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Recent attempts to develop double-time Green's-function theories for the transverse Ising

model (TIM) have been subject to certain difficulties; the appearance of zero-frequency poles in

the commutator Green's function (CGF) led to the avoidance of CGF and an incomplete treat-

ment based only upon anticommutator Green's functions (AGF), and ambiguities in the deter-

mination of some thermal averages. Upon decoupling the equations-of-motion hierarchy, we

develop a consistent Green's-function theory of the TIM. The AGF and CGF are shown to

provide consistent results, the problem of zero-frequency poles in CGF being treated appropri-

ately. e resolve the ambiguity problem and obtain reasonable values for the eiss critical

field and the ground-state magnetization.

I. INTRODUCTION

The transverse Ising model (TIM) has been widely

used to describe a variety of physical systems, e.g. , in

treatments of order-disorder ferroelectrics, "van
Vleck paramagnets, ' and systems exhibiting a
cooperative Jahn-Teller phase transition. ' Attempts
to develop double-time Green's-function (DTGF)
theories of TIM have met with limited success.
Wang and Cooper studied the spin- —,(S = —, ) case

1 1

with DTGF in the T =0 limit. ' While their approxi-
mate excitation spectrum correctly predicted a soften-
ing of the collective mode as T T„ their procedure
failed to satisfy certain S = —, operator identities.

Rarnakrishnan and Tanaka' also correctly predicted
collective-mode softening as T T, but they were
unable to provide analytic (or numerical) solutions
for their complicated correlation expressions. More

' importantly, they treated only anticommutator
DTGF, avoiding commutator DTGF because of the
appearance of zero frequency poles in the latter. This
precluded calculating the response of the system to
external fields, e.g. , the determination of dynamic
susceptibilities. '

In order to develop a fully self-consistent approxi-
mation scheme and describe the dynamic response of
the system, we consider both the commutator and an-
ticommutator DTGF managing any appearance of
zero frequency poles in the former in an appropriate
manner. ' " Unlike other DTGF studies, ours is

based on equations of motion of a set of self-adjoint
operator observables. Our use of this set and of com-
mutator DTGF provide a very useful direct connec-
tion between the approximations and their impact on
the predictions of the dynamical response following
from our treatment of the TIM system. We demon-
strate that the "symmetric" decoupling scheme of
Ramakrishnan and Tanaka is inherently restricted to
T ) T, . Then we develop an unambiguous scheme
for all T based upon the concepts of cumulant aver-
ages 12-14

In this paper we consider the TIM for all T and
S = —,. Our excitation spectrum exhibits mode

softening as T T„all S = —, identities are

preserved, and we obtain expressions for the dynami-
cal susceptibilities of interest. We also obtain an ex-
pression for the critical curve and obtain reasonable
numerical values (when compared to series results'5)
for both the Weiss critical field (the transverse-field
strength for which T, 0) and T, in the zero-
transverse-field limit. We also obtain results for the
magnetization versus transverse field in the ground
state (at zero temperature).

II. DOUBLE-TIME GREEN'S FUNCTIONS

The retarded (p =+1) or advanced (p= —I)
commutator (q= —I) or anticommutator (q=+I)
double-time Green's function (DTGF) is defined by'6 '

((A(r);B(r') ))&,"I = , i [(p+1)e(r —r')—+—(p—I)8(r' —r) ] ([A (r),8(r') ]„)
where

A (r) = e'"'Ae-™ [A,a]„=Aa+ &aA

(2.1)

(2.2)
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and 8(t) is unity for t )0 and zero for r (0. The
single angular brackets in Eq. (2.1) denote thermal
average. It follows from Eq. (2.1) that

((A (t);B(t') )) is a function of r —t' only.
The Fourier transform of ((A (t);8 )) is defined

by

((A;8)) '"',„= Che" +'&"((A (r);8))&,"&, &-0+

that a closed system of equations is obtained. Note
that the Fourier-transformed GF as defined in Eq.
(2.3) is sectionally holomorphic, the retarded (or ad-
vanced) GF being analytic in the upper (respectively,
lower) half of the complex E plane. '0'3

It has been shown' " that the commutator DTGF
cannot have a pole at E =0, i.e.,

(2.3)

and satisfies the equation of motion

E((A;8))g" = ([A,B]„)+ (([A,H];8))~"' . (2.4)

C(-) O

where

C'"' = lim E ((A;8 ) )g"'
E~O

(2.5)

(2.6)

The GF on the right-hand side of Eq. (2.4) is gen-
erally of "higher order" and must be decoupled so

and that the correlations (BA (t) ) may be calculated
from

(BA(r)) = —(1 —g)C+ + J dE(ea +rt) 'e ' ' lim (((A;8))~+;,—(( AB)) ~;,) (2.7)

Also, the response of the system to an external field
is described by the generalized susceptibility

we have

[P,H.]=0, P'=I (3.4)
XAa(E) =—lim ((A;8))E+;, (2.8)

where A and 8 are observables.
A self-consistent appoximate scheme should pro-

vide the same result for (BA (t) ) whether the ap-
proximate versions of the anticommutator DTGF
(g =+I) or the approximate version of the com-
mutator DTGF (q =—I) is used in Eq. (2.6). The
approximate commutator DTGF must satisfy the
analyticity condition (2.5). For observables A, B the
approximate DTGF is directly related to measure-
ment predictions by Eq. (2.$).

III. THE TRANSVERSE ISING MODEL (S 2 )

The TIM Hamiltonian is given by

Ha= —2Q) XS; —2Qt XSf —XJsS,'SJ',—(3.1)

where S,"', S;, and S,. are components of the spin-
2

1

operator. Most treatments set Q2=0 in Eq. (3.1)
but we choose to retain the most general form of the
TIM. Defining

PS'-P = —S'

From Eqs. (3.4) and (3.5) we then have

—PH
Tr e S'' = (PS;P)0= —(S )0=0
Ti e

(3.5)

(3.6)

H = H0 —2 Q3 x S,*. (3.7)

in the limit Q3 0. For Eq. (3.7) we have

[P,H] AO (3.8)

i.e., broken symmetry. Equation (3.1) provides a
mechanism for the presence of a phase such that

an exact result which demonstrates that a conse-
quence of the inherent symmetry of Eq. (3.1) is the
absence of a net z magnetization.

We consider the question of the stability of Eq.
(3.1) in a vanishingly small, external symmetry-
breaking z field. That is, we consider the Hamiltoni-
an

and

2n, S,"+2O,S,'-

(Q', + Q', )'f' 0.2)

(3.3)

lim (S;*)=0, T) T,
03 0

WO, T&T, ,

~here T, is a critical temperature and

(Ss) T -PHSz/T PH—(3.9)

(3.10)
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tzv(z() ((Stz. g y) )
(z()

a,t""= (Qt"S,"&,
Ktz»(z(t ([Stz gv] )

(3.11)

(3.12)

(3.1 3)

The mechanism is the final term in Eq. (3.1) by

which the interactions between the z components of
spin provide an internal z field, producing long-range
z-z correlations. Thus, the TIM itself imposes the
dominance of z -z correlations.

We define

IV. DECOUPLING SCHEMES

and

( (S*S»; Q»" ) ) ~ = zA t" " +yA 't ("' (4.1)

As expected, the GF's on the right-hand side of
Eqs. (3.18) and (3.19) are of higher order than our
basic GF's in Eq. (3.11) and must be approximately
decoupled to provide a closed, soluble set of equa-
tions to replace Eqs. (3.18)—(3.20). In the sym-
metric decoupling approximation, '"

x = (S"). y = (S'). z = (S ). g" = (Q") (3 14) ((SzSzgz))9zAzz(z()+xAzz(z() (4.2)

Here Qg is a member of our observable operator set
[St",S», Sj). As we shall see, the choice of Qt" is not

arbitrary (as it appears to be in most other Green's-
functions procedures) but is determined by the physi-
cal situation to be described.

The equation of motion of our observable basis set
are

(Ql"S*S») =za»»" +ya t

(Q/S„'S;) =zat" +xa t

(4.3)

(4 4)

In order to demonstrate the difficulties inherent in

such a decoupling, we use the q =+1 form of Eqs.
(4.1) and (4.2) and obtain the correlation approxima-
tions.

i [S,H ] = 2 Q 3S» 2Q zs—+ $ J; S~S,

i [S» H) =——2Q3S,"+2Q(s —$ I;~S*S,"

i [S,', H—) =2Qzs,"—2Q(s»

Then the equations of motion of the Green's
functions [Eq. (3.11)) are

Egxv(g Kxv(')) 2; 0 g z~(g) + 2i 0ij ij 2 ij 3 ij

+i XJ; ((S'S»;Q)")) "

(3.15)

(3.16)

(3.17)

(3.18) z(s's»& =o, z(s's, "& =o (4.7)

Since a description of the response of the system to a
vanishingly small field in the z direction (Q3 0) re-
quires determination of the GF ((A; X& Si*)&q ', we

consider the choice Qt"=St' in Eqs. (4.3) and (4.4)
and obtain (for m W i )

(SiS' S; ) = z (St'S; ) +y (Sf S„') = za»t'+ya'
t, (4.5)

(St'S'S") =z(st*s") +x(SfS') =za,t +xa@ . (4.6)

For j =m Wi Eqs. (4.5) and (4.6) yield

EA,j""=K;""—2'0 A,"" '+2 Q 3,'"~ '
ij i 3 ij ))

XJ ((S'S"'Qt"» " (3.19)

while for j =i& tn Eqs. (4.5) and (4.6) yield

(S' S;") = zx + iy (S S* )

(S.s;&= y- (S;S.&

(4.8)

(4.9)
EA~"" =Kl"" —2i Q(At" "'+2i QzAt" '( . (3.20)

Taking the thermal averages of both sides of Eqs.
(3.15)—(3.17) gives the identities

Since the correlations are real for i ~ m and for TIM
x and y do not vanish, Eqs. (4.7) —(4.9) imply there-
fore that

XJ~ (S*S;)=2Qzz —2Q3y (3.21)
(SzSz ) (Sz Sx) (Sz S») z 0 (4.10)

g J; (S~s,") =2Q(z —2Q3x

0 =202x —20~y

We also note from Eq. (3.23) that

y= 202
2ni

and we can write

x=20, r, y=2n, r,
where I" will be determined below.

(3.22)

(3.23)

(3.24)

(3.25)

Thus, a symmetric decoupling treatment of the
response of TIM to. a vanishingly small z field is in-

herently limited to the linear-response region
(T ) T, ) where z vanishes if Q3 vanishes.

We propose a decoupling scheme, based upon the
concept. of the cumulant average, which is not in-

herently limited to any temperature range. The cu-
mulant average of (S„'(t)S»(t) g/), a typical correla-

tion appearing in ((S*s»;Q/))s"', is defined by'

(S*(t)S,'(t) Qt") =z (S, (t) gt") +y (S„*(t)Q,")

+ Q"( (S' S, ) —2zy )

+ (S*(t) S»(t) QJ"), , (4.11)
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where the subscript c denotes cumulant average.
Also,

(Q,"S*(t)S,'(t)) =z (Q,"S,'(t))

+y (QJ"S'(t) )

+ Q"( (S*S~) —2zy )

+ (Q "S*(t)S,'(t)). . (4.12)

ties are not removed. These schemes are also re-
stricted to T ) T,; thus the problems of zero fre-
quency poles in the CGF did not appear. By distin-
guishing a priori between the different QJ" choices
[here requiring Eq. (4.15)l, cumulant decoupling re
moves these ambiguities

Using Eqs. (4.11)—(4.13), and (4.15), we obtain
the approximation

A decoupling is accomplished if we can assume

(S' ( t) S; ( t) Q ").= ( Q "S' ( t) S; ( t) ),=0 (4.i3)

&(s s' s )),'"' =.~,", ' »+ ~:,t"

+ [(1 + q)/E]z ( (S*S; ) —
2zy )

The question is, when is Eq. (4.13) a reasonable
approximation? As shown by Kubo, "Eq. (4.13) is
true if the set {S'(t),S; (t),Qt" } can be divided into
two or more groups which are statistically indepen-
dent of each other. We now assume the existence of
a region where

lim z AO
03 ~0 (4.i4)

This assumption (to be verified self-consistently by
demonstrating the existence of such a phase under
our approximations) is essentially an assumption that
the dominant coupling in the system is the coupling
of the z components of spin. This coupling produces
an effective internal z field which is responsible for
Eq. (4.14). If we choose

and, similarly,

((S2sx St))» =zgxf »+xg22

(4.16)

we obtain

~ et'k tj'pe(g)

J
(4.18)

A "* " = (Kkt'* " E +i L "' " E —M"' " )
~k

+ [(1+ q)/E]z ( (S*S,") —2zx)

(4.17)

Using Eqs. (4.16) and (4.17) in Eqs. (3.18) and
(3.19) and defining spatial Fourier transforms by, e.g. ,

& =S& (4.15) p, =x,y, z (4.19)

in Eq. (4.13), the set in question is IS'(t), s~(t), SJ'},
two members of which are coupled by the dominant
z-z coupling and one member [Sf(t)] of which is re-
latively independent of the others. Such a division of
{S'(t),S,"(t) QJ } is not possible for the other
choices (Qt" =St",S&). Thus, only the choice (4.15)
makes Eq. (4.13) consistent with the internal field in-
terpretation of Eq. (4.14). We thus restrict ourselves
to the choice (4.15). It is interesting to note that
question of the choice of QJ" never arises in most
decoupling approximations awhile here the choice is
crucial and determined by physical considerations. If
the remainder of our development is followed for dif-
ferent choices for QJ" (i.e., Qt" = SJ" or Sf ), different
results are obtained for the parameters of interest in
the TIM. If one attempts to use the results from
various Qt" choices simultaneously, "ambiguities" ap-
pear. Such ambiguities are a common feature of
DTGF treatments of many-body systems, " and
depending upon the choice of basis operators, can
also appear as a failure of the scheme to satisfy the
S =

2
"kinematic condition, " ((S )2) =0. Recent

decoupling schemes for the TIM "I' do not satisfy
this kinematic condition and therefore must be re-
stricted to regions where ((S )') is self-consistently
"small" ( Qt ~ and T, 0). Even in these regions,
however, ((S )z) does not vanish, and the ambigui-

where

Lk '» = (2 03 + zJ0) Kp "'

-20,(i —rJ„)K„*t»-r", &',

Lp ~ =—(203+zJO)Kk '")

+2 0, (1 —I'J„)K„"t»+ I o"t"i

L„*' " =2( 0 K " —0 K„* ~ )

Mpt"~ =201(1—I'Jk)Dk"

+(20 +zJ )rft»

Mk " =20z(1 —I Jk)Dk"

+ (2 03 + zJO) r~a "

Mk*" =(203+zJa)Dk"
—(20,r,""'+20,r "')

rj~)
" = (1+g)z@t"'N5kj)

D,'&' =2n, Sc„'"'+2n, Sc,"'&'

+(203+zJO)Kk t»

and

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)
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with

cu = (I —I'J„)(2A) + (2Q +zJ )

(2A)'=(2Q )'+(2Q )'
(4.29)

(4.30)

and we do not have to restrict ourselves to the z =0
case.

Using Eqs. (4.42) and (4.43) in Eqs. (3.22) and
(3.21) gives

and

4»'= X J; (2zg» —(S'S* ) )

=0»[(2J,-r-')z+2Q ], (4.31)

z (2 Qz —yJp) —2 Q3y =0

z(2Qt xJp) 2Q3x =0

so that

(4.45)

(4.46)

where the last equality follows for p, =x and y from
Eqs. (3.21), (3.22), and (3.25).

From Eq. (4.19) we find that the analyticity condi-
tion (2.5) requires

lim z(2Qz —yJp) =0
0 03

lim z(2Q~ —xJp) =0
03~0

(4.47)

(4.48)

lim EAk»' ' = ( I/&ok) M»*' ' = 0E~0 (4.32) and, in the phase described by Eq. (4.14) we must
have

for p =x,y, z. Using Eqs. (4.24) —(4.26) the condition
(4.32) becomes lim y =2Q2/Jp

03 ~0 (4.49)

Dk =0(-)

Now from Eqs. (3.13) and (4.19) we find

K '-' = —Iy, K~' =ix, K&& =0

and thus Eqs. (4.33) and (4.27) yield

(4.33)

(4.34)

lim x =2Qt/Jp
03~0

From Eqs. (4.45), (4.46), and (3.25) we have

I'=(2Q3+zJp) z, z %0

(4.50)

(4.51)

20&y —202& =0 (4.35)

which is identity (3.23). Our CGF's thus satisfy the
analyticity condition (2.5).

From Eqs. (4.12), (4.13), and (4.15) we obtain the
correlation approximations

(SJ*S„*S;)=z (SJ*S;)+y (SJ*S„*)+z((S*S;) —2zy)

(4.36)

(SJ'S*S,") =z (SJ'S,") +x (SJS~) +z( (S~S,") —2zx)

(4.37)

If 03 =0 and z =0, then I is not determined by Eq.
(4.51); but must instead be determined from the
solution to a transcendental equation [see Eq. (5.39)
below].

V. RESPONSE OF THE TRANSVERSE ISING
SYSTEM TO A UNIFORM z FIELD

%e now consider the basic question for TIM:
Does the system provide a nonvanishing z in the lim-
it of 03 0? First we assume a negative answer;
i.e., we consider the linear-response region where 9

Note that the rt=+1 forms of Eqs. (4.16) and (4.17)
lead by means of Eqs. (2.7) to (4.36) and (4.37).
For j =m 4i Eqs. (4.36) and (4.37) give

x =xp+ X~(2 Q3) +

y =yp+ X~, (2 Q3) + (5.1)

z ( (S' S; ) zJI ) =0—
z((S*S,") —zx) =0

(4.38)

(4.39)

z = X„(2Q3) +

The static susceptibilities are given by

while for j =i W m Eqs. (4.36) and (4.37) give, using
Eqs. (4.38) and (4.39)

y ( (S;S' ) —zz) + , i ( (S*S,") ——zx) ——0, (4.40)

x( (S S* ) —z') ——,
'

i ( (S*S; ) —zy) =0 . (4.41)

x„,= —W f '(E =0), (5.2)

where the extra zero subscript indicates that all ther-
mal averages are calculated for 03 =0 which means,
from Eq. (3.6), that zp=0.

For finite k, E, and Q3 we have from Eq. (4.19)

Then Eqs. (4.38)—(4.41) have the solutions

a; = (S*S,") =zx(1 —8„;)+ —iy8„;1

a; = (S*S; ) = zy ( I —8;)—
z

ix 8;

(4.42)

(4.43)

&k '= (E —ppk) '[iyE+(—2Q3+zJp)x]

3k* =(E —~k) '[ixE —(2Q3+zJp)y]
gzz( —) (E2 2) —t[(2A)21 ]

(5.3)

(5.4)

(5.5)

a; = (S*S,') =z (1 —8;) +
4 8; (4.44) In the k =0, Q3=0, zp=0 limit we find from Eq. (5.2)
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that

x = x„=0, x„=I',(1 —I,J,) ', (5.6)

where we used

(5.7)

From Eq. (5.6) we thus have that the series (5.1)
diverge; i.e., C"'~+i = lim EA "' + = cu M"' +

E 0
(5.11)

correlations are not available since we do not know
the exact GF's. %e now make the additional self-
consistent approximation of obtaining these correla-
tions from our approximate GF's.

To evaluate the ak"'correlations from the Ak"'

GF's, we need the values of the limiting functions
C~i(+)

lim z ~0
03~0

(5.8)
We have from Eqs. (4.23)—(4.25)

(5.9) + (2n, +zJ, ) r,"'+& (5.12)

for then X ~ and the expansion in powers of 03
does not converge for any 03. Thus, Eq. (5.9) de-

fines a critical temperature T, and since then o)k p 0
at k =0, it predicts a softening of the collective mode
at T,. The k =0 mode corresponds to the lowest en-

ergy (in-phase) motion of the protons. 2«For k AO
the motions are out of phase. Moreover, mode
softening corresponds to large displacements so that
xo approaches 20t/J«and y«approaches 20'/J« from
below (becoming larger) as T T,. Then, since
J, ( Jp, a „p——0 has no solution except for k =0 and
T= Tc.

Below T, Eq. (4.14) holds, and from Eq. (4.51)

(5.10)

In order to proceed we need the correlations x, y, and
z in the 03 0 limit. The exact values of these

+ (2 03+zJp) r«0'ro +

C"+ =(20 +zJ )cu D +

— -'(2n, r", '+'+ 2n, r,"") .

Therefore, since

Z ""=X' '+2k -k Qk

(5.13)

(5.14)

(5.15)

and Kq"* is given in Eq. (4.34), we find using Eq.
(3.25)

D„+' = (20, )2ap+ (202)2ap + (2 03 +zJ«)2ak*

(5.16)

For rt = —1 we see from Eqs. (5.3)—(5.5), and (2.7)
that we must evaluate integrals of the form ".

~ f+eo

lim ' dE(es —1) 'e ' '(Gzi;, —Gz; ~) = ——a|+—&0~k coth pk-
~e-0 2m ~- It —It 2

(5.17)

where

AiE + alp
E 2 2E —o)k

(5.18)

Then we find from Eqs. (4.19) and (2.7), using Eq. (3.25)

ak = TiC t+t+i 021' —0t(203+zJ«)r«k'I'coth
2

pr«

ak =
z

C~ + —i 0 tr —Qz(203+ zJO) r«k
' I'coth

z pr«k

ak =
q

C t+~+
z (2A) «)k 'I'coth

2 pr«k

(5.19)

(5.20)

(5.21)

Utilizing Eqs. (5.12)—(5.14), and (5.16), (202) times Eq. (5.19) minus (20') times Eq. (5.20) yields the re-
lation

202ak —20|ak —
z

iI'(2A) =
z (203+zJ«)coo (20zr« + —20|r«) =0 (5.22)

where the last equality follows from Eqs. (4.26), (4.28), and (3.21)—(3.23). Also we find that (20t) times Eq.
(5.19) plus (20z) times Eq. (5.20) yields (203+zJO) times the identity following from Eq. (5.21), viz. ,

0= (203+zJp)a)k (20tak +20zak ) —[I —(203+zJp) a)k jak

+ —(2A)Zrr«„'COth —pcs„——a) (20,ro't+ +20 I' + ) (5.23)
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Alternatively for vi=+1 we see from Eqs. (4.19) and (2.7) that we must evaluate integrals of the formz':

lim dl(e +1) 'e ' '(Gyp;, —GE;,) = —az — n—teak' tanh-peak
at 0 2~ IC —I4

where

028'+ ~]E+n0
E E(E talk)

Then we find from Eqs. (4.19) and (2.7)

ai,"'= ,
' &k"'—+'—(iLk"' /2eok) tanh —,pa)k, p, =x y, z

(5.24)

(5.25)

(5.26)

i.e.,

ak = 2iy+—ak —i~k'[(203+zJp)( , ix+—a )k—20z(I —I Jk)ak* zI—'p + ]tanh pcs—k

ak*= zix+aI, *
Ictlk [(203+zJp)(

2
iy ak ) +20'(I rJ„—)ak +

2
rp'+ ] tanh

z p~k

ak ——ak' —is)k '[20z(
2 iy—+ ak ) —20t( 2ix+ak ) ] tanh

2 Peek

(5.27)

(5.2g)

(5.29)

Now (20z) times Eq. (5.29) minus (20~) times Eq. (S.30) yields (lQlk) times Eq. (5.23); also (20~) times Eq.
(5.29) plus (20z) times Eq. (S.30) yields (203+zJp) times Eq. (5.22); finally Eq. (5.31) yields Eq. (5.22) direct-
ly. Thus, when properly treated, both CGF and AGF yield the same result. Bloomfield and Nafari' showed that
CGF and AGF lead to the same correlation identities only if the correct Fourier inversion formula (2.7) is used
and if Eq. (2.5) is imposed as a condition on the CGF's.

Summing Eq. (5.23) over k we find [summing Eq. (5.22) yields an identity]:
1

20& ak 2 Q2 ak gZZ

(20 +zJ )
'

X ", + ' $ ', +(20, +zJo) —$
k ~k & k ~k k k

(20t4 +202@~)—z, +r(2A)z X coth —,p „——=0 . (5.30)
OJ0 2Nk~k

This equation relates z, A, 03, and p to each other and is valid for finite z and 03 both above, below, and on the
critical curve. This contrasts with the symmetric decoupling approximation which is valid only for T ) T„
03 z =0. For the region T & T, we set z and 03 to zero and obtain from Eq. (5.30)

—=rp(2A) N ' g kp coth —P kp, (5.31)

where

kp
= ( 1 I"

pJk ) (2 A ) (5.32)

One can determine I'p from Eq. (5.31) and then from Eq. (5.6) the static susceptibility for T & T, The critical.
curve is defined by Eq. (5.9) and is determined by inserting Eq. (5.9) into Eqs. (5.31) and (5.32)

= 2A( JpN) X (1 —Jk/Jp) coth[P~A(1 —Jk/Jp) ] (5.33)

where p, =(kT, ) '. The gneiss condirionz2 is obtained by solving Eq. (5.33) for that value of 2A/Jp for which

T, =0. This gives

2A
J0

= 2N ' x(1 —Jk/Jp) 'i'
k

(S.34)

Values of the sum in Eq. (5.34) are available for simple cubic (sc), bcc, and fcc lattices. 7'p Thus, Eq. (5.34)
gives, for sc, bcc, and fcc, respectively,

t

=0.449, 0.460, 0.466
Jo

The series results's are 0.423 (sc), 0.435 (bcc), and 0.444 (fcc).

(5.35)
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TABLE I. Ground-state magnetization vs transverse field for bcc lattice [from Eq. (5.38) at
r =0].

2A/Jp 2A/Jp 2A/Jp

0
0.1036
0.1470
0.1805
0.2090
0.2343
0.2574

0.461
0.450
0.441
0.430
0.418
0.406
0.393

0.)789
0.2992
0.3182
0.3368
0.3546
0.3716
0.3888

0.380
0.366
0.352
0.337
0.321
0.303
0.285

0.4049
0.4214
0.4374
0.4527
0.4686
0.4845
0.5

0.265
0.243
0.219
0.190
0.156
0.111
0

If we let A 0 in Eq. (5.33), the pure Ising limit
(the "other end" of the critical curve) is obtained. In
this limit Eq. (5.33) gives

Eq. (5.10)

-„-~') '+ ~') '[I —(-,' —~') ')) -'j—g v,
-'

k

kTc

Jo
, (

N ' X(1—JI,/Jp)
k

(5.36) X vk 'cothphvk, (5.38)
k

The Watson sums in Eq. (5.36) being readily avail-

able, ' we obtain for sc, bcc, and fcc

=0.1649, 0.179, 0.1859
Jp (

(5.37)

The series results" are 0.188 (sc), 0.200 (bcc), and
0.205 (fcc).

For T ( T, and Q3 =0 Eq. (5.30) becomes, using

where

) =2A/Jo, g=z/Z

vk = ~k/(2A) =1 —Jk/Jo+ l

(5.39)

(5.40)

xzak*=
&

iy + zx ( N 8kp —I ) (5.41)

and where we have used, from Eqs. (4.42) —(4.44),
and (4.28), and (5.10)

ak = ix +z
—

(y
—Ngk—o 1)yz 1 (5.42)

0.5

zz
af,*=

4 +z2(NSkp —I)

4&"'= zJpg"

(5.43)

(5.44)

g 0.4
0

N

4J
pt
4 0.3

I

at

ps

N
0.2

04
C9

0.1—

0 I a l 1 l I I I I g i I l i I

0. 1 0.2 0.3 0.4 0.461 0.5

Transverse Field, 2h/J~

FIG. 1. Magnetization z vs transverse field 2A/Jo at T =0
for. bcc lattice from Eq. (5.38) and Table I. Note z =0 cor-
responds to the Weiss field of Eq. (5,35) where T, = T =0,
while A-0 corresponds to the Ising limit where (kT, /Jp) is

given in Eq. (5.37). The curve meets the two axes perpen-
dicularly.

We can readily solve Eq. (5.38) by iteration for the
ground-state ( T =0) value of z using series expan-
sion. The result for the bcc lattice is presented in
Table I and Fig. 1.

VI. SUMMARY AND CONCLUSIONS

The transverse Ising model (Ising model with addi-
tional internal fields, O~ coupled to S"and Q2 cou-
pled to S~) is studied in the presence of a finite exter-
nal field 03 coupled to S'. An exact identity shows
that (S") or (S ) is directly proportional to Q~ or
02, respectively, both above and below the critical
temperature T,. On the other hand above T, (S*) is
directly proportional to 03', while below T, z &0
even when Q3 0.

The response of a system to an external field is
given by the generalized dynamical susceptibility. To
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calculate the generalized susceptibility the commuta-
tor Green's functions are needed. Then account
must be taken of the fact that a CGF cannot have a

pole at E =0. Our treatment fits the zero frequency
condition and utilizes the proper inversion formula
for calculating the correlations from the CGF's. The
CGF's and AGF's, calculated in the complex energy
plane, should lead to the same temporal or static
correlation functions. This will be the case only if:
(1) the correct Fourier inversion formula is used to
calculate the correlation functions and (2) the analyti-

city condition at E =0 is imposed on the CGF's. In
fact the CGF analyticity condition may lead to corre-
lation function identities. If this is the case, these
same identities wi11 express themselves as self-
consistency conditions among the correlation func-
tions calculated from the AGF's. An example of this
relationship is seen in the calculation herein of the
zero frequency Mk""' =0 equations [see Eq. (4.32)].
Identity (3.23) automatically satisfies the zero fre-
quency condition for v =z [see Eqs. (4.33) and
(4.35)]. For v =x (4.45) and for v =y (4.46) satisfies
the respective zero frequency condition. Also as not-
ed after Eq. (4.37) these relationships follow from
the AGF inversion formula.

The symmetric decoupling approximation is sho~n
to be valid only for T ) T, and for 03=z =0. We
have developed an unambiguous scheme for all T
utilizing the concept of cumulant averages. Our cu-
mulant decoupling approximation, based upon the
statistical independence of different groups of opera-

tors, is determined by the fact that the dominant cou-
pling in the system is between z components of
spin. In particular this leads us to select S'as the
trailing operator in our double time Green's-function
formalism.

In common with the current decoupling schemes,
ours produces GF's with poles on the real axis; i.e.,
undamped excitations. An improved version of cu-
mulant decoupling would recognize that the approxi-
mation (4.13) with Eq. (4.15) is weakest when j=i
because Sf(t) and S,' would be correlated by virtue of
their being on a common site while S'(t) would still
be correlated to S; through the internal field. An im-
proved treatment would have formal properties in
common with single-site-impurity problems ~here
GF techniques have lead to damped excitations. "

We have examined the equations of motion of the
set of operators which are directly coupled to the
internal and external fields for both the disordered
(T ) T, ) and ordered (T ( T, ) regions. All S =

2
operator identities are satisfied. Collective-mode
softening is found as T T, . Expressions for the
dynamical susceptibility have been found; the critical
curve formula was obtained and numerical values for
the Weiss critical field and T, in the Ising limit have
been calculated. Furthermore we have derived ex-
pressions relating the magnetization and finite inter-
nal and external fields for all temperatures. Thus for
the first time there has been carried out a self-
consistent determination of the dynamical solution of
a DTGF theory of the TIM.
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