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Two-magnon excitations are examined in detail for the nearest-neighbor simple-cubic Heisen-
berg ferromagnet with various values of uniaxial anisotropy and all total wave vectors (K) in
the [111] direction. Attention is focused on the changes brought about by the addition of a
single-ion-pair mode to the basic exchange-pair modes of the isotropic case. The propagator for
exchange pairs separates into a contribution from the d-wave mode and a combined effect from
s-wave exchange and single-ion pairings. The latter has the same denominator as the propagator
for single-ion pairs but exhibits very little of the strong single-ion resonance due to the vanish-
ing of the numerator at the position of the single-ion Ising level. Lattice Green’s functions ap-
proaching analytic quality have been used to evaluate various spectral components in order to
establish how the single-ion mode behaves in the two-magnon continuum. For values of uniax-
ial anisotropy such that the single-ion Ising level crosses the s-wave bound-state mode of the
isotropic case, we find that the single-ion resonance correlates well with the corresponding Ising
level in the continuum but evolves continuously to the s-wave exchange bound state at the zone

boundary.

I. INTRODUCTION

Two-magnon bound states occur in the Heisenberg
ferromagnet with nearest-neighbor (NN) interactions
for large total pair wave vector K.'™8 As K decreases,
Boyd and Callaway® have shown that some of the
beund states enter the two-magnon continuum as
resonances. Silberglitt and Harris’ examined the ef-
fect of two-magnon bound states and resonances on
the one-magnon propagator at finite temperatures
while Loly and Choudhury? investigated the bound-
state-resonance mode for all K. Two-magnon studies
have been extended to include anisotropic ex-

change, ! #7'% uniaxial anisotropy,’™" biquadratic ex-
change,!® 21516 and next-nearest-neighbor (NNN)
interactions.!”™!°

In the NN simple-cubic Heisenberg ferromagnet
with K in the [111] direction, nondegenerate s-wave
and doubly degenerate d-wave exchange bound states
are formed for large K.''3 As K decreases, the d-wave
bound states enter the continuum as resonances’
while the s wave joins in a grazing fashion. In the
presence of uniaxial anisotropy [with single-ion ener-
gy — D(S?)?] an additional single-ion bound state is
found®~!3 which interacts with the original s-wave
bound state. There was an early indication'* of a
difference in the behavior of the single-ion and d-
wave resonances, but the resolution of the spectral
functions at that time was limited by the accuracy of
the lattice Green’s functions (LGF) employed. In
this paper we complement the single-ion bound-state
study of Silberglitt and Torrance'' for D #0 by a
thorough study of the two-magnon continuum reso-
nances and their relationship to bound states which is

2

made possible by the use of accurate LGF’s obtained
from elliptic integrals.’® The relative positions of
the single-ion and exchange bound states depend on
the ratio D/J (where J is the exchange constant) and
fall into three distinct regions recognized already in
the work of Silberglitt and Torrance.!! For the mid-
dle region, when the single-ion Ising level crosses the
s-wave mode of the isotropic case, the interaction of
the single-ion and s-wave bound-state modes will be
shown to give a strong effect on the resonance-
bound-state evolution. A comparative analysis of
both single-ion and exchange-pairing cross sections
leads to a full understanding of the differences
between those spectra.

Section I gives an outline of the derivation of the
Dyson equation for the two-magnon propagators at
T =0 K for a Heisenberg ferromagnet with single-ion
anisotropy. The solutions for single-ion and NN
processes are given in Sec. IIl. In Sec. IV the results
of numerical computations for bound states and reso-
nances are discussed and the conclusions are given in
Sec. V.

II. TWO-MAGNON PROPAGATOR

The Heisenberg Hamiltonian in the presence of
uniaxial anisotropy has the form
H=-3JS-5,-3D(sH? , (1)
ij i :
where Jj; is the exchange constant between spins at

sites /and j, and D is the uniaxial anisotropy. The
Green’s function describing the scattering of two
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where S§ is the Fourier transform of S;* and |0) is the fully aligned ground state defined such that 5710) =—S|0)
and S;” |0) 0. The equation of motion for the Green’s function in Eq. (2) has the standard form

0G (KK, KK, ) = (Ol(S% 57,53
1

where G(...,») and (( - - -

L 10y + (sg, (Ds% (0),H1|SE (0)SE, (0))), , 3)
2 2 ky ky

))w are Fourier transforms and where the total and relative pair wave vectors are

defined by
K=E|+i2 » 2E=E1_E2, KI=—|€;+E; » 2E"= '——.; . (4)
We now introduce the partial Fourier transform
iK-X; iK'R, e s
G(ijK, w)—-— Ee ie JG(Kk,Kk ,w) . (5)
E’E”
The Dyson equation for the above propagator is'®
— d — - — = — —
G (ij,K, ») =8$2[1 - E’E" A(ij K, 0) +2 3 ALK, 0)G (K, ©)-2 3 DA(iLK, ©) G([j,K, )8y , (6)
1 1
where
- 1 osk -R;cosk - R;
AGj K, @) =— — s @)}
N ?2 - (K., ¥)
- cosk -R;(cos ~K-R;—cosk -R
AGiR w) =13 1L ®)
N T o— (K, k)
and (2 is the two-magnon dispersion function given by
Q(K, k) =25[2/(0) /(3K +K) = /(3K -K)1+2(2S -1)D . O]

For D =0 the Dyson equation in Eq. (6) reduces to
that given by Wortis.! The solution to Eq. (6) will be
discussed in the next section. We note here that the
functions A and A that appear in this equation are
expressible in terms of the LGF which for site / are
defined as

1
Li(w) N ?2 (10)

IIl. TWO-MAGNON SPECTRA

The Green’s function G (ii, K, ®) in Eq. (6)
represents the propagator for two-magnon processes
involving the creation of two spin deviations on sites
separated by a distance R;. The spectral functions for

such processes are given by X;(K, w) =—Im G

x (i, K, ). In this paper we examine processes in-
volving the creation of two spin deviations on the
same site [Ro=1(0,0,0)] and NN sites
[R,=(1,0,0)al. In shorthand notation these sites
are denoted by i =0 and 1, respectively. We note
here that for K =0, Thorpe?! has shown that

X0(0, w) is proportional to the cross section for
two-magnon Raman scattering through the spin-orbit
interaction in ferromagnets, while the best analog of
the exchange process responsible for the antifer-
romagnetic observations is given by X;; [which was
studied earlier for the isotropic NN simple cubic (sc)

- case®l.

For the NN sc problem with K in the [111] direc-
tion, we find the following solutions to Eq. (6):

—Z __  an

2] — —
G(00,K, w) =48S [l X +d2)
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452 [1 +‘;’dlooo](Looo+Lzoo +4Ly10) —dL

+ 2(Logo + Lago—2L110)

3 (X +dZ)

in which G =G /24SJ, d =D/2SJ, and where

1 Lgo(aLogg — L1go)
=1 + , 13
Z = XLooo o 13)
aLyg | (Looo+ Lago+4L1ig)

—-1- 14
x=1 28 128 14
—2L
Y=14+ (Looo + Lo 110) as)

128

In the above, a =cos (%Kxa) and L, are normal-
ized LGF’s for ﬁ,» = (/,m,n)a which can be written as

A 1 f coslx cosmy cosnz
Lmn(m)=—’_ f - dXd_V dz
' L f! -0

(16)

where x = k,a, etc., and where we have introduced
the normalized energies

&)=[g)—2(25'—1)D]/24SJ , an
Q=[Q-2(25 -1)D1/24SJ
=1—;—a( cos x +cosy +cos z) (18)

In Eqgs. (17) and (18) 245/ is the one-magnon

Y : (12)

bandwidth and 2(2S —1) D eliminates the constant
shift due to the gap in the one-magnon spectrum.
The five LGF’s appearing in Eqgs. (11)—(15) are not
all independent, and we have the following identities:

'l=(6)—1)L000+aL100 , (19)

O=((2)“ I)L|00+%Q(L000+L200 +4L||0) . (20)

We use Egs. (19) and (20) to eliminate Lo and Lo
and the remaining LGF’s are evaluated in terms of
elliptic integrals using the method of Horiguchi and
Morita.?® The relationship between Ly, (&) and the
LGF’s G (1) defined by these authors is

Limn (@) == (3/a) G1pn 3 (1 = &) /@) @n

IV. RESULTS

Before we examine two-magnon bound states and
resonances it is necessary to briefly discuss critical
points?? and Ising levels.” The two-magnon continu-
um is given by Eq. (18) with a relevant portion
exhibited in Fig. 1. The critical points are defined as
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FIG. 1. Dispersion of resonance peaks and bound states as a function of K for S =1 and (a) ¢ =0.5. (b) ¢ =1.0. and (c)
d =2.0. The full straight lines correspond to the critical points I'. X. M. and R where I' and R represent the bottom and top of
the two-magnon continuum, respectively. The horizontal broken lines are the Ising levels for single-ion (@ =1— %d) and
nearest-neighbor (@ =1—1/125) excitations. The single-ion, s- and d-wave exchange bound states are indicated by s —/. s. and
d, respectively, while * and @ represent the single-ion and d-wave resonances, respectively.



22 TWO-MAGNON EXCITATIONS IN THE HEISENBERG . . . 1297

those points in K space where the group velocity of
the two-magnon dispersion function vanishes. For
the NN sc problem the critical points are given by the
high-symmetry points I'=1(0,0,0), X =(1,0,0)#/a,
M=(1,1,0,)m/a, and R =(1,1,1)7/a, and the two-
magnon energies at these points are indicated by the
straight lines in Fig. 1.%2* The Ising levels are ob-
tained by neglecting the transverse terms in the ex-
change part of the Hamiltonian in Eq. (1). The ener-
gy required to create two spin deviations on neigh-
boring sites in this limit is 4S/(0) +2(2S —1)D —2J,
while two deviations on the same site require an en-
ergy 45J(0) +2(28 —1)D —2D,? and these are both
shown by the horizontal broken lines in Fig. 1.

The two-magnon bound states are given by the
poles of the propagator in Eqs. (11) and (12). Thus
the bound-state conditions are

X+dZ =0, 22)

Y=0 . 23)
These were first obtained by Wortis! for the isotropic
(D =0) case and by Silberglitt and Torrance!! and
Tonegawa® for D #0 and are the same as those
given by Loly and Choudhury.®? For D =0, Egs. (22)
and (23) give the s- and d-wave exchange bound
states, respectively. The d-wave bound state is unaf-
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fected by the uniaxial anisotropy, while for D #0,
Eq. (22) leads to a modified s-wave exchange bound
state and an additional single-ion bound stafe.!! At
the Brillouin-zone (BZ) corner

(a =0), L/m,,((:)) = 81()5,,,08,,0((:) - 1 )—l

and it is then trivial to solve Eqs. (22) and (23). The
result is that the s- and d-wave bound states are de-
generate at @ =1 —1/128S, while the single-ion one
occurs at @ =1—d/6. These energies correspond to
the Ising levels for NN and single-ion excitations,
respectively, as discussed above. Away from the BZ
corner, the bound-state energies are obtained by a
numerical solution of Egs. (22) and (23). As « in-
creases, the bound states approach the bottom of the
continuum. The points of contact are given by sub-
stituting for @ the energy of the bottom of the band
in Eqs. (22) and (23), viz., 1 —a. From Eq. (23), we
find that the d wave enters the continuum at )

a={243[G20(3) — Gopo(3)1}/85 =0.0926/S

This result was first obtained by Wortis.! On the oth-
er hand, Eq. (22) gives a quadratic equation in «

Aa?+Ba+C=0 , (24a)
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FIG. 2. Spectra for (a) single-ion (Xg9) and (b) NN (X;;) excitations for selected values of K for S =1 and d =1.0. The
curves represent a=1.0 (full line), 0.5 (0), 0.3 (+), 0.2 (x), 0.1 (0), and 0.05 (*). For clarity the relative intensities were
multiplied by « and the frequency scaled to a bandwidth of 2.0. For (b), the a =0.1(0) spectra extends to 1.0 but has been cut
off at 0.4 for convenience. The vertical broken lines represent the X and M critical points.
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where
A=2(W—-1+25) , (24b)
B=201-(1+Sd/3) W] , Q40
C=5d(W-1) , (24d)

where W =3Gg(3) =1.516386 is the Watson in-
tegral. The two solutions of the above equation cor-
respond to the points where the other two bound
states meet the continuum. We note that for d =0,
the nonzero solution of Eq. (24a) is a=—B/A

=~ (1+45/1.03277) ! which is also consistent with
Wortis.! For S =1, this s-wave contact point is
=0.205 and corresponds to a single-ion Ising level
with d =1.23. In the presence of uniaxial anisotro-
py, the two solutions of Eq. (24) are 0.232 and 0.074
for d =0.5, 0.287 and 0.119 for d =1.0, and 0.457
and 0.150 for d =2.0.

The dispersions of the bound states for d =0.5,
1.0, and 2.0 are shown in Fig. 1. We note that the
d-wave variety does not appear in G (00,K, ). For
d =0.5 all the bound states are degenerate at the
zone boundary, and we see repulsion between the s
wave and single-ion states for smaller K. The case of
d =1.0 represents the intermediate cross-over region
where the single-ion Ising level crosses the s-wave
mode of the isotropic case. The case of d =2.0 is
chosen to illustrate the situation on the other side of
the cross-over region and has a single-ion Ising level
equal to the minimum of the X-point singularity.
Note the dispersion of the lowest bound state in Fig.
1(c) associated with the lower edge of the continuum.

The spectral functions for selected values of K and
for d =1.0 are shown in Fig. 2 to illustrate the basis
for resonance peaks plotted in Fig. 1. The single-ion
(Xgo) spectrum in Fig. 2(a) is characterized by one
well-defined resonance peak for most values of K
and an additional spike in the neighborhood of
a=0.3. As K increases, the principal peak moves to-
wards the lower edge of the continuum until finally it
exists from the continuum as a discrete bound state
[as seen in Fig. 1(b)]. The additional sharp lower
peak near the bottom of the band seen for «=0.3 in-
dicates a pickup of weight due to the bound state
which has just joined the continuum at « = 0.287. In
contrast the NN (X;) spectrum in Fig. 2(b) has
another well-defined resonance peak with pro-
nounced wings which result in a very broad hump on
the upper side at small values of K. The well-defined
lower peak is due to the d-wave exchange resonance,
but the hump is not as easy to interpret. Some han-
dle on this spectrum is afforded by examining
separately the two components of Eq. (12). The first
term has the same denominator as the single-ion
probe in Eq. (11) so that it embodies the s-wave ex-
change and single-ion modes, and we have seen that
the second term is responsible for the d-wave effect

which is not found in Xg. Figure 3 shows a sample
case of these separate components of X, and their
sum from which we note the vanishing of the first
term at an energy close to the peak in Xg. Rear-
rangement of the numerator of the non-d-wave part
of G(11,K, ») using the LGF identities in Egs. (19)
and (20) shows that this numerator vanishes identi-
cally at the single-ion Ising level. We therefore see
the product of a resonance structure and a term
which zeros near its peak to yield broad humps on ei-
ther side that represent a partitioning of the single-
ion effect. Again the additional sharp lower peak
near the bottom of the band for @ =0.3 is due to the
bound state which joined the continuum at
a==0.287. For the NN spectrum the d-wave bound
state enters the continuum for @ =0.0926 and hence a
resonance peak can still be seen for a =0.1 while for
a=0.05 the resonance has come out of the continu-
um as a discrete bound state leaving a very weak
broad spectrum inside the band as shown.

The dispersion of the resonance-peak positions as a
function of K is shown in Fig. 1 for three values of d.
We note that the d-wave resonance is always con-
strained below the X critical point and is independent
of the uniaxial anisotropy. In contrast the single-ion
type of resonance (for 4 =0.5 and 1.0) is able to go
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FIG. 3. Components of the NN spectra for K=0, 5=1,
and d =1.0. M and + represent the first and second terms
of G(11,K, w) [Eq. (12)], respectively, and x gives their
sum. The full line is the single-ion [ G (00, K, w)] spectrum.
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through that singularity, and approaches the corre-
sponding Ising level at the zone center. The cross-
over case of d =1.0 shows a strong single-ion reso-
nance in Xoo(K, ®) which stays close to the Ising lev-
el from K =0, during its passage through the X-point
singularity, until it exists as a bound state. The latter
then evolves to reach the zone boundary as the s-
wave exchange bound state. For d =2.0, Fig. 2(c)
shows how the single-ion bound state jumps into the
continuum in a manner rather different from the
smooth transition of the d-wave mode.

The behavior of resonances just inside the continu-
um was detected in some cases by Silberglitt and Tor-
rance!! through the analysis of zeros of the bound-
state conditions [Egs. (22) and (23)] inside the con-
tinuum. Since resonance structures evolve continu-
ously as they get deeper into the continuum we have
been able to follow the resonances all the way to
K=0 through the peaks of the resonant components
of the spectra.

V. CONCLUSIONS

In this paper we have examined the behavior of.
two-magnon states in the NN sc Heisenberg fer-
romagnet with uniaxial anisotropy. The dispersion of

the two-magnon bound states and resonances was ex-
amined in detail for all total pair wave vectors K in
the [111] direction. For intermediate values of d, a
crossover of the single-ion Ising level and the s-wave
mode of the isotropic case occurs with a dramatic
change of character between the single-ion Raman
resonance at K =0 and its continuous evolution to
the s-wave exchange bound state at the zone boun-
dary. Within the continuum the single-ion resonance
goes through the X critical point in contrast to the d-
wave resonance which is constrained below it. Our
results also show that the single-ion resonance at the
zone center is always close to the corresponding Ising
level for single-site excitations, although it may be
depressed by the continuum for 4 in the range ap-
proximately 1.23 to 4.9. Finally, the ingredients of
the spectra for the single-ion and exchange probes
have been elucidated and reveal that the strongest
single-ion Ising-level effect gives a spectral contribu-
tion that is perhaps best described as the antithesis of
a resonance.
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