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1

The one-dimensional quantum spin-
&

Heisenberg antiferromagnetic model with randomly

distributed interaction strengths is solved approximately for several different distributions.
Ground-state energy and low-temperature properties are evaluated. Universal qualitative

features are found in the specific heat and the magnetic susceptibility, which display a power-law

dependence on temperature. Such features hold for nonsingular distributions as well as for dis-

tributions with power-law divergence at the origin. The approximate method of solution is

based on successive eliminations of spins coupled by the maximum coupling constant.

I. INTRODUCTION

In this paper we study some one-dimensional,
quantum-mechanical Heisenberg antiferromagnetic
systems with randomly distributed coupling constants.
These systems are defined by the following Hamil-
tonian for a chain of L spins:

L-1
H= $ K, S, S,+t

1
where S, are spin- —, operators. The nearest-neighbor

coupling constants K, are fixed in time and distribut-
ed randomly in space. The values of K, follow a dis-
tribution function P(K), 0 & K & J. The "cutoff" J
of the distribution P(K) is taken to be equal to l.
The main results of this paper have been briefly re-

ported earlier. '

There are several quasi-one-dimensional systems
which provide experimentally accessible realizations
of the model Hamiltonian defined in Eq. (1.1). The
best known of these systems are the organic charge-
transfer compounds A'-methyl-phenazinium tetra-
cyanoquinodimethanide (NMP-TCNQ), quinolin-
ium-(TCNQ)2, acridinium-(TCNQ)2, and phenazine-
TCNQ. Recent experimental and theoretical "
investigations of the low-temperature magnetic prop-
erties of these compounds strongly indicate that their
magnetic behavior is that of a random-exchange
Heisenberg antiferromagnetic chain. Other experi-
mental systems which have been modeled by the ran-
dom one-dimensional Heisenberg antiferromagnet in-

clude poly-(metal phosphinates)' and
(CD3)4NMn„Cut „C13(TMMC:Cu).' Several approx-
imate calculations of the thermodynamic and magnet-
ic properties of this model have recently been made.
These studies were partly motivated by experimental
interest. Bulaevskii et al, ' used a canonical transfor-
mation to map this model to one of interacting spin-
less fermions. Then they assumed that the excitation

spectrum of the fermion system has a Landau
Fermi-liquid character and that the density of states
has a power-law singularity of the form p(E) —~E~ ~

even if the distribution P(K) is nonsingular at K =0.
With these assumptions, they were able to explain
the low-temperature thermodynamic and magnetic
properties of the TCNQ compounds, including the
experimentally observed power-law divergence of the
paramagnetic susceptibility as T 0. However, they
were not able to give adequate theoretical justification
for their assumptions. Their conclusions were criti-
cized by Theodorou and Cohen' who argued that a
power-law divergence of the susceptibility can only
result from a distribution P(K) which is singular at
K =0. Theodorou and Cohen studied the special
case of a power-law distribution

P(K) —Kc '

0 ( c & 1, by using a cluster approximation' and
found that both the paramagnetic susceptibility X and
the specific heat C at low temperatures exhibit
power-law dependence on the temperature:

C —T',
Tc-1

This behavior is in agreement with the experimental
results on the TCNQ compounds. However, some
recent calculations by Alexander and Bernasconi on
the thermodynamics of a disordered Heisenberg fer-
romagnetic chain have cast doubts on the validity of
the cluster approximation used by Theodorou and
Cohen. Recently, Clark and Tippie' have studied a

model called the exchange —coupled-pair model,
which is equivalent to a disordered Heisenberg anti-
ferromagnetic chain with every other coupling re-
moved, This model can be solved exactly. For a
power-law distribution of the exchange constants,
their results are in agreement with those of Theo-
dorou and Cohen. However, the connection of this
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model with the random exchange Heisenberg antifer-
romagnet is not clear. Classical models with fixed-
length vectors replacing the spin operators in Eq.
(1.1) were also studied previously. 5 Exact results
were obtained for arbitrary P(K)

Our interest here is to find out how the low-

temperature properties of the quantum-mechanical
system depend on the form of P(K), in particular, to
what extent a power-law singularity in P(K) plays a
role. We find that, for a general class of P(K), in-
cluding both singular and nonsingular cases, there are
qualitatively universal properties. For small T, the
specific heat C and the susceptibility X behave ap-
proximately like

y -1
ycxP'

(1.4)

where the exponents y, and y, are not quite constant
but are slowly varying functions of T (in fact, slowly
decreasing functions of lnl/T). The exponents
depend on P(K), but not strongly. Also the magnet-
ization M in a uniform external magnetic field h

(T (( h «1) exhibits an approximate power-law
dependence on h:

(1.5)

The exponent y~ depends weakly on P(K).
There are two important features of our results.

First, the singular forms Eqs. (1.4) and (1.5) hold
even when P(K) is not singular. This is contrary to
the view of some previous workers that singular T
dependence could not come from a nonsingular
P(K). Second, for a power-law distribution given by
Eq. (1.2), the results (1.4) and (1.5) also hold and
the exponents y, and y, are not constant as predicted
by Eqs. (1.3).

The approach used here is based on successive
elimination transformations, each of which eliminates
a pair of neighboring spins with the maximum cou-
pling constant. This elimination process lowers the
cutoff J for the distribution P(K); Of crucial impor-
tance is the fact that an elimination transformation
also generates a new effective interaction between the
two spins neighboring the eliminated pair. Thus the
form of the distribution is modified as well, and one
has a modified distribution P(K,J) as a function of J.
The elimination transformation is in the spirit of the
Born-Oppenheimer approximation in molecular phy-
sics, where the electronic variables are eliminated to
obtain effecitve interactions among the nuclear coor-
dinates. " It is also similar to the renormalization-
group transformation in studying scale invariance ex-
cept that no cell-spin or scale-transformation concept
is involved here. '

Upon carrying out the elimination transformations
approximately, we find that, as J is lowered, P(K,J)

quickly approaches a power-law form

P(K,J) —K.-', (1.6)

where the exponent a = a(lnl/J) varies slowly with
lnl/J. This approach to a power law is qualitatively
universal, i.e., independent of the form of the initial
distribution P(K), and it accounts for the universal
singular forms of Eqs. (1.4) and (1.5).

The outline of this paper is as follows. Section Ii is
devoted to the derivation of the elimination transfor-
mation and the equation governing the change of
P(K,J) as a function of J. This is done in order to
illuminate the basic ideas. In Sec. III we show how
P(K,J) approaches an approximate power-law form
and how the exponent a varies with J. Generaliza-
tion to nonzero temperatures is carried out in Sec.
IV, where the free energy, the specific heat, and the
zero-field susceptibility are obtained. We were not
able to obtain an exact analytic solution of the equa-
tion for P(K,J). Numerical solutions are presented
to give quantitative support for the qualitative anal-
yses. The presence of an external magnetic field
causes many complications which are studied in Sec.
V. The elimination transformations can also be car-
ried out directly, one by one, for a computer-
generated model with a prescribed P(K) This nu-.
merical procedure bypasses the study of P(K,J) and
directly gets to the results; this is presented in Sec.
VI. In Sec. VII, we compare our results to those pre-
viously obtained from the classical model and from
other approximations. We conclude with a discussion
of the accuracy of the approximate solution presented
in this paper.

II. SUCCESSIVE ELIMINATION OF
SPIN VARIABLES

Consider the Hamiltonian H defined by Eq. (1.1)
with the distribution of coupling constant P(K),
K ~ J. The basic ingredient for our approximate
analysis is to eliminate spin variables successively and
thereby transform P(K) into different distributions
with lower values of J. The elimination procedure
goes as follows.

Pick the pair of spins, SI and S2, with the max-
imum coupling, i.e., K =J. If we ignore the influ-
ence of their neighbors Si and Sq [see Fig. 1(a)],
then the Hamiltonian for S~, S2 would be

Hp= JS) - S2 (2.1)

(2.2)

The ground state ~s) for H0 is a singlet, and there
are three excited states ~t) forming a triplet. The en-
ergies are
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SI

Kl

SI S2

K2

l
S2

(a)

F. '= ——J — (Ki2 +K2 )4 16J

K1K2K'=
2J

(2.5)

where we have dropped O(X3) terms. A little alge-
bra gives

FIG. 1. Spins and coupling constants involved in the
elimination transformation, which transforms (a) to (b).

respectively. S1, S2 are coupled to neighbors S1 and

S2 via
~1 ~/X= K1S1 S1+K2S2 ~ S2 (2.3)

Since J is the maximum value of the coupling con-
stant, let us take into account the effect of 3C by per-
turbation expansion. Regarding S1 and S2 as fixed
vectors, the ground-state energy E, is modified to

&. + &sl3'-ls) + gl &sl3'lr &I' =-&'+K'SI S2,
s t

(2.4)

Now we remove the spins S1, S2 from the original
Hamiltonian and add the effective coupling K'S1 S2
and the constant F. '. The new Hamiltonian should
predict approximately the same ground-state proper-
ties as the original Hamiltonian. The spirit is the
same as that of the Born-Oppenheimer approximation
in molecular physics, where the electronic variables
are eliminated to provide an effective coupling of nu-
clear coordinates

One can apply the procedure again, to eliminate the
spins with the next strongest coupling. On applying
the procedure many times, one alters the distribution
P(K): the cutoff value of J is lowered. The change
of P when J is lowered to J —dJ is obtained through

P(K,J —dj) = ' P(K,J) +dJ P(J,J) J dKi dKp P(Ki,J)P(K2,J)

K1K2x 5 K-
2J

x=—K/J, 0~x ~1 (2.7)

Note that 21J P(J,J) is the fraction of spins eliminat-

ed. It is convenient to introduce the variable

I

merical solution is straightforward. However, a great
deal of qualitative and semiquantitative information
can be obtained without numerical calculations. We
shall present the numerical results at the end of the
section.

and regard P as a function of x and J. Then Eq. (2.6)
becomes

x —J = P(1,J)J Jl dxt dx2 P(x(,J) P(x2,J)9P 9P
QJ 0

X 5(X ——,X]X2)
1 (2.8)

By solving this equation with a given initial distribu-
tion P(x, 1), one obtains the transformed distribu-
tion P(x,J) for J (1. We proceed to obtain the
solution approximately and discuss the implications in

the following section.

A. Approximately universal power-law

form and variations of exponents

lt is clear from Eqs. (2.5) and (2.8) that the new

coupling added is less than half of the ones eliminat-
ed, i.e.,

1 1
X ( 2X1, 2

(3.1)

in Eq. (2.8). Thus, P(x,J) will grow fast for small x
as J is lowered. One would expect P(x,J) to become
singular at x =0, even if one starts with a nonsingu-
lar initial distribution P(x, 1). Such a singularity is
most likely a power law of the form

III. POWER-LA W SOLUTIONS AND THE
GROUND-STATE ENERGY P(x,J) = —x-'+, ~&O,J (3.2)

An exact analytic solution to the transformation
equation (2.8) would be very difficult, although nu-

where the prefactor, o./J, comes from the normaliza-
tion requirement. One can see this by substituting
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n+ — = —2 a ln2
1 dn
o. dq

=2 0!
de
dn

g —= —lnJ

(3.3a)

(3.3b)

(3.3c)

Clearly, 0, is overdetermined, indicating that the
power-law form cannot be an exact solution even if n
is allowed to vary with J. However, for small o., Eq.
(3.3a) becomes

= —u2(1+2 uln2)
dn

= -u'2. [1+—'u'(ln2)'+ ]2

= — '2 [I+O( ')1, (3.4)

which is approximately the same as Eq. (3.3b). The
difference is about 10% for e —

2
and 1% if 0. —4.

Thus, we expect that a power law with 0. determined
by Eqs. (3.3) is approximately correct for small u.
Integrating Eqs. (3.3), we obtain

dA
, 2 (3.5)

where ut is the value of u at rt = rtt —= Inl/Jt. Ex-
panding 2 and integrating, we obtain

lnJ&lJ = ——— +ln2 ln
1 1 A

A A1 0!1

P =1 in the integrand of Eq. (2.8). The integral then
gives ln(2/x), which indicates an increment of the
exponent of a power of x,

One naturally asks the following questions: For J
substantially less than I, would P(x,J) approach a

universal form independent of P(x, I)? Is it a power
law Eq. (3.2) with a universal exponent u, and how

small does J have to be? It turns out that the only
universal power law with a universal exponent is

given by o, =0. The universal form can be ap-
proached only for unreasonably small J [i.e., for
ln(1/J) ~] and is not useful for our purposes. For-
tunately, the power law is approximately correct if we

take into account a variation of n as a function of J,
provided that 0, is small. The details are as follows.

Let us substitute the power-law form (3.2) in the

Eq. (2.8). The integral is trivial. Equating the coeffi-
cients of x ' and x ' lnx on both sides of the equa-
tion, one obtains,

0.4

0,3

0.2

0, 07 I I-

2

lr(J )

FIG. 2. a as a function of ln(J ') as given by Eqs. (3,5).
Other solutions are obtained by shifting the curve horizon-
tally.

So far we have shown how the exponent o, varies
as Jis lowered given a power-law form at J = J1.
What happens if P(x, J~) does not have a power-law
form to start with? A study of Eq. (2.8) linearized
around a given power law reveals that a perturbation
which is less singular than this power-law form will

decay as J decreases. However, if the perturbation is
more singular, it will increase. This indicates qualita-
tively that the most singular part of P(x,J) would

grow at the fastest rate as J is lowered. The quantita-
tive answer requires the full solution of the nonlinear
equation. A numerical solution, to be presented in
Sec. III C of this paper, shows that a power-law form
quickly emerges as J is lowered even if P(x, 1) is
nonsingular. The variation of u follows Eqs. (3.3).

B. Ground-state energy

The ground-state energy can be evaluated in our
approximation a's follows. Let N(J) be the fraction
of spins which remain after lowering the cutoff from
1 to J. Then

=2P(I,J)dj
N(J)

(3.7)
1

N(J) =exp —2
&

dJP(I, J)

since 2P(I, J)dJ is the fraction of spins eliminated
when changing Jto J —dJ. Let LE(J) be the con-
stant term in the effective Hamiltonian, i.e., the ac-
cumulation of E' [see Eqs. (2.5)]. We then have

E(J—dJ) =E(J) +dJ N(J)P(I, J)

x [—4 J—
&&

J(2x2)]3 3

——,(u —ut)(ln2)'+O(u', u2t) . (3.6) t1
x~ —=J Jl dx P (x,J)x2

(3.8)

The limit lnl/J ~ and a 0 is of little interest
since even for I/J —104, Inl/J is still not large. Fig-
ure 2 shows a as a function of Inl/J as given by Eq.
(3.5). (3.9)

The total ground-state energy per spin is obtained
when all spins are eliminated; i.e.,

1

E = ——
~

dJ N(J)P(I, J)(l + —x2)J
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I
K

-II2
2

TABLE I. Ground-state energies per spin (E) for assort-
ed distributions P (K), 0 ( K & 1.

P(K, J) P(K)

E, calculated from
N umerical solutions Direct elimination

of (2.8) procedure

0.3 I

I/2
I

I/8

K/J

I I

I/2 I/O I/8

1
FIG. 3. Emergence of a power law P(K,J) for J =

2
and

4, (a): P(K, 1) = 1, (b): P (K, 1) = —K obtained by
1 1

the numerical solution of Eq. (2.8).

2e(K ——)
1

2

1

1.58e ~

134
—K
3

2
1 K-2/3
3
1 K-4/5
5

—0.344

-0.248
-0.212

-0.213
-0.208

-0.180

-0.144

-0.104

-0.341
—0.246
—0.210

-0.178

-0.142

-0.103

lao

If P(x, 1) has power law form with u = ut, then F. is

easily evaluated using Eq. (3.6). One obtains

E=——u + —u +(—+ —ln2 ——)u +0(u)3 33 2 3 3 33 3 4
4 1 16 1 32 4 4 1 1

(3.10)

If P(x, I) is not of a power-law form, a numerical
solution is needed.

C. Numerical solution

P(x, J)

The numerical solution of Eq. (2.8) is straightfor-
ward. We have obtained P(x,J) starting from a

variety of initial distributions, Figures 3 and 4 give
the results. Table I gives the values for the ground-
state energy per spin.

Since P(x, j) is singular at x =0, our numerical
solutions to Eq. (2.8) were not very accurate: the er-
ror is about 5%. A more sophisticated numerical pro-

gram would improve the accuracy without difficulty.
However, since great accuracy is of no interest at this

moment, it was not attempted.

IV. THERMODYNAMIC PROPERTIES

A. Generalization of the elimination
transformation

In(x )/ In 2

FIG. 4. Emergence of a power law P(x,J) for P(x, 1)
1=2e(x ——).
2

To study thermodynamic properties, we need to
generalize our approximation to include the effects of
a nonzero temperature T = I/P. Let us go back to
Sec. II and consider the spins shown in Fig. 1(a).~i
Again regard S1 and S2 as fixed vectors. Instead of
calculating the ground-state energy of S1 and S2 as in

Eq. (2.4), we now calculate the free energy to second
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order in X [see Eq. (2.3)] so obtaining

1 —p(HO+3')——ln Tr, , e
p 1' 2' 1' 2

= Fp ——ln Tr, , e '""+O(X3)
p S(, S2

tion P(x,J). Equation (2.8) becomes

x —J =P(1,J)I J~~ dxt dx2P(xt, J)P(x2,J)BP BP

x 8[x —
2 x, x~ W(pJ) )

(4.6)
HO

FO= ——lnTrs s e 0
1' 2

= ——J ——ln(1+3e a )
1 —J

[p
(X)p ——

l dr 'i dr ( X( r) X(T ) )p

+ —,
'
P( (X)p)',

—pHO
where ( ) p means averaging over e P and

(4.1) This completes our generalization of the theory of
Sec. II to include finite-temperature effects.

For low temperatures, i.e., T « 1, we expect the
factor W(pJ) in Eq. (4.6) to have no qualitative ef-
fect on the solutions obtained in Sec. III. When J is
lowered we again expect a power-law form of
P(x,J) ~ x '+ to emerge with u satisfying an equa-
tion similar to Eqs. (3.3). Indeed, by a similar calcu-
lation one obtains

X(r)=e' 'X—e
' ' (4.2)

= n (2/ W') (I + 0 [ u~(ln W) 2] }
de

(4.7)

For the Hp and X defined in Eqs. (2.1) and (2.3),
respectively, (X)p is zero. The second term in the
expression for 3C,f~ can be written in terms of the ma-
trix elements of X and the energies of the singlet and
the triplet states [see Eqs. (2.2.)]:

pp pT

dr d r( X(r) X(r') )p~0 ~0 —= 8 T2/J21

W
(4.8)

according to Eqs. (4.5). However, for nln(l/ W) to
become large, one needs

q =——lnJ

The power law holds if we drop the O[n'(ln W)']
term in Eqs. (4.7). Since W(pI) & I, the exponent
o. would decrease faster than it does in the T =0
case. The quantity 1/Wdoes become much larger
than 1 for J « T:

J&Te '' (4.9)

F'=Fp (Kt +K2 ) V(pJ)16J
(4.4)

K'= W( J)

where the functions V and Ware defined by

1 —e '(1 —y)
V(y) =

1+3e ~

Substituting Eq. (2.3) for X in Eq. (4.3) and working
out the algebra, one obtains

1 -p(HO+30 r~t ~l——lnTre p = F' ——ln Tr, , exp( —pK'St S2)
p

which is a severe condition for small 0,. Note that
a ln(1/ W) cannot be much larger than unity since n
decreases as J is lowered and n & (lnl/J) ' always.
Thus, we expect only slight modification of the
results obtained in Sec. II for P(x,J), as long as
J ) Te '~ . Numerical calculations have verified this
expectation.

B. Free energy and the specific heat

The quantity F' in Eqs. (4.4) gives the free energy
of the eliminated pair of spins. Following the same
argument for calculating the ground-state energy in
Sec. III, we obtain the free energy per spin as

f1
F = Ji dJN(J)P(1, J) {—Tln(1+3e )

1 —e «(I +y)
1+3e '

(4.5) —
—,I[1+ 'x'V(I/T) ]]—

(4.10)

Equation (4.4) is the finite-temperature generaliza-
tion of Eqs. (2.5). In the limit T 0 (i.e., p ~),
Eqs. (4.4) and (2.5) agree. The factor W for K'
modifies the transformation equation for the distribu-

where N(J) and x2 are defined by Eqs. (3.7) and
(3.8), respectively. Equation (4.10) reduces to the
ground-state energy Eq. (3.9) for T 0 [ V(oo) =1,
see Eqs. (4.5)].
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ra Jl
N(J) =N(J, )e p —2~ dJ /J (4.1 1)

We are interested in the T dependence of the
specific heat C for T (& 1. In particular, we want to
find out to what extent C follows a nonintegral power
law in T. The power-law variation in T is expected in
view of the power-law form of P(x,J) Th.e reason-
ing goes as follows. For J below some value Jl,
P(x.J) = (a/J)x '. Therefore, by Eqs. (3.7)

dlnF '
1+y-= =1+2u(lnl/T)

d lnT
(4.20)

gives the slope of F~" vs T on a log-log plot. Since
a(g) is a slowly varying function of qwe, conclude
that

The derivative of lnN( T) with respect to ln T is just
2a [see Eqs. (4.16)]. Thus

for J (Jl. If a is approximately constant, then

N(J) ~ J (4.12)

F ' =const x T'+~ (4.21)

which would then produce a term proportional to
T'+~ in Eq. (4.10) for the free energy and T2 for C.
Since n does vary with J, the T dependence cannot
be strictly a simple power law. Let us study Eq.
(4.10) more closely.

Using the fact that
C = Td F/dT— (4.22)

with y =2a approximately remaining constant over a
range of T. The other terms F and F ' in Eqs.
(4.14) and (4.15) do not have a rapid T variation.

One might expect that the specific heat

N(J)P(1,J) =—1 dN(J)
2 dJ

[see Eq. (3.9}],we rewrite Eq. (4.10) as

(4.13)

(4.14)

would behave like T in view of Eqs. (4.20) and
(4.21). However, the T dependence of n(lnl/T),
even though slight, modifies this conclusion consid-
erably. Differentiating T'+2 t~ice and taking into ac-

i
1 T

F =——T ln(l +3e ' ) ——1 —
I dJ N(J)

2 8, go
ril

F&"= —,
' dJ N(J)f(J/T), (4.15)

f(J/T) =—(1+—,e"")-',
rl

F 2 = —— dJ N(J)P(1,J)x JV(J/T)
8

Let us concentrate on F~" first. Because of the fac-
tor f (J/T), the integral is effectively cut off near
J —T. For small T, let us assume that P(x.J) has al-

ready approached a power-law form (a/J)x ' so that

dN(J)/dJ =2aN(J)/J
(4.16}

N(J) =N(T) exp —2 ' drt' (g')
~ ]n(l/T)

where q —=—ln J. Therefore we obtain

Ft ' i = —TN ( T)
2

0.3

O. l

0.05

0.

x dgg(() exp —2
' dg'a((' l +l/nT)

+O(e "'), (4.17) 0.02

where we have written J = e ~~+'"'/" and

g(g) =e&f(e &)— (4.18)

lnF ' =lnT+lnN(T) +const (4.19)

The ( integral of Eq. (4.17) turns out to be approxi-
mately a constant. Thus the temperature variation of
Ft'i comes essentially from TN( T):

FIG. 5. Evaluation of F~ /T, N, and the specific heat C,
assuming do. /dq= —o. 2~ and P(x,J) =ax '/J for J ( Jl

1 1
for a=

3 and
5

at J =Jl.
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0.5— 0.5

O. I

0.03

I I

2 3

In{J }/in 2

0.05

FIG. 6. Behavior of N(J) via the numerical solution of
Eqs. (4.6).

count the fact that da/d7i = nt, we obtain—

C~T'

c 3 o.'
(4.23)

C. Magnetic susceptibility

The presence of a magnetic field h makes the
problem much more complicated. The elimination
transformation studied above would generate ran-
domly distributed magnetic fields and other types of
interactions. We shall consider these complications
in Sec. V. Here we shall study only the susceptibility

This estimate of y, is very crude. One can do a
better calculation, without solving Eq. (4.6), by
evaluating Eq. (4.17). This means assuming a
power-law solution but doing the algebra more accu-
rately. This can be done easily on a desk calculator.
Figure 5 shows the results. While ln(F"'/T) and
in%( T) are nearly parallel, the specific-heat curve is
steeper. The relationships y = 2n and y, = 3o, are
only qualitatively correct.

The numerical solution to Eq. (4.6) without any as-
sumption gives the results shown in Figs. 6 and 7.
We see that the simple power-law calculation shown
in Fig. 5 gives good qualitative answers.

for h 0. Let the total spin be

S=XS, . (4.24)

The field h adds a term —h S to the Hamiltonian.
Since S commutes with the original Hamiltonian, one
easily verifies that the susceptibility per spin is

x= (S')/3TI. (4.25)

where the average is evaluated at h =0.
The next question is how X is modified by the el-

imination transformation. Again we consider the
spins in Fig. 1(a) and write

S =—S +Si+Sp
(4.26)

(S') = {(S,+S )') +2{(S,+S,) S ) + (S')
We then carry out the averaging over the S~, S~ vari-

2 3 4
—ln T/In 2

~cFIG. 7. Specific heat C a: T ' calculated via the numerical
solution of Eqs. (4.6). Labels I, 2, 3, and 4 refer to
P (x, 1) ~ 1, e ", 8(x —

&
), and x ~, respectively.
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ables keeping all other spins as fixed vectors. Some
algebra gives

(S ) = 2 f ( J/T) —,f (J/T) ((Kt St + K2S2) S )3T' 0.5

7S

0.5

+O(Kt, Kg, KtK2) + (S' ) (4.27)

where f(y) =(I+e~/3) ' appeared in Eqs. (4.15),
and Kt, K2, St, S2 were defined earlier [see Fig.
1(a)]. We have kept only first-order terms in Kt and

K2.
Let X(J) be the susceptibility for the remaining

spins after the cutoff is lowered to J. The connection
between X(J) and X(J —dJ) can be obtained from
Eq. (4;27) . Since X = (5') /3 TL, we have

X(J) =dJ N(J)P(I, J)

f(J/T) —,f(J/T)xJ, X(J)/N (J)3T' 3T'

005

O. l

+ x(J —dJ) (4.28)

We have made the approximation

((KtSt+K2S2) S ) =2(K) (S, S )

= 2 (K ) (S'2) /LN (J)

=2(K)3Tx(J)/N(J)

where

- InT/ In 2

&s '
FIG. 8. Susceptibility X~ T ', obtained by the numeri-

cal solution of Eqs. (4.6). The labels 1, 2, 3, and 4 are the
same as in Fig. 7.

The slope of X vs T on a log-log plot is

r

(K) =J Ji dx P(x, J)Jx —= Jx(J) (4.29) d lnX—I+y =
dlnT

Integrating the differential relation (4.28), we obtain
the susceptibility

1

X=X(1)=
~

dJ N(J)P(1,J)f(J/T)
1

= —I +2u(lnl/T) [1+0(a)] . (4.33)

Since a(g) is slowly varying in rt, the susceptibility
follows power law

(4.30)
&s '

Xcc T' (4.34)
f 1

N(J) —= exp —2 dJ'P(I, J')

~ I+ f(J'/T)x(J')3T'

x(J) = u(lnl/J)/[I + u(lnl/J) ] (4.31)

which is small for small n. In parallel to Eq. (4.19),
we obtain from Eqs. (4.30)

lnX = —lnT+lnN(T) +const (4.32)

The factor N(J) would reduce to N(J) if the last

term involving x is ignored. We can obtain the T
dependence of X qualitatively following the same
steps in calculating the free energy above. Again as-
sume that P(x, J) has reached a power-law form x
for J & J~. For T & Jt, we then have

with y, = 2a(lnl/T) Quantitative re.sults obtained
from numerical solutions of Eq. (4.6) are shown in

Fig. 8. The universal power-law T dependence is evi-
dent at low temperatures. A more complete calcula-
tion of X will be discussed in Sec. VI.

V. EFFECTS OF A MAGNETIC FIELD

As mentioned in the last section, the presence of a
uniform external magnetic field h in the z direction
introduces several complications in the calculation.
To first order in perturbation theory, the elimination
transformation studied above generates additional~l ~t
magnetic fields acting on the spins S~ and S2. These
magnetic fields are functions of J, K~, and K2, and
are, therefore, randomly distributed. Also, the
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3C„„1=Hp+3C,

Hp =JS1 S2 + LS1zS2s h1S1s —h 2S2z (5.1)

second-order term in perturbation theory generates a
random Ising interaction of the form LS1',S2,. Thus,
in order to treat the effect of eliminating a bond
correctly, one has to take into account both the ran-
dom magnetic field and the Ising interaction. %e,
therefore, write the Hamiltonian for the four spins
shown in Fig. 1(a) as

g1es:

Et =——(J+L) ——x1 1

4 2

E, =—,(I+I.) + —,x,1 1

E3 g
(J+L) +

~ (h) +'hp)

E,= , (J +—L)——,(h, + h, ),1 1

(5.2)

3C =K1S1 ~ S1+K2S2 S2+M1S1,S1',

+M2S2, S2, —h3S1', —h4S2,

'The four eigenstates of Hp have the following ener-

x = [S'+ (h, —h, )']'"
Substituting Eqs. (5.1) for K in Eqs. (4.1) and using

Eqs. (5.2), one obtains

1 —p(Hp+3C)—ln Tre = F' ——ln Tr, , exp[ —P(K'S~. Sq+ L'S~', Sq, —h~'St', —h&S&, )]
p

where

(5.3)

F'= ——ln[e '+ e '+ e '+ e '] —[(Kt + M, )'+ (Kp+ Mp)']

& ' 1 2& -PE1 —PE2 -PE3 -PE4 J —PE1 —PEx —„p,(e '+e ')+e '+e ' +, (e ' —e ') (E, —E,) Zo'
16X2

'I

-PE -PE
1 3 -PE -PE

1 4

,', (K,'+K—j—) ' ' +'
E4- E1

-pE -pE2 3
+ e —e

E3 —E2

—pE —pE2 4+e —e
E4 —E2

Zp'

h1 h2 -pE1 -pE2 -pE3 —pE4 -2+—„P(K)+Mt) (e ' —e ') —e '+e ' Zo'

—PE1 —PE2 —PE —PE
t2

+ „P(K,+M—p) (e ' —e ')+e ' —e ' Zo'
X (S.4a)

PE1 PE3 PE1 PE4 PE2 PE3e —e e ' —e e —eK'= +
4x E3 —E1 E4 —E1 E3 —E2

-PE -PE
e2 4

E4 —E2
Z —1 (5.4b)

h —h
Ep —E() Zo '

(5.4c)

t

1
—pE3 —pE4 h 1

—h 2 pE1 pE2h)' =h3+ —(Kt +Mt) e —e — (e ' —e ) Zo'
2 X (s.4d)

r

1
—pE3 —pE4 h 1 h 2 -pE1 -pE

hg =h4+ —(Ky+M~) e —e + (e ' —e ) Z2 X
(5.4e)

-pE -pE -pE -pEZp=e '+e +e +e (5.4f)

For L =Mt =Mq=h~ =hq=h3=h4=0, one obtains L'= h~' =hq =0, and Eqs. (5.4a) and (5.4b) for F and K
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reduce, as they should, to the corresponding
equations given in Eqs. (4.4). The Eqs. (5.4) are
too complicated for an analytic treatment. However,
one can use a computer to directly carry out the elim-
ination transformations one by one and numerically
calculate the free energy from Eqs. (5.4a) —(5.4f).
Once the free energy as a function of the magnetic
field is known, all magnetic properties can be calcu-
lated. The results obtained from this procedure will

be presented in the next section.
One comment on the transformation Eqs. (5.4a)—

(5.4f) is appropriate. When the external magnetic
field h is small compared to the cutoff J, the pertur-
bation expansion used in deriving Eqs. (5.4a) —(5.4f)
is in terms of (K )/J, ( (K ) is a typical value of Kt
or K2) which is small. For h » J, the expansion
parameter is (K)/h, which is also small. However,
for h = J, two energy levels of Hp cross, and (K)/T
becomes the expansion parameter. For h « T (as,
for example, in the calculation of the zero-field sus-
ceptibility), this does not cause any problem, because
(K)/T & h/T is still very small. But, for h » T
(as, for example, in the calculation of the magnetiza-
tion in high fields), (K)/T may become quite large
and the perturbation expansion may break down.
For this reason, our results for strong magnetic fields
may not be as reliable as those for weak or zero
fields.

VI. CALCULATION OF THERMODYNAMIC AND

MAGNETIC PROPERTIES BY DIRECT
APPLICATION OF THE ELIMINATION

TRANSFORMATIONS

The successive elimination of spin variables
described in the previous sections can be directly car-
ried out by using a computer. This numerical pro-
cedure bypasses the study of the evolution of the dis-
tribution function of the coupling constants and
directly leads to the free energy. %e have used this
procedure to calculate the ground-state energy and
various thermal and magnetic properties for several
distributions of the exchange constants. Owing to
the reasons mentioned in the last section, this is the
only way we have been able to calculate the magnetic
properties. The calculations of the ground-state ener-

gy, the free energy, and the specfic heat provide use-
ful checks on the results. obtained in Secs. III and IV
by numerically solving Eqs. (2.8) and (4.6). The cal-
culational procedure goes as follows.

One starts with a large number of spins arranged
regularly on a line. The computer is used to generate
the nearest-neighbor coupling constants according to
a given distribution. One then searches for the pair
of spins which have the largest coupling constant and
eliminates that pair. The new couplings for the two

spins neighboring the eliminated pair are calculated

according to the prescription given above. One then
searches for the pair with the next-largest coupling
constant, and this process is continued until all the
spins have been eliminated. Each application of the
elimination transformation generates a contributign
F'(E') to the free energy (ground-state energy). The
sum of all these contributions gives the total free en-
ergy (ground-state energy). In the calculation of the
ground-state energy, Eqs. (2.5) are used. The free
energy at finite temperatures is calculated by using
Eqs. (4.4). The specific heat is obtained by fitting
the free energy per spin F(T) to a function of the
form

F ( T) = F(0) —exp[A + 8 ln T + C(ln T)'

+D(lnT)'+E(lnT) ], (6.1)

and then differentiating it twice with respect to T. In
choosing the form (6.1) we have been guided by the
approximate analytic results of Sec. IV B [see Eqs.
(4.20) and (4.21)]. In the calculation of the magnetic
properties, one starts with h, = h, L, =0 for all I., and
the K, 's distributed according to the given probability
distribution. One then uses Eqs. (5.4) to calculate
the new couplings and the free-energy increment
generated by the elimination transformation. The
zero-field magnetic susceptibility X(T, O) is obtained
by calculating the free energy per spin F(T,h) for
several very small values of h (h/T « I), and then
fitting it to a function of the form

(6.2)

The magnetization M( T, h) in high fields (h » T)
is obtained by calculating F( T, h), and also
F( T h + hh ), Ah/h « I, for several values of Ah,

and then fitting the free-energy difference to a poly-
nomial in Ah:

F(Th + 3 h) —F(Th)

= —M( T h) /t h ——,X( T h) (hh ) + X"( Th) (hh)'

(6.3)

The results of our calculations are shown in Table I

and in Figs. 9 through 13. These results were ob-
tained by performing the elimination transformations
on a chain of 1000 spins with periodic boundary con-
dition, and then averaging over 10 different confi-
gurations for each distribution of the coupling con-
stants. The numerical uncertainty (estimated from
variations from one configuration to another) is
& 3% in the calculations of the ground-state energy,
the free energy, the specific heat, and the susceptibil-
ity, and is & 10% in the calculations of the exponents

y, and y, and the magnetization. Because of the
rather large uncertainties in the calculated values of
the magnetization, we did not calculate the variation
of the exponent y~ with h. Better accuracy can be
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FIG. 11. Zero-field susceptibility X calculated by the
direct elimination procedure. The dots represent results ob-
tained from numerical solutions of Eqs. (4.6). The labels
1 —6 are the same as in Fig. 9.

FIG. 9. Free energies (with ground-state energy subtract-
ed off) calculated by the direct elimination procedure. The
dots represent results obtained from numerical solutions of
Eqs. (4.6). The labels 1, 2, 3, 4, 5, and 6 refer to P(x, 1)
~ 8(x ——), 1, e ", x ~, x, and x, respectively.
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FIG. 10. Specific heat C calculated by the direct elimina-
tion procedure. The dots represent results obtained from
numerical solutions of Eqs. (4.6). The labels 1 —6 are the
same as in Fig. 9.

FIG. 12. Specific-heat exponent y, and the susceptibility
exponent y, as functions of temperature for assorted distri-
butions. The labels are the same as in Fig. 9.
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I.O

T = I /256

physical picture.
The classical model is defined by the Hamiltonian

Eq. (1.1) with the spin operators replaced by classical
vectors. It is customary to choose the length of each
spin vector to be [ 2 ( 2

+1)j' '= ( 4
)' '. Since the

susceptibility is known exactly'" for the classical
model, let us start with it:

O. I— 1+ (u)
4T 1 —(u)

u(K/T) =— —coth
4T 3K
3K 4T

(7.1)

(7.2)

0.0I
5

-Inh/In 2

where (u) is averaged over P(K), the distribution
of K. In reading the literature, we often detect the
tacit belief that X,~

is nonsingular for nonsingular
P(K). This belief is, however, incorrect. For exam-
ple, take P(K) =1, 0 & K & 1. We obtain

FIG. 13. High-field magnetization M as a function of the
magnetic field h for assorted distributions. The labels are
the same as in Fig. 9.

obtained either by taking larger samples or by averag-
ing over more configurations.

It is evident from Table I and Figs. 9 and 10 that
the results obtained from numerical solutions of Eqs.
(2.8) and (4.6) are in good agreement with those ob-
tained from the direct elimination procedure. The
calculation of the zero-field susceptibility described in

Sec. IVC neglects terms of order K~', K2, K~K2, and
treats the effects of the random magnetic field in an

approximate way, whereas the direct elimination pro-
cedure treats everything correctly to second order in

perturbation theory. The terms neglected in the first
calculation are expected to be unimportant for initial
power-law distributions because the perturbation ex-

, pansion for such distributions should converge very
rapidly. That this is indeed the case is clear from Fig.
11, which shows that the values of the susceptibility
obtained from the two calculations are in excellent
agreement with each other for the power-law distri-
butions 5 and 6. For the nonsingular distributions 1,
2, and 3, the values of X obtained from the direct
elimination procedure are somewhat higher than
those obtained from the other method.

VII. DISCUSSION

A. Comparison with results from the classical model

The model studied above is strictly quantum
mechanical. It is instructive to compare our results
with those derived from the corresponding classical
model, which include some exact analytic results.
There are qualitative differences, which we discuss
below. The comparison will further illuminate the

4T
l

3/4T
3 sinh(3/4 T)

= —1+ ln(3/2T) +O(e ' )
4T
3

(7.3)

which gives a logarithmic singularity in X,~
for T 0.

Evidently, X,~
has a logarithmic singularity as long as

P(0) is nonzero:

lim X,~

= —P(0) (lnl/T +const)
p 6 (7.4)

Although X,~
is singular, it is not as singular as the

power law T ' obtained above in the quantum-
mechanical case. To understand this discrepancy
qualitatively, let us try to apply the method of elim-
inating spins to the classical model.

The singularities in the susceptibility and the
specific heat appeared in the quantum-mechanical
case because a singular P(x, J) was generated as J
was lowered even though the initial P(x, 1) had no
singularity. We shall present strong evidence,
although not a rigorous proof, that P(x,J) would not
be as singular for the classical model.

Again return to Fig. 1(a) and derive the effective
coupling constant K' upon eliminating the spins S~

and S2. For the classical model, the algebra is much
easier. Instead of Eqs. (4.4), we obtain

u(J/T)
cl 4T 1 2 (7.5)

where u is the same function as given by Eq. (7.2).
This is very different from the quantum-mechanical
Eqs. (4.4). While, for Eqs. (4.4), one finds
K'

~
K K t/J 2in the T 0 limit, in the classical

case we have K' (1/4T)KtK2, which diverges as
T 0. This divergence excludes the generation of a
power-law singularity in P(x,J). Therefore, no

. power-law singularity in C and X are expected in the
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subsequent calculation using P (x,J). This argument
is not rigorous because a large K,'~ implies the break-
down of the approximate transformation which re-
quires the generation of small K'.

Theodorou and Cohen used the exact result that

X,~ is only weakly divergent for a nonsingular P(K)
to argue that a power-law divergence in the suscepti-
bility of the quantum-mechanical model could result
only from a singular P(K). Their argument was

based on the assumption that X,~
should always be an

upper bound for the quantum-mechanical X. This as-
sumption is, ho~ever, incorrect, as is easily checked
by explicitly calculating X and X,~

for the four-spin
system shown in Fig. 1(a). One finds that when
KtK2/2JTand T/Jare small, one has X) X,~. The
physical reason is that the quantum-mechanical states
are discrete. For small T/J, the spins St, and St are
frozen in a singlet state, and S~ and S2 become
essentially free. This does not happen for the classi-
cal case where the excitation energy has a continuous
spectrum.

B. Comparison with results from
other approximations

The Fermi-liquid approximation of Bulaevskii
et al. predicts the following behavior for the suscep-
tibility, the specific heat, and the magnetization'.

x»', T«1,
C~ T~, T &&1,
M h", T«h «1

(7.6)

Xtx T, T «1
C~T', T&&1

(7.7)

In our notation, this corresponds to y, =y, =c. We

The exponent y does not depend upon the tempera-
ture or the magnetic field. These predictions are in

good agreement with the experimental results' for
the TCNQ compounds. In our notation, this would
correspond to y, =y, =y~=y. Our results indicate
that both y, -and y, are slowly varying functions of
In(1/T), although for initial power-law distributions
P(K) —K' ', 0 & c & I, with c close to zero, the
temperature dependence is very weak. We also find
that y, is always greater than y, and yM is close to

Bulaevskii et al. did not give any prescription for
relating the exponent y to the distribution P(K) of
the coupling constants.

Theodorou and Cohen' used a cluster approxima-
tion to study the special cases of singular power-law
distributions, P(K) —K' ', 0 & c & 1. They found
that

find that at relatively high temperatures„y, ) c. As
the temperature is lowered, y, approaches c and be-
comes less than c at very low temperature. The
behavior of y, is found to be qualitatively similar to
that of y, . Another important difference between
the conclusions of Theodorou and Cohen and ours is
that, while they claim that a singular P(K) is essen-
tial for a singular power-law temperature dependence
of X, we find that the approximate power-law form is
a universal feature exhibited by both singular and
nonsingular distributions.

C. Accuracy of the approximations

F/K = —0.45

which is quite close to the exact result'

F/K = —0.44314

(7.8)

(7.9)

Since the perturbation expansion should be better in
the random case (because both K~ and K2 are less
than J), we expect our approximate solution to be
quite accurate.
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There are some difficult unanswered questions
about the accuracy of the elimination transformations
used in our calculation. Note that improving them
means keeping higher-order terms in the perturbation
expansion which would generate more complicated
forms of interaction such as next-nearest neighbor
and longer ranged ones. As a rudimentary check, we
solved the four-spin problem of Fig. 1(a) with

K& = K2 exactly and also by the elimination process.
The agreement was found to be quite good if
K/J & 0.5. We thus expect our approximation to be
quite good as long as P(K) is not peaked near the
maximum of K We also used the elimination
transformation to calculate the ground-state energy of

- the uniform antiferromagnetic chain which has the
Hamiltonian of Eq. (1.1) with all the K„'sequal to K.
Equation (2.5) was used to eliminate two of every
three spins and the ground-state energy was calculat-
ed by accumulating the constant term F.

'
generated

by each application of the elimination transformation.
The result was
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