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A general scheme is presented for applying real-space renormalization-group methods to
dynamic critical phenomena. The method is based on mapping the. time evolution operator for
the initial variables onto a new operator acting on the block variables. The general formalism is

discussed in the context of the kinetic Ising model. It is shown that all non-Markovian effects
in the new operator can be eliminated if the renormalization-group transformation is taken to be
the solution of a generalized eigenvalue equation. We show how to solve this equation pertur-

batively. The resulting transformation is such that the dynamics of the block spins is given by

the slowest dynamic modes of the initial spins within a block.

I. INTRODUCTION

. We present in this paper a general scheme for ap-
plying real-space renormalization-group (RSRG)
methods to time-dependent problems.

The renormalization group' (RG) has previously
been applied to both static and dynamic critical
phenomena. It has been formulated in two different
contexts: in momentum and in position space. As
is well known, e-expansion methods' can be com-
bined with the momentum-space RG to give very
good results for static critical properties. The
momentum-space or continuum approach has also
been successfully combined with the mode coupling
theory due to Fixman, '~' Kawasaki, '~ and others
to obtain a dynamic renormalization-group theory
that works quite well in explaining dynamic critical
phenomena in a variety of systems. These theories
are discussed in a recent review by Hohenberg and
Halperin.

While the continuum approach has been very suc-
cessful in certain circumstances the limitations can be
severe. Since one ignores local details from the very
beginning, the theory is only useful for determin-
ing asymptotic properties. Thus, while one can ob-
tain the critical exponents, it will not yield the value
of the transition temperature or how one approaches
an asymptotic state. Similarly, the continuum formu-
lation essentially assumes there is a second-order
phase transition and only works near such a transi-
tion. It is not useful for looking at global properties
over the entire thermodynamic plane and cannot

easily be used to systematically investigate first-order
phase transitions.

Practically speaking, we only know how to treat the
model field theories studied in the continuum
theories within the framework of perturbation theory

f
where Auctuations are treated as small. Clearly these
techniques are not the most appropriate for treating,
say, two-dimensional Ising-like systems displaying
strong critical Auctuations.

The RSRG method, while not as controlled a
method for determining universal quantities as the
momentum-space method, has several advantages.
One is that it can, at least theoretically, be used in
any dimension. The second advantage is that it can
be used to determine nonuniversal properties' unlike
the momentum-space method. There are by now a
number" of sophisticated methods for applying the
RSRG approach to static problems.

It seems natural to extend RSRG methods to the
dynamic case. Ho~ever, no consistent scheme for
studying the behavior of the full dynamics of the sys-
tem under the action of the RG transformation, in
rea) space, has been proposed until the present. '

The difficulty can be explained in intuitive terms as
follows. in real space the variables are initially on a
lattice, and, by the RG transformation, new vari-
ables, in a larger lattice, are defined. The time pro-
pagation in the system (its dynamics) is driven by an
operator, the Liouville operator (or, in the Ising case,
by a pseudo-Liouville or spin-flip operator). It is
necessary to find how this dynamical operator
behaves under the action of the RG transformation.
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In terms of the Kadanoff block-spin picture" the
problem is to find the dynamical operator for the
new, coarse-grained, block variables, in terms of the
initial variables and dynamics. Notice that, since dis-
sipation must be involved, one cannot say that the
dynamics is simply given by the effective Hamiltoni-
an of the coarse-grained variables. The problem is
more complicated.

The main point of this paper is to introduce a for-
rnalism which allows one to conveniently construct
the dynamical operator generating the dynamics for
the block spins. The RSRG formulation for dynam-
ics that we develop is quite general. In the present
work, however, we restrict ourselves, for simplicity,
to kinetic Ising (KI) models' which we discuss in

Sec. II. In Sec. III we show how to obtain unambigu-
ously the spin-flip operator (SFO) acting on the new

spin variables, once the initial SFO and RSRG
transformations are given.

A very important point, which we elucidate in Sec.
IV of the present work, is the presence of non-
Markovian memory effects in the renormalized SFO.
These effects, which we show would produce an in-
teraction of long range in time, must be eliminated.
This elimination is accomplished by an appropriate
choice of the RG transformation. This choice, which
turns out to have a transparent physical interpretation
in terms of elimination of fast modes, is determined
by the condition that the transformation function be
an eigenfunction of the initial dynamical operator.
This eigenvalue method, therefore, solves both the
mathematical and physical difficulties which have up
to now precluded the implementation of the RSRG
for the dynamics. It constitutes the fundamental core
of our work.

Some other schemes have been" proposed for ap-

plying the RSRG to the dynamics of critical phenom-
ena. However, these other methods do not address
themselves to the fundamental question of the renor-
rnalization of the full dynamical operator and the
question of non-Markovian effects.

II. GENERALIZED GLAUBER MODELS

A. Microscopic and macroscopic dynamical systems

In a fully microscopic treatment of dynamical prob-
lems in statistical mechanics the statistics are
governed by a Boltzmann probability distribution in
terms of the Hamiltonian H, describing the system,
and the dynamics is generated by the Liouville opera-
tor, L, constructed from H. There are however many
situations where a fully microscopic analysis of the
dynamics of a system seems inappropriate. Important
examples are the continuum dynamical theories
designed to be compatible with the Ginzburg-

Landau-Wilson field theoretic treatment of static crit-
ical phenomena. The formal structure of these
theories is discussed in some detail in Ma and Mazen-
ko. ' The basic physics is that if one is near the criti-
cal point the details of the underlying microscopics
are not important and the statics and dynamics
should be described by an appropriate "coarse-
grained" Hamiltonian and Liouville operator. In this
field theoretic description (depending, say, on a field

$) the Hamiltonian is replaced by an "effective" free
energy F [$] and the Liouville operator is replaced by
a generalized Fokker-Planck operator, D&.

8. Lattice dynamical models

P[ir] =e"' '/Z (2.1)

where Z is the partition function and H[cr] is the Is-
ing Hamiltonian multiplied by —P and is given by

H [ir] =
2

K X X ai iri+s (2.2)

where K is the coupling constant (K = +iBJwhere J
is the exchange interaction), and the sum over 8 is

In this paper we are interested in the dynamics of
fixed length spins on a lattice. In the case of x-y or
Heisenberg models we simply have to write down the
Hamiltonian describing the system and define the ap-
propriate commutation relations or Poisson bracket
relations in order to specify the problem in the com-
pletely microscopic sense discussed in Sec. II A. We
are, of course, interested in these problems, but we
also realize that the equilibrium behavior of these
systems is considerably more complicated than that of
Ising models. This is manifested, for example, in the
complicated coexistence curve behavior in three-
dimensional Heisenberg magnets due to the Nambu-
Goldstone modes. As a further complication the crit-
ical behavior in a two-dimensional x-y model involves
the Kosterlitz-Thouless vortex unbinding mechanism.
For simplicity therefore we restrict ourselves to Ising
models.

In discussing Ising models we are forced to an in-
termediate position between a microscopic and a ma-
croscopic description. The static behavior is given by
an Ising Hamiltonian but we must introduce a sto-
chastic time evolution operator. It is conventional in
motivating the dynamic evolution of a set of Ising spins
to picture the system as being in contact with a heat
reservoir. The interactions with the heat reservoir
provid|; the dynamics. Specifically, let us consider a
system of N Ising spins (in any dimensions) interact-
ing with a heat bath, let i be an index which numbers
the spins and let o- stand for a given spin configura-
tion a. =—[a.i, a.2, . . . a.~ }. The equilibrium proba-
bility distribution is given by
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over basis vectors connecting a spin i with its nearest
neighbors.

The equilibrium spin-spin time correlation func-
tions can be defined in this case

"spin-flip operators" and have the property that they
are of the form

I ] I
p

I

C„(()= X P[(r]rr, e a; (2.3)
where

and we must define the pseudo-Liouville operator
D . An operator in this case is a matrix which ro-
tates one spin configuration o-' into another spin con-
figuration cr'.

(2.4)

The adjoint operator D is defined by

(2.5)

We will want to demand that D or equivalently D
satisfy two basic properties. First we demand that:

(2.12)

is the operator that sets o. = cr' on all lattice sites ex-
cept i[, i, , . . . ,i„. Thus D will "operate" on only a
restricted set of spins. D is diagonal as far as the
other N —n sites are concerned. There are other
models one could consider which do not have this
property.

The simplest spin-flip operator involves operating
on one spin and is of the form

(2.13)

or

D
e P[n] = P[n] (2.6) where n is a characteristic spin-flip time, and

W;[o ] is a dimensionless quantity yet to be specified.
Then, if we define

$ D [n~ a'] P [cr'] =0 (2.7)
DF[(r(]=e , F[a]. (2.14)

which ensures the stationary quality of the equilibri-
um probability distribution. A second condition fol-
lows if we remember that in ~ fully microscopic
theory one has the symmetry relation

we have, using the identity for Ising spins

the "equation of motion""'.

(2.15)

C„s(()= C((„(—() (2.g)

If the system is time-reversal invariant and A and B
have the same signature under time reversal then:

C»(() = C»(r) (2.9)
—W;[(r) —a. ; (r(„]

We would like our stochastic dynamical model to also
satisfy this symmetry. It is easy to see that this will

be satisfied if the operator D satisfies the symmetry
or detailed-balance condition

x F'[a) —(y'; ' ' (re. (]),,

(2.16)

D [ a.
~
(r '] P [ a.'] = D [ rr

'
~
n] P [ (r ] (2.10) . The function

Note that Eqs. (2.5) and (2.10) give us the useful
identity for any, f:

y D [a ~(r'] f [0']P[(r']

= P[a]QD[(r~i(r'] f [(r'.] (2.11)

The conditions (2.7) and (2.10) constrain the possi-
ble operators D significantly, There is, however,
still a great deal of latitude in choosing the appropri-
ate operators and operationally one is guided by argu-
ments of locality and simplicity. In this paper we will

focus on a particular class of operators satisfying Eqs.
(2.7) and (2.10). This class of operators we will call

W;[a] =nW;[a) (r; rr((]

W;[a.] =e (2.17)

where

E; [ rr ] = K X rr; ~~ . (2.18)

More generally we can satisfy Eqs. (2.13) and (2.16)

has a simple physical interpretation: it is the proba-
bility per unit time that the ith spin will flip from o;
to —a.;. We have yet to fully specify W;[cr]. Both Eqs.
(2.7) and (2.10) are satisfied as long as W;[a]P [a.]
is independent of the spin at site i. The simplest
choice for W, [ a.] is
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by choosing

IV,-[a] = W, [a]e (2.19}

where A;[cr] is any function of cr that does not
depend on the spin at site i. Typically, however, we
expect that IV;[cr] is a local function depending only
on the spins near site i. A; =1 is often a convenient
choice. In the one dimensional case, the choice

A;[cr] =(coshE, [cr]) ' (2.20)

is easily seen to correspond to Glauber's' function'.

IV,.[o]=[1—
z tanh(2K)cr;(a;+t+a; t)] . (2.21)

We will be interested in expressions for D [cr~ cr']
more general than Eq. (2.13). The reason for this
can be understood by remembering well-known facts
about the static RG: if one starts with, say, an Ising
Hamiltonian with nearest-neighbor interactions only,
the renormalization-group process usually generates
new interactions (e.g. , 2nd-, 3rd-nearest neighbor).
Analogously, we will see that if we start with an opera-
tor as given by Eq. (2.13) the renormalization-group
operation will generate new terms. In order to gain
closure and obtain recursion relations, the initial
operator must be taken to be of the general form

+ XA ' IV- [cr ](o;a V2cj .[cr'] +cr a'a r. 'cVl'. J[o.'])
ij

+
cc

XA" '"' II'sk[cr'] (a;cr crjak Vf"'"' [a'] + cr;cr a, cr,'a, ak Vf'J'" [a']) +
ijk

(2.22)

where we have explicitly included up to three spin
terms. The 8'„" are defined as follows: Let H'j
be the sum of all terms in the Hamiltonian which in-
volve cr;a jerk - - -, for example,

e =a,s,[a], (2.23}

or if o-;, cr,- are neighboring spins

PPi cr E [cr] + cr.E.[cr] (2.24}

(the last term avoids double counting). Then we de-
fine

IV, , [a]=e-H"- . (2.25}

III. RSRG FORMALISM

In this section we will develop our scheme for im-
plementing the RG for dynamics in real space. First,
we need to recall some mell-known properties of the
RSRG»

It is easy to show that Eq. (2.22) satisfies Eqs.
(2.7) and (2.10). The key point is that Vl'J""l IV, P
does not depend on the spins ~;, cd, . . . It is easy
to develop a systematic method for extracting the
coefficients V"' [cr] V "J' [cr], .. . . , V.""-'[cr], . . .
from a given operator D [o ~a']. In examples which
we will discuss in a companion paper" we will never
go beyond three spin terms, and we will confine our-
selves to very simple choices for the 8' functions.
The general form, however, must be kept in mind
when examining the terms obtained in any calcula-
tion.

A. Review of basics in the static RSRG

Let us consider a set of Ising spin variables
o.=—[cr~, o2. . . . , crH ] on a lattice. The renormaliza-
tion-group transformation function T[~[cr] maps the
set cr onto a new set p, = (Ic, &, p2 . . ] of spins lo-
cated on a lattice geometrically similar to the initial
one but having a larger lattice constant. If the initial
Hamiltonian is designated by II[cr], one defines the
Hamiltonian H [Ic,] on the new p, lattice by the rela-
tion

eHlgal X eHl rl T[ c~ ] (3.1)

The demand that the partition function be invariant
under this transformation requires that the transfor-
mation function satisfy the normalization condition

X T[p, ~cr] = I (3.2)

With the exception of this normalization condition
there is no restriction on the choice of T[tc. l cr]
Physical intuition as to the form of the desired
transformation and ease of calculation are the main
criteria' used in the selection of T[p~a.].

As a nontrivial example let us consider a system of
Ising spins on a tmo-dimensional triangular lattice.
The system is discussed extensively in Ref. 5 and
mill be the system me concentrate on in this paper.
Let us divide the lattice into triangular cells, drawn so
as to preserve the symmetry of the lattice (Fig. 1).
Each cell will correspond to a new spin, p, ;. %e will

use an index i to designate each cell (and hence each
fc,;). The three o spins in cell i are designated a;, ,
cJ

2
Q

3
w here the vectors a ~, a 2, a 3 are defined
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With this choice for To one can calculate H [p, ] as a
cumulant expansion in powers of the intercell cou-
pling A.. The following results are obtained: starting
with nearest-neighbor interactions only„ to first order
in I]] only nearest-neighbor interactions are generated.
The new coupling constant K' is given in terms of
the initial K, by the first term on the right-hand side
of Eq. (3.9a) below.

To second order, couplings between second- and
third-nearest neighbors are generated. These cou-
plings must be included in the initial Hamiltonian. If
we call these couplings L and M, respectively, the re-
cursion relations are given by:

K'=2v K+4v K (I+r —2v') +3Lv +2M v'

FIG. 1. Two-dimensional triangular lattice divided into
three spin cells (labeled by a cell index i in the text) and the
set of basis vectors a~, a2, a3.

in Fig. 1. Following Niemeijer and van Leeuwen'
(NvL) we will consider all intracell interactions to be
of zeroth order and all nearest-neighbor intercell cou-
plings to be of first order in X (X to be set equal to
one at the end of the calculation).

A widely studied class of RG transformation func-
tions corresponds to assuming that T can be written
as a product over cells, i.e.,

L'= v K'(I +7r —gv ) + v M
M' = 4K'v'(r —v')

Here we have defined the quantities:

r=((r;, (r )o, a ~a'

~i a i ~ 0

where the average is defined by

(,f(o))p—= QPp[a] f (a)

(3.9a)

(3.9b)

(3.10)

(3.11)

(3.1 2)

To[pl~] = g T'[pl~] (3.3)

The subscript 0 signifies that T does not include any
interce11 couplings. The transformation function for
the ith cell, T'[p~o. ], satisfies

gT'[p, ~~] =1, (3.4)

and can be written in the general form

T'[p, (~] = —,
' [1+p, ;y;(~)1 (3.5)

where @;(o) depends only on the three o spins in

the ith cell.
It is convenient to choose T[ p~ a.] to be invariant

under the flip of all p, and o- spins. Consequently we
require @;(o.) to be an odd function of the o spins in

the ith cell. If we further demand that @; be a sym-
metric function under interchange of the three spins
in the cell then it can be written in the form

$;((r) =N((r; fo )—(3.6)

where N and .f are arbitrary constants, o-; is the total
spin for the ith cell

l I02 ICt2 i+3
T= (3.7)

C~i ~i at~i a2~i a3 ~ (3.8)

and a- is the product of the three spins in the ith cell

where Pp[ ]ois the probability distribution governing
the uncoupled cells. Since we assume $;(a.) is sym-

metric in the three spins in cell i, v will not depend
on the value of the basis vector a.

One appealing choice for @;(o) is given by the
"majority rule" due to NvL where

@;((r)=sgno;r. = ,
' ((r;r ~—) (3.1 3)

and corresponds to N = —, and f = I in Eq. (3.6). It

is easy to show that the recursion relations given by

Eq. (3.9) are equivalent to those given by NvL in the
particular case where Q;(o.) is given by Eq. (3.13).

B. Basic RSRG transformation for the
time-evolution operator

In the dynamical problems of interest to us the sys-
tem is specified by the Hamiltonian H [o] and the
SFO D [o.

~

a.']. If we want to apply RG ideas to this
problem we want to design transformations which

map the old H[a] and D[a-~a. '] onto their counter-
parts H[p, ] and D[p, ~p, '] defined on the p, lattice.
We understand the mapping H[a] H[p, ]. The
problem is with the mapping D D„. The difficulty
is that we now have to map one operator onto anoth-
er operator.

It is useful, in developing the appropriate transfor-
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rnation, to introduce the time-evolution matrix'.

G, [o.~o.'] =e 8,P[o') (3.14)

where 8 is the matrix setting cr = a ' of all lattice
ET, CT

sites. From this quantity we construct any time
correlation function of the form

D
(rrIrrj ' ' ' oke om ' ' ' rrn)

We see, for example, that the spin-spin correlation
function is given by

Cj( i) = X X rrjG, [ rr
~

cr' I a,' = ( rr;e o; )
a

(3.15)

where (A ) —= X P[o]A is the usual equilibrium

average. Remembering the RG transformation (3.1)
for the probability distribution and noticing that
G, [o.~o'] is a matrix depending on two sets of spins
it is natural to assume that the new time-evolution
matrix for the p, lattice be defined by

G [pip'I = X X T[plo)G [o lo'I T[p'I o''] 0.16)

In this case there are two constraints on the mapping
functions T, The first constraint is the same as in the
static case, that is Eq. (3.2). The second constraint
follows from requiring that the zero-time form of
G,[o ~o'I,

which is, as desired, the time correlation for a set of
coarse-grained spin variables. This means that we
must choose $;(o) to represent the effective spin for
a cell. Physically it makes sense to identify @;(o.) as
the dynamically slowest varying odd spin variable in a
cell. We will return to this point later.

Before going further we should comment on the
constraint on T[p~ o.] given by Eq. (3.18). In the
case of the majority rule choice for $;(o.) given by
Eq. (3.13) one has that

T'[p, ~~]T'[p, '~~] =8 T'[p[~l (3.22)

G, [cr[cr'] = i „l dhe'*'G—([(r/ o'] (3.23)

Using the definition of G, given by Eq. (3.14) we can
easily carry out the time integration to obtain

and Eq. (3.18) is satisfied directly. For other choices
for $;(o) the quantity (T [op~(r)To[p, '~o]) is not, in
general, diagonal in p, and p, '. We will discuss this
point further in Sec. IV.

At the beginning of this section we indicate that we
are interested in finding the SFO D [p, ~ p, '] appropriate
to the p, lattice. At present we have only an expres-
sion for the time-evolution operator G, [p~p, ']. We
must now indicate how one can extract D„ from
G, [p~p, ']. This identification of D„requires some
formal development. Rather than working directly
with G, [p~ p, '] it is more convenient to introduce the
Laplace transform

G, ,[o lo'] =8,P [o]

be preserved by the transformation

(3.17)
G, [(r~o'] =R .(z)5,P[o].

where R (z) is the resolvent operator

(3.24)

G o[pl p') =-&„„P[p)= G[pl p'I-
= ( T [p ~

o'I T [p'( o I ) (3.18)

This definition of G, [p~ p, 'I is a physically sensible
dynamical generalization of the static RSRG pro-
cedure. To see this, consider the spin-spin correla-
tion function generated by G, [p,

~ p, ']:

R (z) =(z —iD ) '

Using the operator identity

zR (z) =1+iR D

we can write

(zg =iD[o ~o.))G,[a.~o.']=5,P[cr)

(3.25)

(3.26)

(3.27)

C,'(r) = g X p, , G, [pl p'I p,'

o'

x T [p'i o ']p,
' (3.19)

Here, and in what follows, summation over all config-
urations for barred spin indices is implied.

It is then natural, using Eq. (3.18), to define the
operator D [p~ p, '] by the relation

(zg „—
—iD[p, ~p', z])G, [p~p, ']=8 P[p,], (3.28)

Xp;To[plo) =@;(o) (3.20)

and

If the mapping function T is of the product form
given by Eq. (3.3) then

where we have taken into account the fact that
D [p~ p, '] may depend on z. We are now left with the
task of deriving an expression for D[p~ p, '] in terms
of D [ o

~

cr'] and T [p ~
o ]. The derivation that fol-

lows parallels methods used in the memory function
formalism for fluids. " Starting with the Laplace
transform of Eq. (3.16),

C,'(r) = (@j(~)e @,(~) ) (3.21) G, [p I
p') = ( T [p, ') o)R.(z) T[p ) ~ I ), (3.29)
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where R (z) is the same as R (z) but with the D
replaced by D, one can easily show, using the
methods developed in Ref. 21, that D [p, ~ p, ';z], de-
fined in Eq. (3.28), is given by

where we have specified that all the z dependence
(i.e., the non-Markovian part) of D„ is contained in
D„'. D'„ is given by

D'[p(p']P[p, '] = (T[p, '~~]D T[p~o ]), (3.31)

D [pl p''z] = D'[pl p'] + D'[pl p''z ] (3.30) while

D'[pip, ', z]P[p, '] =& ((D T[p'Ia])R (z)(D T[pla']))
—i ((D T[plal)R (z)T[p~a])G, '[p[p, ](T[p, la']R (z)(D T[p'la'])) (3.32)

XD T[p'~a]P[a] =D P[a] =0 (3.33)

that

Equations (3.30)—(3.32) give us well-defined statisti-
cal mechanical expressions for the new SFO on the p,

lattice.
To conclude this section, we note that the funda-

mental constraints imposed originally on D [a
~

a'1 are
satisfied by D[p~p, ']. First, the symmetry condition
Eq. (2.10) is satisfied separately by D'[p,

~ p, ']P[p, 'l

and D'[p~ p, ']P[p, 'l. This is readily seen from Eqs.
(3.31) and (3.32), taking into account that D satis-
fies Eqs. (2.10) and (2.11). Secondly, it also follows
from the result

where A. is an ordering parameter. We assume that
the n =0 terms govern the behavior of uncoupled
cells and the higher order terms couple cells. The ap-
propriate decompositions to be used in practice in

Eqs. (4.1) and (4.2) will be discussed in Ref. 17 and
elsewhere. For now we assume that a theory treating
the interaction between cells as a small parameter will

be useful.
Let us consider first the zeroth-order calculation of

G&[p ~ p, '] involving uncoupled cells. In this case the
SFO D involves only intracell coupling and is of the
form

(4.3)

QD[p~p, ']P[p, '] =0, (3.34) where D '
operates on the cell i only. The static

properties of this system are governed by the Hamil-
tonian

ensuring that the new equilibrium probability distribu-
tion is invariant under time translations generated by

D„.
Ho[~] = /Ho[~] (4.4)

IV. EIGENVALUE APPROACH TO THE RSRG

A. Dynamic RSRG to zeroth order in the ce11 coupling

H[ ] = X )."H'"'[ l
n 0

(4.1)

In the previous section, we have developed a for-
mal structure for carrying out dynamical RSRG
transformations. We have seen how the new genera-
tor of correlation functions, G, [p, ~ p, '] and the new
spin-flip operator D [p, ~ p, '] are defined in terms of
D [a.

~

rr'1 and the RG transformation function
T[p. ~o ]. In a practical implementation of this for-
malism we realize from the very beginning that we
cannot evaluate the sums in the mapping transforma-
tions for H[p] [Eq. (3.1)] and D[p~p, '] [Eqs.
(3.30) —(3.32)] exactly. In essentially all cases of
physical interest we must resort to some approximate
method of evaluation of these averages. Let us as-
sume that H[a. ] and D can be written as a power
series in A. ,

The associated probability distribution is a product of
contributions from each cell

H' [cr
Pp[a. ] = g Pp [a ] = g e ' Hp[ ]le (4.5)

and g' means we sum over the degrees of freedom
of the spins in the cell i. The RSRG transformation
for the statics is relatively trivial in this case

Po[p] = QPp[cr] p[T~ p]a= g z
=2 ", (4 6)

where n is the number of spins per cell and Pp[p, ] is

independent of p, . -i, 0If matters are arranged properly then D
'

and
Hp [&rl are compatible in that the constraints given
by Eqs. (2.7) and (2.10) are satisfied cell by 'cell. For
a cell with three spins the operator D' is a 2' x 2'
matrix. In practice it is relatively easy to diagonalize
this matrix" in order to obtain the eigenfunctions
and eigenvalues defined by

Dp &I&;"(a) = —X„&i&;"((r) (4.7)
(4.2)

It is easy to see that the p s can be chosen to form a
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complete and orthonormal set for a given cell with
respect to the weight function Po[a]. Using these
results it is easy to calculate:

Eq. (4.16) we see that for short times

u'(t) = XX„(c")', (4.i7)

D0(
G'[pip'] = (To[p'lu]e To[ply])o

D
I', Of

Tp jx (7 8 T p, g 0
I

(4.8)

while for long times the smallest X„, (X~) will dom-
inate the sum over n and

Using the completeness of the cell eigenfunctions we

can write

u (t) = X, ——ln(c')'I
t

T'[pla] = —,
' 1+p,; Xc"y,"(u)

n

(4.9a)
1+ X e " ' (c"/c')' . (4.18)

n»

where

(4.9b)

Using the eigenvalue Eq. (4.7), the orthogonality for
different n of P;"(a.), and noting, since $;(r) is odd
under spin flips, that (4t;(cr) )o=0, we can explicitly
average over the a. variables in Eq. (4.8) to obtain

G'[pip'] =II —, 1+p p'Xe
I n

(4.10)

(4.11)

Looking back to Eq. (3.18) we see that we desire that

G'-o [pip'] = &„„Po[p']

%e see that this condition can be satisfied if we
demand that @;(a.) be normalized to unity

(4.12)

(4.13)

Using this result in Eq. (4.10) we can, after some
rearrangement~ rewrite it in the form

G,'[p, lp, '] =e Po[p]8 (4.14)

where the operator D„has the matrix elements

D'[p,
l p. '] = —$ —,[u'(t) ]p, ;p, A", ,

l

and the new inverse spin-flip time is given by

(4.15)

u'(t) = ——ln Xe "(c")' (4.16)

Notice that D [p, l p, '] is of precisely the same form as
D[a la'] given by Eq. (2.13) with the interaction
between spins set to zero. The new operator has a
time-dependent inverse spin-flip time. Looking at

where we have used Eq. (4.6). Note that at t =0, us-

ing the completeness of the p;"'s we have

For long times u'(t) = h. ~ (the eigenvalue for the
slowest mode). However it is very worrisome that
the long time decay to this constant goes as 1/t which
indicates a long range in time interaction not included
in the original problem. It has been a more standard
procedure, in carrying out coarse graining in time-
dependent problems, to work in frequency space and,
as part of the coarse graining, to keep only the small

frequency contributions. If we work in the frequency
representation, we find that we can compute directly
the matrix elements of the operator D„(z) and they
are local in time in the sense that the small z limit is
well behaved. This procedure is not dissimilar to the
analysis that is carried out in momentum space in

treating the generalized Langevin equations. In that
case one works with the equation of motion for a sin-

gle field and investigates the way it behaves under re-
normalization. This is not as general as looking at
the change of the complete pseudo-Liouville operator
under the RG. Indeed even though the individual
matrix elements are well behaved, there are an infin-
ite number of them which correspond to new cou-
plings which build up in time. These new couplings
are highly nonlocal in space and very undesirable
from a RG point of view. The time rep'resentation
and frequency representations are complementary
since D„(t) is a local operator in space but nonlocal
in time, while D„(z) is local in time, but nonlocal in

space. Either way we look at the problem we see that
we are in trouble without further constraints in our
RG procedure.

Summarizing these results we see that for a given
operator Do and a given mapping function T[p, l u]
our RSRG procedure leads to complicated and physi-
cally unsatisfying results to zeroth order in the cou-
pling between cells. As we shall see the problem is
that we cannot choose the mapping function T[p, la]
arbitrarily once we are considering dynamical prob-
lems.

These technical problems in zeroth order, however
difficult they may appear, are actually easily
remedied: we simply choose the function $;(a.) in
T' to be one of the odd eigenfunctions of Do . If we
choose Q;(o) =P, (a.) then c"=5 „and then Eq.
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(4.17) reduces to

n'= Am (4.19)

discussed in Sec. 111 we find first, using Eq. (4.24) in

Eq. (3.31}that for uncoupled cells

and our long-range interaction problems are eliminat-
ed.

Physically we want to choose m = j. where Q is the
odd eigenfunction whose eigenvalue A.] is the small-
est in magnitude. In general the trivial $0=1 even
eigenfunction corresponds to the lowest (ho=0)
eigenvalue, and the next eigenvalue, that is, the
lowest nontrivial eigenvalue, corresponds to an odd
mode. It is then natural to consider the cell transfor-
mation:

T'[p. l~l = —'[I + p, ;4 (~)] (4.20)

D To[pl ~] =——,
' g T"'[p

l ~]ki4 (o )p,;, (4.21}

T"'[pl~] = X T'[p, l~]
kAi

The above expression can be rewritten as

(4.22)

DoT[pl~]= ——,'&i XXTo[p'I~]p p'A„"'„

(4.23)

In this case the effective "block spin" i]i (o.) corre-
sponds to the most slowly decaying odd function of
the spins in a cell satisfying the normalization condi-
tion (4.13). It is reassuring that this coarse graining
in time prescription for specifying the "average" spin
leads to a form for @;(cr) in agreement with Eq.
(3.6) with the constants W and f now determined by
the form of D .

It is convenient, in order to appreciate the utility of
Eq. (4.20) to look at the effect of applying D to
To[( l~]:

Do[pl p']Po[p'] =D'[pl p']Pp[p'] (4.27)

Turning to the calculation of Dfi [p, l p, '] we see that
the last term on the right in Eq. (3.32) is readily
shown, by using Eqs. (4.24) and (3.29) to cancel ex-
actly the first term. Hence Do vanishes. We see,
therefore, in this case that the renormalized operator
D [p, l

p'l is given by Eq. (4.25) using both the time
and frequency representations.

We have seen, therefore, how in this particular ex-
ample it is possible to choose a transformation
T[p, lcr] which, is clearly appropriate from both a
physical point of view and also from a calculational
point of view. It is extremely convenient since all
non-Markovian terms [i.e., D'(z)] are automatically
eliminated.

As soon as the choice of the @;(a) in Tp[plcr] be-
~ Q

comes tied to the dynamical operator D the recur-
sion relations for static and dynamic parameters may
be coupled. This coupling is not surprising from a
general RSRG point of view. If we return to the re-
cursion relations (3.9) we note that they depend on
the choice of @;(a) through the quantity v defined
by Eq. (3.11). Then, with $;(o.) given by Eq. (3.6),
we see that the static recursion relations depend on
the arbitrary parameters Wand f The majority ru. le

rather arbitrarily sets N =
2

and f=1. Other choices

are certainly admissible. In the dynamical case N and-0f are fixed by the choice of D . We will show else-
where that this apparent coupling between the statics
and dynamics can be eliminated through the proper
choice for D .

where we have made use of Eq. (3.20). Notice then
that Eq. (4.23) can be written in the form

D'Tp[p, lir] = D„'Tp[p lir 1

where

D'[pl p'] = X—', (k, )A"—',p, p, ,
-' .

f

(4.24)

(4.25)

Equation (4.24) is in the form of an eigenvalue prob-
lem in cr space where the eigenvalues are operators
in p, space. This.equation is extreme)y useful. If we
return to Eq. (4.8) with To given by Eqs. (3.3) and
(4.20) we see, on repeated use of Eq. (4.24), that

S. General eigenvalue method

In the last section we showed that through a partic-
ular choice of Tp[p, l o ] we could eliminate all non-
Markovian behavior in our RSRG transformation for
uncoupled cells. We show in this section how one
can eliminate non-Markovian behavior to all orders
in perturbation theory in the expansion parameter A.

introduced in Eqs. (4.1) and (4.2). Similar ideas
were used elsewhere in the context of RSRG
methods for treating quantum spin systems. Let us
assume that we can find a T[p, la.] satisfying the
eigenvalue like equation

Dor
G,'[pip'] =e "&To[a'l~]To[pl~])o

D[~l~»[pl~] = &[pip»[pl~] . (4.28)

Doi=e "8 Po[p] (4.26)
and the normalization condition Eq. (3.18}. Using
Eq. (4.28) in Eqs. (3.31) and (3.32) we easily find
that

in agreement with our previous analysis. Similarly, if
we return to the frequency representation for D(z), D'[p, lp.

'.
,z] =0, (4.29)
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D [p I
p'] = D*[p I

p'] = &[pl p'] . (4.30)

(4.32) and equating the coefficients of powers of k
we obtain'

Using Eqs. (4.28), (4.30), and (3.18) in Eq. (3.16)
leads directly to the very nice result

D'[~la] To[pl~] =Do[pl p] To[pl~], (4.33)

G, [pip, ']=e &8,P[p] (4.31) = D"'[pl p] To[pl ~] D"—'[~l ~] To[ pl ~],
(4.34)

The key result of this paper is that we can obtain a
Markovian RSRG transformation mapping D onto
D~ by solving the eigenvalue equation

6 .T[pI~]=D,T'[p,
I
~]

consistent with the normalization conditions

(4.32a)

$ T[plcr] = I (4.32b)

and

(» p I ~]»p'I ~] &
= 8„„P[p] (4.32c)

The question now is whether we can practically
find a T[p, la. ] satisfying Eqs. (4.28), (4.32b), and
(4.32c). We discuss here the construction of T using
perturbation theory.

We assume that T[p, l
a'] and D„can be expanded

in a power series in A. just as D is expanded in Eq.
(4.2). After substituting these expansions into Eq.

(Tt"'[plrr] To[p, 'a-])o=0, n ) 0

&To[pl

a�]
To[p'Ia]&o=8 „Po[p]

(4.35)

(4.36)

and where To= To. If we then multiply Eq. (4.34) by
To[ p, 'I a ] and average over Po[ a ] we obtain

etc.
Clearly Eq. (4.33) is equivalent to the zeroth-order

result (4.24) and we assume, therefore, that To[p, l(J]
and Do[p, lp, '] are known. The problem is then com-
pletely analogous to standard Schrodinger perturba-
tion theory, D„corresponding to the eigenvalue, and
T to the eigenfunction. In the ordinary perturbation
case, one can always choose the higher-order correc-
tions to a given eigenfunction to be orthogonal to the
zeroth-order part. This is also the case here. Specifi-
cally starting from any zero-order transformation To
we can build an operator T[p, l

a.] which satisfies Eqs.
(4.33), (4.34), etc. , with D„'"' D„'"' and the normali-
zation conditions

X X Po[~] To[p'I ~]D"[~l~'] T"'[p
I
~'] —D'[ p I p] & To[ p'I ~] T"'[pl ~l )o

I

=D"'[pip]&To[p'I ]To[pl ]&o—XXP [ ]To[p'I ]D"'[
I ']To[pl '] (437)

g I

By using the adjoint property of Do and Eqs. (4.33)
and (4.35), it is found that the first term on the left
of Eq. (4.37) vanishes. The second term vanishes
also because of Eq. (4.35) and we are left with:

D"'[pl p'] Po[ p'] = ( To[ p'I ~]D"' To[ p I ~] ) o

(4.38)

So, knowing D~t'I, we can go back to Eq. (4.34) and
determine T ". This requires inverting the matrix

D'[a.
l
a']8, —D'[ p I p, ']8

all of which can be done by using straightforward
perturbation theory techniques. The calculations are
rather long and they are sketched in the Appendix,
where the general expression for T"' is obtained. Of
course, to calculate D„ to first order, one does not
need T~'~, just as one does not need the first-order
eigenfunctions to calculate the energy levels to first
order But Tt'l .is needed to obtain D[p, lp, '] to
second order. Once T"' is found, an analysis of the

second-order term identical to that carried out above
for Eq. (4.34) yields:

D'"[pl p']Po[p']= (To[p'I~]D."'To[ply])o

+ (To[p, 'I ~]D."'T"'[p I ~] &o

(4.39)
It is clear that this procedure can be carried on to any
order desired.

There is, however, an additional problem left and
that is the transformation function T[p, lrr] we have
constructed satisfying the normalization conditions
(4.35) and (4.36) will not in general satisfy Eq.
(3.18). This complication can be remedied by rotat-
ing T[pla. ] in p, space into T[pla]:

(4.40)

and determining S through the normalization condi-
tions (3.18) and (3.2) and the sensible requirement
that S be a symmetric matrix. In practice the deter-
mination of S in a power series in A. is straightfor-
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ward. We note then that T[plo, ] satisfies Eq. (4.32)
with

after using Eq. (4.35) we can write the solution to
Eq. (4.34) as:

D [pip'] = s[plp]D [pip']s[p'lp'] , (4.41) T"'[pl ] =G[ play]

and we can easily evaluate D [p, l p, '] as a power series
in A. once the power series in A. for S and D are
known. This finishes the formal prescription for con-
structing the new SFO D„ in perturbation theory.

We have developed in this section a general for-
malism for carrying out our dynamic RSRG transfor-
mation in a way that eliminates all non-Markovian
effects thus preserving the time-independent nature
of the initial spin-flip operator. The above considera-
tions (together with the Appendix) show that our
method can readily be carried out in practice. Furth-
ermore, the physical interpretation of our transforma-
tion is transparent: the zeroth-order transformation
picks up the slowest independent cell modes. The in-

terested reader can verify that inclusion of T~' en-
sures that the transformation selects the slowest two

cell mode if the intercell coupling is taken as a per-
turba. tion.

Specific calculations using the techniques intro-
duced here are presented in Ref. 17. Additional ap-
plications will be given in future work.
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x(D"'[pip']8 —D"'[ale ] 8 )

x To(P (5 ] (A2)

T r5r)

Formally, the solution to Eq. (A3) is:

(A3)

G[a p, la'p, '] =—

drG[apla'p', r] . , '(A4)

During all formal manipulations we can assume
that a large negative constant is added, if necessary,
to K[crpla'p, '] to ensure convergence. At the end
of the calculation, it is set equal to zero. Note that
Do, D~~, and K „are of the form Eq. (4.1). There-
fore we can write

G[apla p', rl= gG(apla'p, ', r]

—g H;[a@la'p' , r], ,

' (As)

where i is the cell index. To solve for 6;, we expand
in terms of the complete set of cell eigenfunctions

(P (o.) } of Do. We then obtain after some algebra

the result:

G, [o p, l a 'p, ';r]

= $—,'e ' Po[a']p (a)p (a')(1+e ' p, p, ,')

where G [o.p, la. 'p, '] is the Green function

K[a'pla p]G[a plo p, ]

= (Do (al a]&, „D'-[p—(p l& )G [a-p Ia'p, ']

APPENDIX A

Our purpose in this Appendix is to construct the
transformation operator Tt" [p, la], defined by Eqs.
(4.34), (4.35), and (4.36). The problem reduces,
essentially, to that of finding the inverse operator to
Do —Do Of course, this op.erator has To(p, lo. ] as an
eigenvector, with zero eigenvalue. We, therefore,
want to project out any component "along To" [this is

expressed by Eqs. (4.35) and (4.36)]. Hence, we in-

troduce the "transverse" 8 function:

To[p la']Po ' [p, ] T'o[p(o ']Po[o '1, (Al)

(A6)

In a completely similar fashion, we can solve for
H;. The result is the same, except that the sum over
the eigenvalue index I is restricted to the I =0
(ho ——0) and I =1 terms only. This completes our
solution for G [a p, l

o.'p, '] to be used in Eq. (A2).
Let us briefly consider the other quantity in Eq. (A2)
namely D "5 —D" 5

The operator Dt"[o.lo'] in many cases can be
written in the form

(A7)

where sum over barred configurations is implied. We
see that g satisfies the condition ( T 5 ) o =0. Then,

where i and j are neighboring cells. Using the ex-
pression (A7) to compute Dtt~To, and Eq. (4.38) we
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obtain

IJ [cilia]Ta[p(a] —DC''[p(gs]Ta[p(a]

=—g Tat"'[p, (a]C;,[p, (a] .

C [I (cr'] =5 '",D"[crea]T'[p]a]
(Ag}

lengthy, but straightforward manipulations

U'[o'p~cr'g'] =J dr —(1+e p,;p, )

x (1+e p, .p, .') p

(Alo)
Substituting the results (AS) and (A6) in Eq. (A2)
we obtain

T"'[p~o] = —g To'" [p(aKy[P[o]

Substituting this expression, and that for C [Eq.
(AS)] into Eq. (Ae) we obtain the result in Tc'i:

(A9)
T"'[p~a]= X T,""[g~a]r'J(a), (A11)

where the coefficient O'J is given by, after rather where the matrix elements, r''(a. ) are found to be:

r J (a) = —Xy/(a) yj (~)0(I m) ((Imbed "i10)&-+ (Im JD "(O~)&,.) + ~'~'
(lm JD [11)

I,m t+ &m —~i A. t + A.~ —2A. i

(A12)

The matrix elements of D are given by

8nd

(Im D~'(i™)= X Xp,'[o]p'[a]y'(cr) y (o)D'J[a~o']y, '(a') q~ (a'),

Q(l, m) =1 —(Sta+Sg, i)(S;a+8 i)

(A13}

(A14)

Equations (Al 1) and (A12) constitute the final result of this Appendix.
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