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We present results of Monte Carlo variational calculations for the ground state of the
Lennard-Jones fluid. The Jastrow pseudopotential contains a correlation structure„ that has

been suggested to manifest the zero-point motion of rotons, at a distance of the order of first

an& second shell of neighbors. We find an improved ground-state energy, and its density

dependence is in fair agreement with the "exact" result. The variational I;(r) and S(k) are now

in excellent agreement with the "exact" result. A comparison is made with the functional

minimization approach. Computation of S(k), at finite temperature is performed with Penrose's

density matrix by the Monte Carlo method and by application of perturbation theory of classical

liquids.

I. INTRODUCTION

As a result of numerous variational calculations
and of Green's-function Monte Carlo calculations
(GFMC) we know' that a substantial part of short-
range correlations present in a Lennard-Jones (LJ)
Bose fluid is described by a Jastrow wave function

QJ +exp[ ——,
' u(l r; —r, l)1

and the most important feature of the "pseudopoten-
tial" u (r) is its short-range behavior for r & a. (a. is
the length parameter of the LJ potential). This sim-

ply reflects the fact that the impenetrability of the
atomic cores has a major role for many physical prop-
erties of the system. ' This explains why still today
the Jastrow wave function is very often used together
with the McMillan parametrization, ' u = (b/r)', for
the pseudopotential.

A few years ago De Michelis and one of the
present authors4 considered a larger family of pseu-
dopotentials and, in particular, they allowed the pos-
sibility that u (r) becomes negative at intermediate
distances. A slightly lower energy and an improved
structure was found, but the large number of varia-
tional parameters present in the pseudopotential, tak-
en together with the statistical errors of the computed
energy inherent to the use of the Monte Carlo
method, did not allow a unique determination of the
best pseudopotential. The presence in the LJ poten-
tial both of an attractive part and of a repulsive part

makes this problem particularly difficult, and for this
reason it was decided to make a detailed study' of
the pseudopotential u (r) of Bose particles interacting
with a repulsive interaction only. In Ref. 5 (hereafter
called I) the quantum hard-sphere system was stud-
ied and in Ref. 6 the Yukawa repulsive interaction
was considered.

In both cases the best energy is found when u(r)
has some structure at intermediate distances roughly
in the region of the first maximum and of the follow-
ing minimum of the radial distribution function g (r).
This structure in u (r) not only lowers the energy but
a significant improvement in g (I ) is obtained when
the variational results are compared with the "exact"
results' of GFMC calculations. On the basis of com-
parison of the shape of u (r) with the result for the
ground state of a simple excitation model of the sys-
tern, it was concluded that the intermediate distance
structure present in u (r) reflects the zero-point mo-
tion of short-wavelength excitations, i.e., of those ex-
citations corresponding to rotons in 4He. Guided by
these results we have considered again the Lennard-
Jones fluid and in this paper we present the results of
our Monte Carlo variational calculations for a wider
family of "pseudopotentials" u (r).

The necessity of parametrizing the pseudopotential
u (r) is inherent in our use of the Monte Carlo
method to calculate g(r). This is not needed with
the approach that finds the best form of u (r) using
the Euler-Lagrange equation. ' " On the other hand,
to implement this latter approach one is forced to in-
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troduce some approximation, for instance an approxi-
mate integral equation like the hypernetted chain
equation that relates g (r) to u (r). The comparison
of the result of such approximate functional optimi-
zations of u(r) with our Monte Carlo variational
results for a rather wide family of trial pseudopoten-
tials will shed light on the merits of the two ap-
proaches and on the role of the approximations in
functional minimization computations.

The contents of the paper are the following. In
Sec. II we give the results for the energy for different
parametrizations of u(r). The major part of the
results are for the experimental equilibrium density
of 4He but few computations have also been per-
formed at different densities. Spatial correlations are
considered in Sec. III and our u (r) is compared with

the result of calculations based on the Euler-Lagrange
equations and of the excitations model with and
without inclusion of backflow in the wave function of
rotons.

The effect of temperature on the structure factor
S(k) is computed in Sec. IV on the basis of
Penrose's density matrix together with our wave
function for the ground state. The computation is
performed with the Monte Carlo method and with an
application of the formalism of the perturbation
theory of classical liquids in the "exponential" approx-
imation. Finally in Sec. V we discuss our results.

II. GROUND-STATE ENERGY

The expectation value of the Hamiltonian

(H)EJ—= = —p J d r v(r)+ '72u(r) g(r), (3)
N 4m

j

where p = N/ V is the average density. The usual
Metropolis Monte Carlo method' is used to compute
g (r) from which EJ can easily be obtained by numer-
ical integration. We have considered systems of 64
particles in a cubic box with the nearest image con-
vention; for other details of the numerical method
the reader is referred to I.

The Monte Carlo computation produces g (r) for
r & —,

' I, where I is the box side. The tail correction

to the energy, i.e., the contribution to the integral
[Eq. (3)] from distances r & , L, and to the struct—ure

factor

S(q ) = I +p Jl d'r [g (r ) —I ]e'~' " (4)

X'7 + —, X v(rj)
2fl1

& i WJ

taken with the Jastrow wave function [Eq. (I)] can
be written in terms of the radial distribution function

g (r) and the energy per particle reads

have been computed with a g (r) extended at r & L—
with the method used by Whitlock et al. ' g (r) is
represented by a function g (r) which describes
damped oscillations, and the relative parameters are
obtained by minimization of the deviation between

g (r) and the Monte Carlo g (r) for r ( Lb—ut

beyond the first maximum of g (r).
The pair interaction v(r) is assumed to be of the

Lennard- Jones form

v(r ) = —4e[(rr/r )' —( o/r) "] (5)

with the de Boer-Michels parameters, e = 10.22 K and
o =2.556 A. The Monte Carlo variational calculation
starts with an ansatz on the form of the pseudopoten-
tial u (r) and then the parameters contained in u(r)
are determined by minimization of the expectation
value [Eq. (3)) of the energy.

As discussed in the introduction, our main purpose
was to determine if u (r) contains an intermediate
distance structure in addition to the short-range part
which controls the close encounters between two par-
ticles. Therefore, we write the pseudopotential in the
form

u(r) =uo(r) +u'(r) (6)

where uo(r) is this short-range part and in u'(r) we
allow some intermediate distance contribution. One
should keep in mind, however, that this division of
u (r) in two parts is only a convenient but not unique
representation of u(r). More precisely uo(r)
represents any of the short-range functions which
have been tested in previous variational calculations.
These functions are characterized by being a decreas-
ing function of distance and concave upwards.

Three forms for uo(r) have been used in the litera-
ture: the McM illan form'

uo(r) = (b/r)'

the related form4

uo= (b/r )'exp[ —(r/ro)']

and the form2 that we call Kalos-Levesque-Verlet
(KLV), modeled on the solution of the two-body
problem for the Lennard-Jones potential (see the Ap-
pendix for its analytical form). The two last func-
tions have a shorter range than McMillan's form and
give a slightly better S (k) whereas the energy is al-
most indistinguishable. Most of o0'r computations
have been performed with the KLV form for uo, a
few computations have also been performed with the
other two forms of u 0.

We have considered three different forms for
u'(r) The first is a Gaus.sian and the second is the
derivative of a Gaussian; we call, respectively, u~(r)
and u, (r) the overall pseudopotential

u~(r) = uo(r) + C exp[ —(r —d)'/D2] (9)

u2(r) = uo(r) + C (r —d) exp[ —(r —d)'/D'] . (10)
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These forms of the pseudopotential have been used
previously in the case of the hard sphere and of the
Yukawa potential when uo(r) is the appropriate
short-range function. In both those cases these func-
tions have been found to give an improved descrip-
tion of the system: The energy is minimum for a
nonzero value of C for a suitable choice of the length
parameters d and D. A physical interpretation of the
origin of the term added to uo(r) has been given as
an effect of the zero-point motion of rotonlike excita-
tions and this interpretation will be discussed further
in the next section.

The third form of the pseudopotential, which we
call u3(r), was introduced in Ref. 4 and it reads

u3(r) = uo(r)+ C exp[ —(r —d )'/D']

—A (E(A. —r )+E(r —Z) exp[ —(r —X)'/A'] I

act wave function consists in the fact that even if &J
describes a two-phase state, the low-density phase
corresponds to a finite, even if small, density and not
to the vacuum as it should be.

The short-range pseudopotentials uo(r) do not
describe a self-bound state because uo(r) are decreas-
ing functions of r, the pseudoforce Bu»/8 r is repul-
sive everywhere and the particles tend to occupy as
uniformly as possible any allowed space. Only with
the form u, (r) can the pseudoforce be attractive and
large enough, if A, is large, to give a self-bound state.
The signature that this happens can be deduced by
considering once again the classical analogy: The
equivalent classical system is in the liquid state if the
corresponding pressure p' as a function of density for
fixed V"/k Tahas a van der Waais loop. Once g(r)
is known p' can be computed by the virial relation

»r —= „=p 1 ——p
' d3rg (r) r

p' i ~' 3 du(r)
A. T' ' d).

(12)

where E(x) is the step function, E(x) = 1 for x ) 0
and E (x) =0 for x ( 0. ln Eq. (11), to the Gaussian
has been added a term which is a negative constant
for r & A. , and r & A. goes to zero as a Gaussian.
This added term allows the possibility that u (r) be-
comes negative and this possibility was considered4 in

order to test a wave function that describes a self-
bound state. The Lennard-Jones system we are con-
sidering forms a bound state, i.e., the energy of the
system E(p) has a minimum and its value at the
minimum is negative at a certain density, the equili-
brium density p,q. Let us consider W particles con-
tained in a box of volume V. If the average density

p = N/ V is less than p,» the system forms a droplet,
i.e., there is coexistence between a liquid phase at
density p,» and the vacuum (we are considering the
system at T =0 K so that the vapor pressure is zero).
In this respect a Jastrow wave function can have two

kinds of behavior. Let us take into account the well-

known analogy between a quantum system described
in the Jastrow approximation and an equivalent clas-
sical system, i.e., a system of classical particles in-

teracting with a two-body potential V'(r) and at a
temperature T' such that V'(r)/ka T"= u (r). The
analogy" is a consequence of the coincidence between
PJ' of the quantum system with the Boltzmann factor
of this equivalent classical system. From the known
behavior of classical systems we conclude that,
depending on the shape of u (r) and on density, PJ'

describes either a uniform state or a two-phase state,
a high-density region coexisting with a low-density
one. This last possibility arises only if V'(I.), and
therefore u (r), has an attractive part which is strong
enough. In this case we say that the Jastrow wave
function describes a self-bound state because an
equilibrium density is reached by means of the corre-
lations present in PJ without need of imposing exter-
nal constraints. A difference with respect to the ex-

%e take the presence of a van der %'aals loop in the
compressibility factor m as the signature that a Jas-
trow wave function describes a self-bound state.

%'e present now some of our variational results at
the equilibrium density of He when u»(r) is the
KLV form with the value of its unique parameter a
fixed at the optimum value, a =0.82. Our computa-
tion with uo(r) gives an energy per particle,
E = ( —S.81+0.09) K, in very good agreement with

the previous result, ' (E = —5.82+0.06) K. All er-
rors we quote are standard deviations from the aver-
ages. In Table I we give our results for the pseudo-
potential u&. The center I =d of the Gaussian is
fixed in the neighborhood of the first minimum of
g(r), i.e., r —2o., as the previous computations have
suggested. The minimum energy obtains for a
nonzero value of the amplitude C of the Gaussian.
The effect on the energy is limited, of the order 0.2
K, but well outside the statistical errors. The origin
of this decrease of E is the same as observed in the
hard sphere' and in the Yukawa system: The pres-
ence of the Gaussian. not only enhances the oscilla-
tions of g (r) but depresses g (r) at short distances,
r & cr, the first peak of g(r) becoming sharper. As a
consequence, the potential energy is lowered because
the average (r ") decreases. The kinetic energy T
is initially rather insensitive to the value of 'C because
the positive contribution to T, due to the extra curva-
ture brought by the Gaussian, is compensated by the
decrease of the contribution to T coming from
'7'u»(r) because of the depression of g (r) near the
core. The length parameters d and D at the
minimum have values d =2+ and D =0.6' which

correspond exactly to the values found' for the hard-

sphere system of the equivalent radius a =0.82a-.
Also with the pseudopotential u2 we find a lower-

ing of the energy but in this case the effect is small-
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TABLE I. Monte Carlo results at equilibrium density per =0.365 with pseudopotential u&. E is
the total energy and T the kinetic energy. S~,„ is the value (Ref. 16) of S(k) at the first max-
imum, and i~ is the number of configurations per particle of Monte Carlo run.

Smax

0
0.05
0.10
0.15

0.25
0.35
0.10
0.10
0.10
0.10
0.10

2.0
2.0
2.0
2.0
2.0
2.0
2. 1

2. 1

1.9
1.9

0.6
0.6
0.6
0.6
0.6
0.5
0.6
0.5
0.6
0.5

—5.81 + 0.09
—5.90+ 0.07
—5.98 + 0.06
—5.80+ 0.06
—5.71 + 0.10
—5.62 + 0.09
—5.98 + 0.06
—5.84 + 0.06
—5.99+ 0.10
—5.90 + 0.09
—5.83 + 0.07

13 ~ 84
13.84
13.85
13.96
14.11
14.33
13.91
13 ~ 89
13.88
13.84
13.96

1.252
1.262
1.274
1.280
1.298
1.316
1.284
1.268
1.279
1.275
1.278

5,700
6.240
6.240
6.240
3, 120
3.120
6.240
7.800
3.120
3.120
6.240

'Reference 16.

er, of the order of 0.1 K, and we do not report the
results. It should be noticed that in the case of the
Yukawa system it is found that u2 gives a signifi-
cantly lower energy than u~. We do not know the
origin of such a different behavior but we suspect
that it is due to the rather different shape of the
short-range part uo in the two cases.

In Ref. 4 the pseudopotential u3(r) was con-
sidered, and numerous short Monte, Carlo runs for
different values of the length parameters d, D, A, , and
A were performed. This permitted us to fix our at-
tention on two different sets of parameters called o,

and P, the values of which can be found in Table II.
Expression (g) was used for uo but the use of the
KLV form of uo does not alter the results. ' The a
pseudopotential was found to give the lowest energy'
whereas the p gives a higher energy but a good g (r)
when compared to the exact results. We have per-
formed numerous new computations with the param-
eters of u3 in the neighborhood of those correspond-
ing to the a and p sets. The results of the longer
Monte Carlo runs are given in Table II. In the first
part, p-like pseudopotentials are considered and the
minimum energy is —5.88+ 0.06 K for the set of
parameters that is labeled P' in the table. The gain in

energy with respect to the uo pseudopotential is mar-
ginal but the short-range order is much improved:
For instance, the height S,„of the first maximum"
of the structure factor $(k) is 1.31 as compared to
the "exact" value 5,„=1.32 and to the value
S,„=1.25 corresponding to uo. Moreover the P'
pseudopotential describes a self-bound state as it can

be seen from the slightly negative value of the pseu-
docompressibility factor m. The p' pseudopotential
does not represent an absolute minimum, however,
and in fact we find a significantly lower energy,
E = —6.10+0.05 K, for the pseudopotential which
we call o,

'
in Table II and which has the same length

parameters of the set o.. Because of the large
number of parameters contained in u3 we cannot
claim that this is the absolute minimum but, on the
basis of the results of Table II and of numerous oth-
er short runs that we do not report here, we are rath-
er confident that the pseudopotential o.

'
is at least

close to the optimum pseudopotential in the family of
functions u~, u2, and u3. As can be seen in Table II
the o.

'
pseudopotential gives a rather large positive

value of m because the attractive part of u3 has small
amplitude and therefore this wave function does not
describe a self-bound state. In fact that p' as a func-
tion of p does not have a van der Waals loop.

A summary of the results of Jastrow variational
calculation at the experimental equilibrium density is
given in Table III. With the smooth pseudopotentials
uo the kinetic energy turns out to be rather close to
the "exact" value but a large discrepancy is present in
the potential energy. With the new pseudopotential
u3 we get a slightly worse kinetic energy but this is
compensated by the substantial improvement in the
value of the potential energy. We notice also the
good agreement with the result of an Euler-Lagrange
variational calculation' that uses the Monte Carlo
method together with a separability hypothesis,
A defect of previous Jastrow variational calculations
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TABLE II. Monte Carlo results at po- =0.365 with pseudopotential u3. m is the pseudocompressibility factor (12).

D/o- E
(K.)

0
0.25

0.15
0.25
0.3S
0.45
0.15
0.25
0.35
0.15
0.25
0.3S
0.10
0.20
0.25
0.30
0.20
0.25
0.40
0.20
0.30
0.40
0.20
0.30
0.40

2.0
2.0
2.0
2.0
2.0
1.9
1.9
1.9
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8

0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6

0
0.6
0.7
0.7
0.7
0,7
0.7
0.7
0.7
0.7
0.7
0.7
0.5
0.5
0.5
0.5
0.4
0.4
0.4
0.3
0.3
0.3
0.2
0.2
0.2

1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.2S

1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50

1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15

1.15

1.15

1.15
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

—5.81 + 0.09
—5.58 + 0.08
—5.53 + 0.08
—5.71 + 0.08
—5.64 + 0.07
—5.57 + 0.10
—5.54+ 0.08
—5.78 + 0.07
—5.69 + 0.08
—5.57 + 0.11
—5.88+ 0.06
—5.84+ 0.06
—5.63 + 0.11
—5.84 + 0.08
—5.92+ 0.08
—5.89 + 0.08
—5.96 + 0.08
—6.02 + 0.05
—5.85 + 0.11
—5.85 + 0.07
—6.10 + 0.05
—5.94 + 0.09
—5.93 + 0.10
—6.03 + 0.09
—5 ~ 86+ 0.10

13.84
14.41
14.38
14.43
14.67
14.85
14.39
14.38
14.51
14.26
14.26
14.34
13.97
13.96
13.97
14.03
13.93
13.93
14.13
13.93
13.96
14.08
13.90
13,98
14.11

4.55
0.21

—
1 ~ 22

—0.25
0.75
1.71

—1.36
—0.49

0.395
—1.51
—0.71

0.92
—0.37

0.43
0.83
1.24
1.57
1.96
3.19
2.72
3.52
4.33
3.86
4.67
5,48

1.252
1.304
1.277
1.304
1.318
1.337
1 ~ 278
1.298
1.316
1.277
1.294
1.304
1.257
1.273
1.274
1.286
1.274
1.279
1.298
1.273
1.289
1.298
1.280
1.291
1.300

5.700
4.700
4.680
5.860
6.240
3.120
4.680
6.150
4.680
3.120
7.800
7.800
3.120
4.680
4.680
4.680
4,680
9,360 '

3.124
6.240
9.360
3.120
3.120
3.120
3.120

'Reference 16.

is that the equilibrium density is lower than the ex-
perimental value p„, with the McMillan uo the equili-
brium density being 0.9p,„. We have not determined
the equilibrium density with the new pseudopoten-
tials but few computations (see Table IV) have been
performed at the density po'=0. 32II=0.9 (p,„o')

and we find an energy —S.97 K that is higher than
density p„. A careful minimization of the energy
with respect to the values of the parameters of u3
could slightly lower this value of E but we do not be-
lieve that it can become as low as the value —6.10 K

found at p„. We take this as evidence that the

TABLE III. Summary of Jastrow variational results at equilibrium density pa- =0.365 and com-
parison with the GFMC "exact" result. pm„, x is the value of g(I) at the first maximum. Sm„. x corre-

sponds to the extended (Ref. 16) p(i).

Pseudopotential E
(K.)

V

(K)
~max "'max

"Exact" (GFMC)'
McM illan'

Present result
(best u3)
Funct. minimization
Funct. minimization (HNCE')

—6.85 + 0.03 13.62 + 0.12 —20.47 + 0.12
—5.68 13.67 —19.35

—6.10+ 0.05 ' 13.96+ 0.02 —20.06+ 0.04

—6.02+ 0.10
—5.77

1.32
1.23
1.31

1.34
1.26
1.33

1.28 1.30
1.31

'"Reference 1. ".Reference 10. 'Reference 11.
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TABLE IV. Monte Carlo results at different densities with pseudopotential u3. S,„corresponds to the extended (Ref. 16) g(~').

pa-3 =0.438

0
0.3
0.4
0.3
0.4
0.3
0.4

1.8
1.8
1.8
1.8
1.694
1.694

0.6
0.6
0.5
0.5
0.565
0.565

"exact'"

0
0.3
0.4
0.3
0.4
0.3
0.4

1.5
1.5
1.41
1.41
1.41
1.41

1.0
1.0
0.94
0.94
0.94
0.94

pa. =0.328

—4.52+ 0.10
—4.77 + 0.08
—4.74+ 0.08
—4.91+0.13
—4.82+ 0.12
—4.91 + 0.08
—4.89+ 0.10
—6.39+0.03

18.55
18.74
18.85
18.87
19.05
18.63
18.71
18.61

1.309
1.352
1.362
1.362
1.375
1.349
1.360
1.456

6.240
7.800
7.800
3.120
3.120
7.800
6.240

0
0.25
0.30

1.8
1.8

0.6
0.6

"exact"'

0
0.25
0.30

1.5
1.5

'
1.10
1.10

—5.94+ 0.06
—5.97+ 0.06
—5.96 + 0.06
—6.62 + 0.015

11.84
11.84
11.91
11.43

1.247
1.252
1.257

6.240
6.240
6.240

'Re ference 1.

equilibrium density with u3 is closer to pzq than with
the previous variational calculations.

We have also performed a few computations at
density po'=0.438=1.2 (p,qcr') with the pseudopo-
tential u3 and wc have found an energy E =—4.91
+0.08 K. This value should be compared' with
E = —4.50 K obtained with the McMillan uo and with
F. =—4.52+0.10 K obtained with the KLV uo (r).
Three sets of length parameters have been tested,
onc equal to the a', onc scaled with the ratio
(p,~/p)'~' and one combination of the two. In all
cases the energy is lowered (see Table IV) and the
lowest energy is obtained with the set scaled with
(p«/p)'~3. The strength of the intermediate distance
structure increases with density. This is in agreement
with the behavior found for the Yukawa system.

We conclude that all three new pseudopotentials
(u~, uq, and u3) that we have tested give a better
representation of the ground state of the Lennard-
Jones system that the previous parametrizations of
u(r), the form u3 being the best. The lowering of
thc ground-state energy at the equilibrium density is
-0.3 K and this is roughly one third of the differ-
ence between the previous Monte Carlo variational
result and the "exact" one. The equilibrium density
appears to be closer to thc experimental value and
the lowering of the energy is larger when the density
increases. In this respect one should also keep in
mind that we have not made an extensive search of
the optimum u3 at the higher density and this could
give a still lower energy. The length parameters of

the intermediate distance structure of the pseudopo-
tential at different densities are found to scale with

(p,~/p)' in agreement with previous results ' for
other systems.

III. CORRELATIONS AND PSEUDOPOTENTIAL

A common defect of Jastrow variational computa-
tions' is the underestimate of the short-range order
present in the system as shown by the peaks of g (r)
and of S (k) that turn out to be smaller than the
result of the "exact" computation or of the 4He exper-
imental data. However with thc intermediate dis-
tance structure allowed by the u (r) that we have
tested in this work and in the previous ones, 4 6 the
short-range order given by the Jastrow wave function
is comparable with the one given by the exact com-
putation. The degree of short-range order given by

QJ is sensitive to the strength of the intermediate dis-
tance present in u (r) as can be seen in Tables I and
11 where the value'6 of S(k) at its main maximum
S,„ is given as a typical measure of short-range or-
der. An improvement is found for all three pseudo-
potentials u &, u2, and u3, and it involves not only thc
height of the peaks of g (r) and S (k) but also the
overall shape. It is very satisfying that the distribu-
tion function obtained with the pseudopotential that
gives the lowest energy, i.e., u3(r) with the set a of
the parameters, is among the best that we have ob-
tained. This g (r) is cosnpared in Fig. I with the "ex-
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taken the best pseudopotential at the equilibrium
density. However, in part the effect could also be
real because we know' ' that three-body correlations
in the wave function are important and their impor-
tance is expected5 to increase at higher density.

The present Jastrow variational results give the
best structure obtained so far. Previous Monte Carlo
variational calculations with smooth pseudopotentials
did not give a good representation of the short-range
order and the S (k) for McMillan's uo given in Fig. 2

is typical in this respect. An improvement was found
on the basis of Euler-Lagrange functional optimiza-
tion but these results are not as good as ours. For
instance, an implementation' of this approach that
uses the Monte Carlo method with the approximation
of separability of different wave vectors gives the
maximum of S (k) at k o = 5.5 with S,„=1.28 at the
equilibrium density. The "exact" S(k) has the max-
imum at k o. = 5.3 with S,„=1.32 and our variation-
al result gives the maximum at k o- = 5.4 with

S,„=1.31.
The pseudopotentials that give the lowest energies

have a more or less pronounced structure at inter-
mediate distances, in the region, of the first max-
imum and of the following minimum of g (r). As
can be seen in Fig. 5 the o.

' —u3 pseudopotential be=

comes slightly negative, it has a local minimum in
the region of the first maximum of g (r), and the ab-
solute minimum is roughly at the position of the
second maximum of g (r). Between the two there is
a maximum corresponding to the minimum of g (r).
Such structure is less pronounced" with the u~ pseu-
dopotential when only a shoulder remains, whereas
the P' —u3 has a well developed negative minimum
corresponding to the fact that it gives a self-bound
state. The energies given by these rather different

FIG. 5. Solid line: pseudopotential n' —u3. Dashed line:
pseudopotential P' —u3. Dotted line: best pseudopotential
of Ref. 8.

pseudopotentials do not differ by more than 0.2 K
and this is a manifestation of the insensibility of the
energy to changes of the wave function away from
the region of the repulsive cores. Very subtle corre-
lations are present however because the value of the
energy can rapidly deteriorate for change in u (r)
much smaller than the difference, for instance,
between the n' —u3 and the best u~. Our experience
is that the only changes of u (r) at intermediate dis-
tance that lower the energy are those that enhance
the short-range order of the fluid.

Results of functional minimization of the energy
are in qualitative agreement with our result since this

approach also gives a pseudopotential with some
structure at intermediate distance. In Fig. 5 the u (r)
obtained by hypernetted chain (HNC) functional
minimizations is shown [this is very similar to u (r)
obtained by Campbell and Pinski "]. The shoulder of
u (r) is present at r —1.7—1.8 (the same result is

found in Ref. 11) and this is a smaller distance than
the one we find. %'e believe that this is the reason
why we find a better S(k). A large difference is

present between this u (r) and ours at larger dia-

tances, but this is due to the fact that our parametri-
zation of u (r) does not include the r ' phonon
term' whereas the functional minimization approach
has built in such a term.

The presence in u (r) of some structure at inter-
mediate distances in systems with a completely dif-

ferent pair interaction such as the hard sphere or Yu-
kawa interaction indicates that this structure does not
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directly reflect the form of the pair interaction. The
fact that in first approximation its position scales with

p
' in different systems" points to a collective ef-

fect. In fact it has been suggested in I that this struc-
ture reflects the zero-point motion of short-wave
length excitations, i.e. , of rotons in the case of 4He.

If one starts with Feynman's description' of the
phonon-roton excitations as density fluctuations in a
dense medium, the model ground state for such ele-
mentary excitations has the form of a Jastrow wave

function ff exp[ 2 vp(fp)] where vp is

vp(r)= —$[S '(k) —1]e'"'"N-
k

(13)

vvc(r) = —XXq 'e px[i [k r +2g-„( r )]], (14)N—
k

g-„(r) =Aj, k r/r'

Sip S (k) + kAljj9( k) + k ~Ay'I jp(k)

(15)

(16)

In Fig. 6 vp(r) is plotted when the experimental S(k)
is used in Eq. (13). The main peak of S(k), that is

related to rotons on the basis of Feynman's form for
the excitation energy, e(k) =Ij'k2/2mS (k), induces a

structure in vp(r) at distance of order r/a—1.5—.2.0.
In a better approximation one can take into ac-

count the backflow associated with rotons with the
Feynman-Cohen (FC) wave function" for the excit-
ed states, and this gives a model ground-state wave
function with two- and three-body correlations. If we
consider only the Jastrow contribution, it has the
form +exp[ ——,v„c(r„)]where

1

Here AI, is the backflow parameter in the Feynman-
Cohen wave function and 19 and 1~0 are three- and
four-particle integrals appearing in that theory. '

Equation (14) is the generalization to higher order in

AI, of the first-order expression given in I. We have
comPuted vvc(r) using for Aq, I9, and I jp the values
determined by Padmore and Chester' and vqc is

plotted in Fig. 6. A& and I9 have been computed'
only in the neighborhood of the roton minimum, and
in order to compute v~c, we had to extrapolate these
functions to zero when k ~. We have verified
that this extrapolation does not affect v~c in the re-
gion of interest. From Fig. 6 one notices that v~c
and v0 are similar in that both have a minimum fol-
lowed by a maximum at intermediate distances, and
differ from one another by no more than the P' —u3

differs from the o,
' —u3 as shown in Fig. 5. On the

basis of the similarity between such model wave
functions and the variational one, in particular, be-
cause of the presence of an intermediate distance
structure in both cases, we attribute this feature of
the wave function to the zero-point motion of rotons.

IV. CORRELATIONS AT FINITE TEMPERATURE

The radial distribution function g (r, T) at finite
temperature T is obtained from the diagonal part of
the density matrix (R I a IR ) [R = ( r, , r 2, . . . , r jv) ].
As long as phonons and rotons can be considered as

independent excitations and an excited state corre-
sponding to a single excitaItion has the form

(17)

[.0— (18)
k

the density matrix can be explicitly constructed and
its diagonal part reads'

1

(R lrrIR)=P'exp XIF-„I'(1+e" s ) '

0.5—

r
//

~ ~ ~ ~/ / ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ l ~ ~ ~

~, ~ '
r p

In the Feynman approximation one has
F-„=p-„/(NSp(k))' ' where p-„ is the density fluctua-

tion component p-„= g,. exp(i k r, ) and S,(k) is

the ground-state structure factor, and the thermal
factor in Eq. (18) has the form of a Jastrow term. It
can be written in the form

(R Irr[R ) = jljpexp —g [vr(rjj) —vp(rjj) ]
i&j

-0.5—

\

O~ ~

where

r j

(r)= —X Sp ' (k) tanh —1 e'"' "
yw" N 2k' T

(20)

FIG. 6. Solid line: pseudopotential n' —u3. Dashed line:
v0(I.) [Eq. (13)]. Dotted line: v~c(I.) [Eq. (14)]. and vp(r) is this function at T = 0 K as given in Eq.
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(13). If we use an approximate form for the ground
state, like a Jastrow wave function, then the calcula-
tion of g (r, T) is the same as the calculation of g (r)
in the ground state, the only difference being that in.
place of the pseudopotential u (r) there is a

temperature-dependent one: ur(r) = u (r) + v r(r)
—vp(r) Th. e Monte Carlo method can be used at
this point to compute g (r, T). The feasibility of this
approach has been already tested. " Since the
temperature-dependent term v& —v0 is a weak pertur-
bation compared to u (r), it is also possible to use
one of the perturbation theories of classical liquids. '
This possibility arises because of the equivalence of
the present problem with one of a fictitious classical
liquid interacting with the pair interaction
v'(r) = u (r) + vr (r) —vp(r) as discussed in Sec. II.
%e have tested this approach also and now we
present some of our results.

The function vr(r) contains the contribution from
a11 wave vectors, i.e., from all excitations of the sys-
tern. Then the difference vT —v0 contains a long-
range term of the form r ' due to long-wavelength
phonons and this term exactly cancels'8 the r ' term
contained in Pp and due to the zero-point motion of
the same phonons. Since, in place of the exact Pp,
we use a Jastrow wave function that does not contain
this phonon contribution, we subtract from vT the
phonon contribution vrp", i.e. , the expression (20)
with hack replacing ek and tk/2mc replacing Sp(k).
At temperature above 1.5 K the energy spectrum ek
is found experimentally to depend on temperature
and we use this ek(T) in Eq. (21). A justification
for this has been given in Ref. 22.

g(r)

1.5—

1.0—

1.0 1.5 2.0 2.5 r/G

FIG. 7. g(r) at T =0 K (dots, variational result with
o.

' —u3 pseudopotential) and at T =2.05 K: Monte Carlo
result (crosses) and perturbation theory (solid line).

ur(r) = u (r) +/J. r(r) (21)

where u (r) is again the u' —u, pseudopotential and

As an exemplification of our computations we
present the results at density p = 2.298 & 10'0
at/cm3 [po' =0.3845 = 1.054 (p„o') ]. We have per-
formed a Monte Carlo computation for the ground
state with the o.

' —u3 pseudopotential. This gives an
energy E = —5.90 K (for comparison the McMillan
up gives E = —5.52 K) and g (r) is shown in Fig. 7.
A second computation has been performed with the
pseudopotential

t r

( )
I

dkk
si"kr S, (k) tanh I 2mc

tanh -g k
2~ p "o r 2kqT hk 2k&T

(22)

represents vr —vp —(vr" —vp"). S(k) at low tem-
perature has not been measured at this density and
for Sp(k) we use our Jastrow result for the ground
state. S(k) has been measured" at temperature 2.05
K and we have performed the computation at this
temperature. For ek we have used the model energy
spectrum of Ref. 26 with the experimental value for
the parameters of the roton region.

/J. r(r) is an oscillatory function of r, being negative
in the region of the first maximum of g (r) and posi-
tive in the region of the first minimum. ' Thus it in-

duces an increase in the short-range order of the
liquid as can be verified in Fig. 7 where our result for
gr(r) is shown. This corresponds to a sharpening of
S(k) as can be seen in Fig. 8. This result is in agree-
ment with the previous result at equilibrium densi-
ty." [Feenberg's formula"'for Sr(k), obtained with

the approximation of separability, does not agree with
the Monte Carlo result, as it can be seen in Fig. 8.]

To the problem we have applied the perturbation
theory of liquids in the exponential approximation. '"
/) r(r) represents the perturbing term and u(r) the
reference system. gr(r) is given by

gr(r) = g (r) expC, (r), (23)

where g (r) is the radial distribution function at T = 0
K and CT reads

C (r) = —(2n) '
Jl d'ke'"'"

I —pSp(k)hr(k)
(24)

where Sp is the structure factor corresponding to g (r)
and Ar(k) is the Fourier component of the "opti-
mized" perturbation /J. r(r). /J, r(r) is a function which
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FIG. 8. S(k) at T=0 K (dashed line) and at T=2.05 K:
Monte Carlo result (solid line) and result with Feenberg's
formula (Ref. 22) ST{k)=So{k)coth [~(k)/2k& T] {dotted
line).

coincides with Ar(r) in the physically relevant region
r ) d and it is such that Cr(r) =0 for r ( d. d
represents the diameter of the equivalent hard-sphere
system, ' d =0.81'.. We have verified that varying d
between 0.80cr and 0.83o- makes a negligible differ-
ence on Cr(r) The perturb. ation result for gr(r) is

shown in Fig. 7 and one can see the good agreement
with the Monte Carlo result.

We cannot make a direct comparison of our result
with experiment because no measurement has been
performed at low temperatures and, on the other
hand, we cannot compare directly our Sr(k) with ex-
periment because our Sr(K) reflects also the defi-
ciencies of the Jastrow wave function for the ground
state, deficiencies that increase when we consider
densities above the equilibrium value as discussed in

Sec. III.

V. DISCUSSION

We have found parametrizations of the pseudopo-
tential of the Jastrow wave function of the Lennard-
Jones Bose fluid that, compared with the smooth
pseudopotentials like McMillan's, improve the ener-

gy, give an equilibrium density closer to the exact
value, and in particular give an excellent description
of the short-range order present in the fluid. The
parametrization suggested by De Michelis and Reatto
is found especially successful. The pseudopotential is
characterized by having a correlation structure at in-

termediate distances that is strictly related to the os-

cillations of the radial distribution function. Such
structure is similar to the one found in other sys-
tems, i.e., in the hard-sphere' and in the Yukawa6
Bose system, even if its detailed shape is somewhat
different. This suggests that this correlation structure
of the pseudopotential u (r) is a common occurrence
in all high-density Bose fluids.

In I it has been suggested that the physical origin
of this structure is the zero-point motion of rotonlike
excitations. This suggestion was based on the fact
that a similar structure is found in the pseudopoten-
tial of a model wave function obtained under the as-
sumption that rotons, considered in the Feynman ap-
proximation, can be treated as harmonic oscillators.
We find confirming evidence for this suggestion be-
cause when we also take into account the backflow,
i.e., we start with the Feynman-Cohen wave func-
tion, the model ground state has a Jastrow term with
a pseudopotential that has a pronounced structure at
intermediate distances. %'hile the basic structure of
these u (r), a minimum followed by a maximum, is
the same as our variational u (r), their detailed shape
is rather different and this confirms that such model
wave functions can be considered only on a qualita-
tive basis. Backflow also introduces three-particle
correlations in the wave function that have been con-
sidered in I.

Our variational results are in reasonable agreement
with those obtained by Jastrow functional rninimiza-
tion. s " Also in this approach it is found that u (r)
has some structure at intermediate distances but the
effect is smaller and slightly displaced toward the core
in comparison with our u (r). This explains why we

find an S(k) in better agreement with the "exact"
results and it indicates that the approximations intro-
duced in the functional minimization approach are
not accurate enough. The hypernetted-chain approxi-
mations 9 (HNC) is known to give a rather poor ener-
gy. Inclusion of some of the elementary diagrams"
improves the situation but, from comparison with our
results, it is clear that some relevant contribution is
still missing. In this respect the computations of
Rosenfeld and Ashcroft2' suggest that more accurate
results should be obtained by performing the func-
tional minimization with the HNC equation modified
by inclusion of the contribution of all elementary di-

agrams of a suitable classical hard-sphere system.
Another functional minimization computation'

uses the Monte Carlo method with the approximation
of separability of effects of different wave vectors. It
is possible that this is responsible for the discrepan-
cies that we find with our results for S(k). The en-

ergy is in good agreement with our value. In this
respect it is relevant to recall the discrepancy that we
find' ' between the Monte Carlo computation of the
temperature dependence of S(k) and the result
found under the same approximation of separability
starting from the same density matrix.
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Our variational results are not so good at high den-
sity near solidification, even if-they improve previous
results. However on the basis of our limited investi-
gation of this case we cannot decide if this deficiency
is intrinsic to Jastrow wave functions because of the
presence of important three-particle correlations. In
any case these correlations must also be important at
the equilibrium density because only in this way can
one explain the remaining difference between the
Jastrow value ( ——6.10 K) of the ground-state ener-

gy and the "exact" value ( —6.85 K) and approximate
calculations " support this view.

Our best pseudopotential (the one labeled u' in

Table II) becomes slightly negative, but this is not
enough to give a self-bound state. However, we find
that pseudopotentials exist that describe a self-bound
state and give an energy that, if it is not minimum, is

quite acceptable and, in fact, of the order of that ob-
tained with McMillan's u (r). Such pseudopotentials,
for example, the one labeled P' in Table II, should be
used in those computations in which the use of a
wave function that describes a self-bound state is ex-
pected to be important. Moreover P' —u3 gives an
S(k) almost coincident with the "exact" one so that
this pseudopotential is close to the one that gives
maximum overlap between PJ and the "exact" $0.

It has been shown already" how the structure fac-
tor S (k, T) can also be approximately computed with

the Monte Carlo method at finite temperature. We
have performed some other similar computations that
confirm that the main temperature dependence of
S (k, T) at fixed density consists of an increase and of
a sharpening of the main peak of S (k, T) as the tem-
perature increases. We have also studied this tem-
perature dependence on the basis of a perturbation
approach inspired by perturbation theories of classical
liquids. We have used the optimized "exponential"
approximation and we find good agreement with the
Monte Carlo results. We conclude that in the study
of S(k, T) this perturbation approach is more con-
venient to use than the Monte Carlo one because no

statistical errors are present, and in this way one can
also extend the study of temperature effect to smaller
temperatures where the effect is rather small.
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APPENDIX

The form' KLV of the pseudopotential uo(r)
modeled on the solution of the two-body problem
and on the pseudopotential of the hard-sphere system
is defined by

-u p(r )/2 x —1f(r) =e o =—tanh wo(x), x=r/a
x —1 b E7l

[co+c,(x —1)]e "'
wp(x) =

x —I+co[1+c,(x —I)']e "'" ", x ) I

where

w = 8rr/10A'a', A' = (f'/m o. e) '~' = 2.67

cp = 0.04 1 18, c [
= 0.0515, c2 = 30.18, k = 1 1.56

a is the unique variational parameter of up, m and b

have the value determined in the hard-sphere prob-
lem, m =2 and b =1.2.
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