be -,

regarded as a convenient tool for such a description.
We shall work with the following Green's functions'.

Gpp(E) ((ap a0 ))E

Gap(E) = ((aa, ap ))s

where the symbols bear conventional meaning.
Henceforth we shall omit the subscript E occurring in
the right-hand side.

The equations of motion for the Green's functions
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Gpp(E) and Gao(E) are

EGpp(E) = +Rt[b)Gpp(E) —g, Gap(E)] —Rz(((bzaaaaap —azapapaa); ap ))t

—R3(((b3aoaoap+4, aoaaaa —g3aaaoao 4zaaaaaa); ap )) (16)

EGap(E) =R~[h, Gap(E) —g3Gpp(E)] —R3(((bzapapaa —a~aaaoap); ap ))
—R3(((@3aaaaaa+h3aaaoao 43aoaaaa —g3aoaoao)' ao ))t t (17)

where we have written R ~, R 2, and R 3 for
2JZ (S*)R ), 2JZ (S*)Rz, and 2JZ ($*)R3, respec-
tively. The symbols a, b, g, and h are given by

b„=1+C„
g„=1 +C„(Sp/S)'

a„=1+A„C2

h„= 1 + C„(Sp/S)

(18)

where n runs through the values 1, 2, and 3. The
symbols qadi and $3 are given by

@3= I +C3$

$3 = 1 + C3$(Sp/S) '

In order to linearize Eqs. (16) and (17), we decou-
ple the higher-order Green's functions appearing on
the right-hand side of these equations. It is con-
venient for the present purpose to use the Hartree-
Fock approximation which may be stated in the forms:

((aoa ai, ap )) = (aoa ) ((a~, ap ))
+ (atai) ((a„;at ))

(20)
((at aoao; ap )) =2 (ao ao) ((ag'; ap ))

We restrict our calculations to the low-temperature
zone so that the following approximations can be em-
ployed:

(i) The differences S —(S*) and Sp —(Sp) aresmall;
(ii) fg —= (ag a ) =0 for g W m;
(iii)fg =0 for g = m = h and fg % 0 for

g = m =0. We now express the correlation (apap) in

terms of the polarization deviation parameter

d = &$*&/&$*& -I
such that d ~ 0 for m =0 and zero otherwise.

The second condition for the approximation men-
tioned in (iii) therefore gives fpp= (aoap) = dp(S ).

Thus the equations of motion are reduced to the
following simple forms.

[E—(R ib3+2R3b3dp) ]Gpp(E)

= (So)/rr —(Rig&+R&azdp)Gap(E), (21)

[E—(R )h) +Rzbzdp) ]Gap(E)

=—(R~g~+2R3g3dp) Gpp(E) . (22)

I

Eliminating Gap(E), one gets readily

SX
G (E) = (I +d.) (E W, ) (E —W, ) —W,—

(23)

where A ~, A 2, and A 3 stand for the following expres-
sions:

= R )h) + R2b2dp

A 2 =R )b( +2R3b3dp

A3 (Rtg&+Rzazdp)(R~g&+2R3g3dp)

(24)

The zeros of the denominator of Eq. (23) gives the
localized spin-wave modes. One gets after simplifica-
tions (restoring the units of R~, R3, and R3) the fol-
lowing expression

' 1/2'

E~ 4%"0
1 + 1

E 2 @2
(25)

P =a, +y)+dp(az+4a3)

0 p (a3 +4a3dp) (a~ + azdp)

—(P& + doyz) (B& +4dpP3)

(26)

(27)

The symbols ai, az, -a3, P3, P3, yi, and y3 are given
by

m] = R ] +xpR ]
0

a2 = R2 +xpR20

C13 R3 +X0R30

Pi ——R, +x,R,'

p3 = R3+x(R3

=R) +x2R)0

y2 = R2 + A 2xpR2

where
/

Sp Jp
x~ = S, J

where Ep is the spin-wave energy for the unperturbed
host and is given by Ep=2Jz (S*). The symbols q
and Pp are
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the integer n running through 0, 1, and 2.
Since Eq. (25) was obtained as a solution from a

quadratic equation, there would occur a negative sign
in front of the parentheses. This negative sign has
been discarded since in that case one ~ould find that
it would lead to an unphysical result for n =0,
Jo&) J, and So& S.

We shall now discuss the effects of biquadratic ex-
change on the localized spin-wave modes with the
help of Eq. (25). We first study a simple situation:
Jo/J = I, So/S =1, and a0=0. Equation (25), in this
case, reduces to

Eq/Ep=2+dp+2aS(S 1)+
2

adp(2S 1)(SS 1)

(28)

This equation shows that if cx =0 the localized
modes depend on do. At T =0 K since do=0, one
thus finds that a localized excitation just tends to split
off the spin-eave band and as the temperature in-

creases, since (Sa ) does not decrease rapidly as (S*)
does, do becomes greater than zero so that at any fin-
ite temperature a "well-localized" excitation mode
splits off the spin-wave continuum.

The presence of nonzero host-host biquadratic ex-
change complicates the problem. We shall present
some simple observations from Eq. (28). For the
spin-half case one finds that at T =0 K, E,/Eo
=2 ——,e which implies that a negative n enhances

. the possibility of the appearance of a localized mode
while a positive a hinders it. In other words, the de-
crease of n renders the situation more favorable for
the formation of a localized mode. This conclusion
was also reached previously by the author" for a gen-
eral spin pattern which is not true. From Eq. (28)
one may find that for S & —, the effects of an in-

crease or a decrease in e become different. For S =1
at T =0 K, E~/Ea =2 and for S = —,E~/ED=2+ —a.3 3

In the spin-1 case the biquadratic exchange has,
therefore, no effect, while in the latter as o. increases
the situations become favorable for a localized excita-
tion to split-off the spin-wave band. Similar results
are also obtained for spins greater than —,.

However, one obtains distinctly different results
when Jo/J & I and Sa/S &1. We first consider the
case where Sa/S & I and Ja/J & xa so that no local-
ized mode can be observed at 0 K, xo being the criti-
cal value of Ja/J for which a localized mode is possi-
ble when the biquadratic interactions are absent. x(
has been calculated by different authors using dif-
ferent methods with slightly different results. Hone
and Callen found

which yields the value

xo = [I —(So/S)'~ ]

x {1—[4(S/So)' ' —2(S/Sp) —I]' '] . (30)

The comparison of Eqs. (29) and (30) will readily
show that the value of x] becomes greater in the
present formalism. This is due to the consideration
of the scattering effects. In the case S = —, , SO=15

one gets from Eq. (29) xo =0.67 and from Eq. (30)
x(') = 1.04.

We now examine the effect of positive u (but
ao =0) on the localized modes when So/S & 1 and
xo ( xo. Computations show that as a increases from
zero, E~/Eo increases from 1.68 (approximately) for
Jo/J =0.5, Sp/S =0.4 but as a crosses 0.05 we have
found that E, turns out to be complex and the excita-
tion rapidly decays into the spin-wave continuum.

However, the above situation does not arise in the
case where So/S & I and Jo/J & xo. It is quite evident
that these conditions are favorable for the appearance
of a localized mode at 0 K even in the absence of bi-
quadratic coupling. In this case it has been found
that the effect of increase of a in the positive side is

simply to diminish the magnitude of E, .
Interesting results are obtained when the magni-

tude of 0. increases in the negative side. When the
situation happens to be such that it does not favor

2.5

LOG ALI
XOD

2.0

SPl
CON

I 96 —0 96(SO/S)
1.96 +0.96(SO/S)

(29)

I

-O. I -0.08 -0.06 -0.04 - 0.02
I.5

0

In the present treatment we get for a localized mode

(2V —%'0 —4) &0
FIG. 3. Localized modes for negative o. and for various

5
positive values of JD/J. Here S = 2, SO=1.
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-l2

10

6 E~
Ep

LO

4

- l.0 -0.8 -0.6 -0.4 -0.2

5
FIG. 4. Localized modes for S =1, So = 2.

any localized excitation at 0 K in the absence of bi-
quadratic coupling, one may find in that case that a
certain negative o. will render a favorable situation
for an excitation mode to split off the spin-wave con-
tinuum. Conversely, when the conditions become
such that these are favorable for the appearance of a
localized mode even in the absence of biquadratic
coupling, the increase of o. in the negative side com-
pels the excitation to decay into the spin-wave contin-
uum. That is to say, the increase of e in the nega-
tive side acts adversely with the existing behavior of
the system. This is clearly demonstrated in Figs. 3
and 4.

We conclude this section by making some com-
ments on the influence of 0. on the localized excita-
tions. Computations show that for So/S ( I the ef-
fect of uo resembles closely the behavior mentioned
above, but the changes in eo alter the magnitude of
E,/Eo appreciably. For example, when Jp/1 = I we
find that E~/Eo decreases rapidly as ao increases in
the negative side and at about oo= —0.4, F., vanishes
which is markedly different from the result shown in
Fig. 4.

VI. COMPARISON WITH OBSERVED DATA

Although it is not possible to verify all the theoret-
ical results obtained in the preceding sections in view
of the unavailability of proper experimental data, we
point out some definite examples where some of our
conclusions can be shown to be valid qualitatively, if
not semiquantitatively. In the present section we
shall discuss the situations which appear in the sys-
tems KMnF3, RbMnF3, KNiF3, and MnF2 doped by
impurities. The exchange parameters and other phys-
ical constants are tabulated in Table II" ' where the
values of S, So, J, J + Jo, and xo are collected from
literature. The table shows that except for
RbMnF3'. Ni++ no localized mode can appear in other
systems at 0 K in absence of biquadratic coupling.
One, therefore, feels it necessary to include biqua-
dratic exchange in all such cases. We shall attempt to
make the estimates of the biquadratic coupling
parameters a and oo in all these cases.

In KMnF3.'Ni++ a localized mode is found to split
off the band at very low temperatures. The host-host
bilinear exchange and host-impurity bilinear ex- .

change constants were estimated by Johnson et al.
and their values are shown in the Table II. In view
of the spin-wave result and the calculation of Hone

TABLE II. Exchange parameters and other physical constants for several impure Heisenberg sys-
tems are shown. Only the bilinear interactions are taken into account. The sign + ( —) denotes
that a localized mode exists (does not exist) at T =0 K. The values of J, J+Jo are collected from
literature (Refs. 18—21).

System So J+Jp Xo

(observed)
Xo Inference

KMnF3. N i++

KMnF 'Eu++

RbMnF 'Ni++

RbM nF3'.Eu++

KNiF3'. Mn++ '

M nF2.'Ni++

5

2
5

2
5

2
5

2

1
5

2

1
5

2

1

5.05

5,05

3.4

3.4

43

1.76

8.7

1.52

8.1

1.52

8.7

3.2

0.72

—0.6

1,38

—0.55

—0.98

0.81

1.04

1.04

1.04

1.04
—0.22

1.04
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and Calien, one finds a
Jo/horatio

which may favor a
localized mode. But since the present treatment
yields a larger critical ratio, a localized mode cannot
be possible. In order to introduce biquadratic cou-
pling, we first note that the host-impurity biquadratic
coupling should not be very significant in such case
so that o.p =0 and only a small negative a may be
found to be sufficient for the appearance of a local-
ized mode. An estimate of a is seen to be —0.014
(approximately). Incidentally this value coincides ex-
cellently with that obtained by Joseph, who found
that a value of e = —0.015 is necessary for good
high-temperature-susceptibility data. Also this value
is consistent with that calculated by Shrivastava22 for
linear T2g system V++ —F —, V++ in cubic KMgF3.
Recently, the author23 has performed a Green's-
function calculation and obtained a value
u = —0.016 for a good fit for the susceptibility data
of KMnF3.

In KMnF3. Eu++ we note that xo & xo and calcula-
tions show that the above value of a together with
F0=0 would result in the appearance of a localized
mode.

%e now discuss the situations appearing in
RbMnF3 and KNiF3 doped by impurities. Various
measurements show that these two systems have
negligible second-neighbor exchange and anisotropy
and that the properties of pure systems can be satis-
factorily understood on the basis of simple bilinear
exchange. So a =0 in these cases can be assumed.
In RbMnF3.'Ni++ we thus find a =0, eo =0, xo & xo,
and a localized mode is possible, which agrees with
the observation of Johnson et al. But we find that in
RbMnF3'. Eu++ since xo & xo no localized mode be-

System From
literature

KM nF3.Ni++

KM nF3.Eu++

RbMnF Ni++

RbMnF Eu++

KNiF3.M n++

MnF2. Ni++

—0.015'
-0.01~
—0 Q16'

01

Qa

—0.005~

—0.017

—0.017

—0.013

—0.017

'Reference 25.
Reference 22.

'Reference 23.
Reference 24.

TABLE III. The values of the bilinear and biquadratic ex-
change constants for the host and impure spins estimated
from the present treatment.

comes possible. As a=0, o.0=0 in this case no
question of modification of this result by biquadratic
exchange arises. However, due to the lack of expeii-
mental data this conclusion cannot be verified.

Regarding KNiF3'. Mn++ it was remarked by Parkin-
son that the large host spin of the Mn salts and the
large host exchange in KNiF3 tend to favor the reso-
nance impurity modes within the spin-wave band
rather than the localized excitation above the band.
Table II demonstrates xo & xo and so no localized
mode is possible when biquadratic exchange is ab-
sent. But in this case we note that although a =0, ao
is not zero since there should exist an appreciable bi-
quadratic coupling part in host-impurity interaction.
Considering the estimate we have found E~/Eo ( 2
and thus no localized excitation is possible.

Lastly, in the case of Ni++ doping in MnF2 one
finds an estimate: u =—0.013 for the appearance of
a localized mode. This estimate agrees with that ob-
tained by Rodbell et al. In Table III, we have put
cx0=0 for MnF2'. Ni++. A very small value of ao is
possible since NiF2 may have some small biquadratic
exchange.

VII. CONCLUSION

A theory of the impure Heisenberg system with
both bilinear and biquadratic interactions has been
elaborately studied and the results are found to be
consistent with the observed data. The theory is,
however, valid at low temperatures and the criteria
for the existence of localized modes are duly modi-
fied when their temperature dependence is more
rigorously considered. Indeed, a localized mode
which feels harder to split off the spin-wave band at
0 K may appear at some high temperature where the
scattering effects should be appropriately included. It
becomes, furthermore, necessary to study the tem-
perature variations of the host magnetization and the
impurity magnetization, giving proper consideration
of the scattering effects. However, it may be be-

'

lieved that more rigorous consideration of the scatter-
ing effects can only alter the numerical results,
without affecting the qualitative results too seriously.
&e also point out that the theory only presents the
discussion of the appearance of s-type localized exci-
tation. The conditions for the appearance of p and d
modes should also be studied. All these aspects
along with those related to more complicated magnet-
ic systems give rise to great mathematical complexi-
ties and enormous computational labor. The problem
of inclusion of biquadratic exchange related to more
complicated systems can be studied easily at low tem-
peratures by simply extending the existing theory.
Complication arises at high temperatures where such
simple extension cannot work well.
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