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Two-magnon excitations in the Heisenberg ferromagnet with uniaxial anisotropy
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Two-magnon excitations are examined in detail f'or the nearest-neighbor simple-cubic Heisen-

berg ferromagnet with various values of uniaxial anisotropy and all total wave vectors {K) in

the [111]direction. Attention is focused on the changes brought about by the addition of a

single-ion-pair mode to the basic exchange-pair modes of' the isotropic case. The propagator t'or

exchange pairs separates into a contribution f'rom the if-wave mode and a combined et'feet f'rom

s-wave exchange and single-ion pairings. The latter has the same denominator as the propagator

for single-ion pairs but exhibits very little ot the strong single-ion resonance due to the vanish-

ing of the numerator at the position of' the single-ion Ising level. Lattice Green's f'unctions ap-

proaching analytic quality have been used to evaluate various spectral components in order to

establish how the single-ion mode behaves in the two-magnon continuum. For values ot' uniax-

ial anisotropy such that the single-ion Ising level crosses the s-wave bound-state mode of' the

isotropic case, we f'ind that the single-ion resonance correlates well with the corresponding Ising

level in the continuum but evolves continuously to the s-wave exchange bound state at the zone

boundary.

I. INTRODUCTION

Two-magnon bound states occur in the Heisenberg
ferromagnet with nearest-neighbor (NN) interactions
for large total pair wave vector K. ' As K decreases,
Boyd and Callaway have shown that some of the
bound states enter the two-magnon continuum as
resonances. Silberglitt and Harris" examined the ef-
fect of two-magnon bound states and resonances on
the one-magnon propagator at finite temperatures
while Loly and Choudhury investigated the bound-
state-resonance mode for all K. Two-magnon studies
have been extended to include anisotropic ex-
change, ' ' uniaxial anisotropy, " biquadratic ex-
change, '0 "'5'6 and next-nearest-neighbor (NNN)
interactions. '

In the NN simple-cubic Heisenberg ferromagnet
with K in the [111]direction, nondegenerate s-wave
and doubly degenerate d-wave exchange bound states
are formed for large K." As K decreases, the d-wave
bound states enter the continuum as resonances'
while the s wave joins in a grazing fashion. In the
presence of uniaxial anisotropy [with single-ion ener-

gy —D(S )2] an additional single-ion bound state is
found ' which interacts with the original s-wave
bound state. There was an early indication' of a
difference in the behavior of the single-ion and d-

wave resonances, but the resolution of the spectral
functions at that time was limited by the accuracy of
the lattice Green's functions (LGF) employed. In
this paper we complement the single-ion bound-state
study of Silberglitt and Torrance" for D AO by a
thorough study of the two-magnon continuum reso-
nances and their relationship to bound states which is

made possible by the use of accurate LGF's obtained
from elliptic integrals. The relative positions of
the single-ion and exchange bound states depend on
the ratio D/J (where J is the exchange constant) and
fall into three distinct regions recognized already in

the work of Silberglitt and Torrance. " For the mid-
dle region, when the single-ion Ising level crosses the
s-wave mode of the isotropic case, the interaction of
the single-ion and s-wave bound-state modes will be
shown to give a strong effect on the resonance-
bound-state evolution. A comparative analysis of
both single-ion and exchange-pairing cross sections
leads to a full understanding of the differences
between those spectra.

Section II gives an outline of the derivation of the
Dyson equation for the two-magnon propagators at
T =0 K for a Heisenberg ferromagnet with single-ion
anisotropy. The solutions for single-ion and NN
processes are given in Sec. III. In Sec. IV the results
of numerical computations for bound states and reso-
nances are discussed and the conclusions are given in

Sec. V.

II. TWO-MAGNON PROPAGATOR

The Heisenberg Hamiltonian in the presence of
uniaxial anisotropy has the form

H= —QJ;, S, S, —$D(S)

where J„",is the exchange constant between spins at
sites i and j, and D is the uniaxial anisotropy. The
Green's function describing the scattering of two
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~l
magnons with initial wave vectors k~, k2 and final wave vectors k~, k2 is

G(k~k2, k~k2. 1) = —lO(l) (0)[S& (f)S& (t),S+, (0)S„(0)](0)=((S„(t)S„(t))S+(0)S, (0))) (2)1 2 kl k 1 2 k) k~

where S-„ is the Fourier transform of S; and (0) is the fully aligned ground state defined such that S;-[0)=—S(0)
and S, [0) =0. The equation of motion for the Green's function in Eq. (2) has the standard form

coG(Kk, K k, o)) = (Oi[S=„S=„.S+„,S+„,]i0) + (([SP (t)S=„(t),H]iS+„, (0)S+„,(0)))„,

where G(..., eu) and (( - . . )) are Fourier transforms and where the total and relative pair wave vectors are
defined by

K = k)+ k2, 2k = k) —kg,
~I ~ ~l
K =k)+k2

~I —sg

2k =ki —k2 (4)

%e now introduce the partial Fourier transform

G(ji, K, eu) =—g e 'e 'G(Kk, Kk, ra)
N

k k

The Dyson equation for the above propagator is'
t

G (ij, K, co) = 8S I — A(ij, K, cu) +2 XJtA(it, K, u)tG ( lj, K, ~)—2 Q D A(ilK, ~), G (jl. K, co) gto
I I

where

cosk R;cosk RJ
A tj, K, cU

cu —O(K, k)

cos k .R;( cos —K RJ —cos k .KJ)
A( IJ, K, (8)

W -„ a) —O(K. k)
(8)

and 0 is the two-magnon dispersion function given by

O(K, k) =2S[2J(0) —J(—K+ k) —J(
2

K —k)) +2(2S —l)D

For D =0 the Dyson equation in Eq. (6) reduces to
that given by Wortis. ' The solution to Eq. (6) will be
discussed in the next section. We note here that the
functions A and A that appear in this equation are
expressible in terms of the LGF which for site i are
defined as

(10)

III. T%0-MAGNON SPECTRA

The Green's function G(ii, K, a&) in Eq. (6)
represents the propagator for two-magnon processes
involving the creation of two spin deviations on sites
separated by a distance R;. The spectral functions for

such processes are given by X;;(K, t0) = —Im G
x (ii, K, co). In this paper we examine processes in-
volving the creation of two spin deviations on the
same site [Ro=(0,0, 0)] and NN sites
[R, = (I, 0, 0)a]. In shorthand notation these sites
are denoted by i =0 and 1, respectively. We note
here that for K =0, Thorpe2' has shown that
Xoo(0, cs) is proportional to the cross section for
two-magnon Raman scattering through the spin-orbit
interaction in ferromagnets, while the best analog of
the exchange process responsible for the antifer-
romagnetic observations is given by X» [which was
studied earlier for the isotropic NN simple cubic (sc)
case ].

For the NN sc problem with K in the [111]direc-
tion, we find the following solutions to Eq. (6):

1

G(00, K, a)) =48St 1—
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T

4S2 1 +
&

dlPPP ( LPPP + L2PP + 4 L lip) d lpp 2( Lppp + L20p —2L 3 30)

(X+dZ)
'

y
l

(12)

in which G = G/24SJ, d = D/2SJ, and where

1 L lop(nL000 Llpp)
Z = 6,+Looo+

t l

c3'L lpp ( L 000 + L 200 +4 L 1 1 0)

2S 12S

( L 000 + L 200 2 L 1 1 0)Y=l+
12S

(14)

In the above, a = cos ( 2
E„a) and Ll „are normal-1

ized LGF's for R; = (I, m, n) a which can be written as

(
-

)
1

lt lt coslx cos33232 cosllz
dlmn X P Z

0 QJ —0 (i6)

bandwidth and 2(2S —1)D eliminates the constant
shift due to the gap in the one-magnon spectrum.
The five LGF's appearing in Eqs. (11)—(15) are not
all independent, and we have the following identities:

1 = (223 1 ) Lppp + 232L lpp

1 pp +
6

+ ( Lppp + L 200 + L 1 lp)

(19)

(20)

L, „(03)= —(3/n) G, „(3(1—03)/a) (21)

We use Eqs. (19) and (20) to eliminate Llpp and Lllp
and the remaining LGF's are evaluated in terms of
elliptic integrals using the method of Horiguchi and
Morita. ' The relationship between Ll „(03) and the
LGF's Gl „(r) defined by these authors is

where x = k„a, etc. , and where we have introduced
the normalized energies IV, RESULTS

03 = [03 —2(2S —1)D]/24SJ

0 = [Il —2(2$ —1)D]/24SJ
=1 ——a( cos x +cosy +cos z)

1

3

In Eqs. (17) and (18) 24SJ is the one-magnon

(18)

Before we examine two-magnon bound states and
resonances it is necessary to briefly discuss critical
points and Ising levels. The two-magnon continu-
um is given by Eq. (18) with a relevant portion
exhibited in Fig. 1 ~ The critical points are defined as

Po,
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FIG. 1. Dispersion of resonance peaks and bound states as a function of' K for S =1 and (a) il =0.5, (b) i/=1, 0, and (c)
d =2.0. The full straight lines correspond to the critical points I', X. M, and R where I and 8 represent the bottom and top ot

1the two-magnon continuum, respectively. The horizontal broken lines are the Ising levels f'or single-ion (co= 1 ——cf) and

nearest-neighbor (au=1 —I/12S) excitations. The single-ion, s- and d-wave exchange bound states are indicated by s —i, s. and
d, respectively, while * and Lj represent the single-ion and d-wave resonances, respectively.
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through that singularity, and approaches the corre-
sponding Ising level at the zone center. The cross-
over case of d =1.0 shows a strong single-ion reso-
nance in Xoo(K, ru) which stays close to the Ising lev-
el from K =0, during its passage through the X-point
singularity, until it exists as a bound state. The latter
then evolves to reach the zone boundary as the s-

wave exchange bound state. For d =2.0, Fig. 2(c)
shows how the single-ion bound state jumps into the
continuum in a manner rather different from the
smooth transition of the d-wave ~ode.

The behavior of resonances just inside the continu-
um was detected in some cases by Silberglitt and Tor-
rance" through the analysis of zeros of the bound-
state conditions [Eqs. (22) and (23)] inside the con-
tinuum. Since resonance structures evolve continu-
ously as they get deeper into the continuum we have
been able to follow the resonances all the way to
K =0 through the peaks of the resonant components
of the spectra.

the two-magnon bound states and resonances was ex-
amined in detail for all total pair wave vectors K in
the [111]direction. For intermediate values of d, a

crossover of the single-ion Ising level and the s-wave
mode of the isotropic case occurs with a dramatic
change of character between the single-ion Raman
resonance at K =0 and its continuous evolution to
the s-wave exchange bound state at the zone boun-
dary. Within the continuum the single-ion resonance
goes through the

uncritical

point in contrast to the d-

wave resonance which is constrained below it. Our
results also show that the single-ion resonance at the
zone center is always close to the corresponding Ising
level for single-site excitations, although it may be
depressed by the continuum for d in the range ap-
proximately 1.23 to 4.9. Finally, the ingredients of
the spectra for the single-ion and exchange probes
have been elucidated and reveal that the strongest
single-ion Ising-level effect gives a spectral contribu-
tion that is perhaps best described as the antith|.'sis of
a resonance.

V. CONCLUSIONS

In this paper we have examined the behavior of,
two-magnon states in the NN sc Heisenberg fer-
romagnet with uniaxial anisotropy. The dispersion of
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