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Flux penetration in a thin superconducting disk
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Pearl's descrip'tion of a quantized flux line in an infinite thin superconducting film with an ef-

fective penetration depth A is generalized to a thin finite disk of radius R. The presence of the

boundary precludes an exact analytic solution; instead, the problem is reduced to an integral

equation. An approximate solution provides a convenient interpolation between a neutral su-

perfluid film (R && A) and an unbounded superconducting film (R ))A). The lower critical

field H, i and the interaction function between two flux lines are evaluated as functions of R/A.
In the limit of many flux lines with nonoverlapping cores, the flux density is shown to be uni-

form for arbitrary R /A.

I. INTRODUCTION

Recent studies' 4 of thin superconducting films
have led to renewed interest in the detailed structure
of flux lines in such geometries. For an infinite film

of thickness d and penetration depth A. , Pearl's origi-
nal calculation' showed that the interaction energy
is logarithmic for r &A =2k.z/d but changes to an in-

verse dependence for r & A. This behavior should
be compared with that in a bulk superconductor,
where the interaction is logarithmic for r & A. but be-
comes exponentially small for r » A. , Evidently, A

may be considered an effective penetration depth for
a film. The principal difference between a thin film

and bulk material is the long-range tail of the interac-
tion in a film. It arises from the overlap of the fring-

ing magnetic fields in the surrounding vacuum and is

wholly absent in a bulk superconductor.
For a very thin film, A itself can become macro-

scopically large. This possibility has led to the
suggestion that the interaction function in a bounded
film with finite transverse dimensions R might be ap-
proximately logarithmic for all separations' ' if
R & A. Since two-dimensional systems interacting
with logarithmic potentials are believed to exhibit
special and unusual properties, ' " such a situation
would be extremely interesting. To provide a basis
for detailed study of these problems, the present
work considers the structure of a single quantized
flux line in a thin superconducting disk of radius R
and the corresponding interaction between pairs of
such flux lines. In the limit R « A, the circulating
current has the r ' dependence of a rectilinear vortex
line because the superconducting screening effects
are negligible. For R » A, screening becomes sig-
nificant in the region A & r & R, and, as R /A
this screening completely cancels the original r vor-
tex flow, leaving Pearl's asymptotic r ' dependence.
Correspondingly, the interaction between two such

flux lines is approximately logarithmic in a small film
(R « A). For large R/A, however, the interaction
changes from logarithmic to r ' for A & t & R, and
our results reproduce Pearl's as R/A ~. This
behavior implies that observable physical quantities
like the lower critical field H, i depend significantly on
the ratio R/A. Thus direct measurements of H, ~

could help confirm the validity of Pearl's basic pic-
ture.

The problem of a quantized flux line at the center
of a disk is formulated in Sec. II and reduced to a
one-dimensional Fredholm integral equation. In Sec.
III, an exact formal solution is constructed, but its
form makes direct quantitative calculations cumber-
some. Section IV derives an alternative approximate
solution that readily yields numerical values for vari-

ous quantities of physical interest. The more compli-
cated problem of interacting flux lines in arbitrary po-
sitions is studied in Sec. V.

II. BASIC FORMULATION

r
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Consider a disk-shaped superconducting film of
thickness d and radius R lying in the xy plane. It is

natural to introduce cylindrical coordinates (r, Hz),
centered on the disk's symmetry axis. In general, the
Ginzburg-Landau equations involve both the super-
conducting order parameter p and the vector poten-
tial A, but we shall neglect the spatial variation of I&I
and write P = ~go ~

exp(iS ). In this case, the
Qinzburg-Landau equations become'

|4n j /c for ~zl & —d and r & R
& x&xA= 2

0 otherwise

and
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where A. is the actual penetration depth in the film
and $p is the flux quantum hc/2e. Since d/A. is as-
sumed small, j and A are constant across the film
and Eqs. (1) and (2) can be averaged over the thick-
ness d to give

T I

Q x Q x A= —8(z) OS —A ri(R —r), (3)
2m'

where q(x) is the usual unit step function. In the
special case of a single flux line at the center of the
disk, the phase S is just the azimuthal angle 8. The
axisymmetry of the problem then implies that A is

purely azimuthal with the form A = HA, where A

satisfies the linear differential equation

U = (cg,'/4m'A) U(x)

where

p1
U (x) = ln —— dx' A (x')"x

(Sa)

(Sb)

and the additivt'. constant has been chosen to fix
U(1) =0. Since the first term represents the interac-
tion of two unscreened vortex lines, it is convenient
to write

x ' flow of the quantized vortex. The interaction en-
ergy to bring another parallel flux line in from the
boundary of the disk to a point x follows by integrat-
ing6 the Lorentz force (pod/c ) j x z:

8' + 8'
+ 1 8 1

Qz2 gr2 r Qr r2

r

=—g(z) A — &(R r), (—4)
2 4o
A 2mr

U(x) =ln —+ U„(x)
x

where
f 1

U„(x)= —„dx'A (x')

(9a)

(9b)

and

A =—2)i'/d (Sa)

will play the role of an effective penetration depth.
This definition agrees with that of Pearl, ' but some
authors" define

characterizes the attractive effect of the screening
currents (sc).

The self-energy ~ of a single flux line located at the
origin is the sum of the kinetic energy of the flow

and the magnetic field energy. A straightforward cal-
culation using Eqs. (I) and (2) yields the simple
answer6

A.g—= A. /d =
2

A
1 (Sb) e = (yo2/4m'A) e, (10a)

which differs by a factor of 2. It is convenient to
measure lengths in units of R, and A in units of
$p/2mR. These dimensionless variables reduce Eq.
(4) to

where

a = —,U(r, /R )

= —ln(R/r, ) + ,
' U„(0—) (lob)

1 8 1+ + — ——A (xy)
Qy2 Qx2 x Bx x

2R 5(y) A ——q(l —x), (6)1

A x

and r, is the (small) core radius of the flux line.
Typical values are R =10 ' cm and r, =10 cm, so
that the first term of ~ is of order 6.

The total circulating supercurrent produces an asso-
ciated magnetic moment

where, for clarity, we have introduced the explicitly
dimensionless variables x = r/R and y = z/R. This is

the fundamental inhomogeneous differential equa-
tion; it must be solved throughout all space.

Given A (x) = A (x, 0), several quantities of physi-
cal interest can be found. The first is the total az-
imuthal supercurrent density

ni=(2c) ' d3r r x j

It lies along the symmetry axis with magnitude

m = ($ R/p2n')m

where

(12a)

j = (coho/4m ARd )j (7a) ~R
rn =

2A ~o xdx [I —xA (x)] (12b)

where

j(x) =x ' —A (x) (7b)

Here, 'dimensionless quantities like j will be denoted
by a caret, although it will be omitted on A to avoid a
cluttered notation for its Hankel transform. The
second term of j has a direct physical interpretation
as the screening current induced by the circulating

H„= ($o/2R A) H, &

where
Pi

H~ 1
= t'/m

(13a)

(13b)

The critical field H, &
for flux penetration into the

disk is just the ratio of these quantities a/m. Use of
Eqs. (10) and (12) gives
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The quantity po/2R A is = 10 ~ G for R = A
= 10 ' cm, but H, i can become large for small
R/A. One of the principal aims of this work is to
evaluate these dimensionless functions for various
values of R /A. In the limit of small R /A, they are
expected to reproduce those for a bounded neutral
superfluid film, whereas for large R/A, they should
become those for an infinite plane superconducting
film.

To derive an integral equation for A (x) —= A (x, 0),
we first take the Hankel transform of Eq. (6) accord-
ing to

A (p,y) =— xdx Ji(px)A (x,y)

where J„(px) is the Bessel function' of order n.
Carrying out the indicated operation yields

r

8y

r 1

8(y) xdx Ji(px) [A (x) —x ']

5(y) xdx Ji(px)A (x)—p '[I —Jo(p)].~o

(15)

0 ~x ~ 1, because substitution of the solution into
Eq. (18) in fact determines A (x) for all positive x.
The Hankel transform of the resulting function then
gives A (p), yielding the vector potential throughout
all space by Eq. (17). Thus the problem has been re-
duced to one of solving the linear integral equation
(18).

To proceed further, it is helpful to note several of
its properties:

(i) The kernel L (x,x') is manifestly symmetric,
and the extra weight factor x' can be symmetrized"
by introducing suitable factors of x' ' and x'~'. Con-
sequently, the problem becomes an inhomogeneous
integral equation of the second kind with a real sym-
metric kernel.

(ii) The integral in Eq. (19) can be transformed by
writing J, (px() Ji(px&) as

—,
' J, (px, )[V,"'(px, ) + II &2i(px )] ,

where x& and x& are the smaller and larger of x and
x', and H1" are the Hankel functions. ' A deforma-
tion of the integration contour from the real to the
(positive or negative) imaginary axis gives the alter-
native representation

~oo

L (x,x ) =— dp l, (px()K, (px) )

Note that the integral on the right-hand side is over a
finite interval and therefore differs from the Hankel
transform A (p, 0). It is evident from Eq. (15) that
A (p,y) for y A 0 must have the form
3 (p) exp( —p ly I), where 3 (p) is a function only of
p. It can be determined by integrating Eq. (15) over
an infinitesimal region around y =0, which gives the
condition

—2' (p) =
~ xdx Ji(px)A (x)—p '[I —Jo(p)]

A 2

The Hankel inversion theorem then yields a formal
expression for the vector potential throughout all

space

3 (xy) = „pdp A (p )Ji(px) exp( —p ~y ~ )

It assumes a particularly simple form for y = 0; a little
manipulation leads to the exact integral equation

(21)

is finite.
(iii) These properties'~ imply that the kernel

L (x,x') has an infinite sequence of real eigenvalues
l„daonrthornormal eigenfunctions i]t„(x) satisfying
the equations

1

i]i„(x)= I„ J
x'dx' L (x,x')i[i„(x')

r1
xdx i[i„(x)Q (x) = 8

(22a)

Furthermore, L itself has the form

where I] and K] are the Bessel functions' of ima-

ginary argument. Since these functions are positive,
Eq. (20) shows that L (x,x') can never be negative.
It is not a continuous kernel, however, because the
asymptotic behavior I, (x)K, (x) —(2x) ' for x —~
implies that L (x,x') diverges logarithmically as
(x —x'( 0. On the other hand, the kernel is square
integrable, for the double integral

r r1
TrL2=—

~
xdx x'dx'L (x,x')L (x',x)Jo

R e1
A (x) +—' x'dx'L (x,x')A (x') =—

~
dx'L (x,x')

A A~0
(18)

with the kernel

L (x,x') = $ „'ir(ii) [x(ii)x
n 1

Since TrL in Eq. (21) is finite, the series

(23a)

L (x,x') =—„dp J, (px) J, (px') (19) TrL2 X (
—2

n 1

(23b)

This integral equation needs to be solved only for converges, but the logarithmic behavior of L (x,x')
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for.x x' suggests that I„ increases linearly with n

for n

(iv) These (still unknown) eigenfunctions provide
a formal solution to the integral equation (18). Ex-
pand A (x) in this complete set and use the orthonor-
mality to determine the coefficients. A simple calcu-
lation yields the result

y (x)
A (x) = X

" „dx'y„(x')„(I+IAR"o (24)

This expression shows that A (x) is a meromorphic
function of R/A, and that the iterated (Neumann)
expansion of Eq. (18) in powers of R/A converges
for ~R/A~ & lr. Since Tr L' ~ l~ ', convergence is as-
sured for [R/A( ( (TrL') ' '.

(v) The integral Eqs. (19) and (20) can be evaluat-
ed explicitly to give'

L (x,x') = K
mx& Xp X&

(25)

where K and F. are the complete elliptic integrals of
the first and second kind. Since K(k) diverges loga-
rithmically as k 1, this expression confirms the
singularity of the ke'rnel at x =x'. Detailed examina-
tion shows that L (O,x') = 0 and that L (l,x') is fin-
ite. Figure 1 shows the function L (x,x') for the typ-
ical value x'= —.The representation Eq. (25) is par-

ticularly useful for evaluating the double integral in

Eq. (21); a straightforward calculation gives

TrL'= [K (k) —F. (k) ]' = 0.237, (26)4 'dk
k

where the last value follows from/[tumerical integra-
tion. Thus the expansion of the solution to Eq. (18)

in powers of R /A is guaranteed to converge for
R /A ( 2.05.

(vi) The formal solution Eq. (24) may be used to
express, the important physical quantities in terms of
the exact eigenfunctions, but the resulting formulas
for (say) H, ~ are not terribly useful. Similar expres-
sions will be considered in Sec. IV in connection with
an approximate solution based on known eigenfunc-
tions.

III. EXACT RESULTS

For R/A « 1, the screening currents are expected
to be small, so that the vector potential 3 will be well

represented by the first term in the Neumann expan-
sion of Eq. (18)

R
A (x) =— dx'L(x, x'), R « AA«

An exact evaluation gives'

A(x) = —1—R
A

2 [Z(x) —(I -x')K (x) ]
m'x

(27)

R «A, (28)

and substitution into Eq. (9) yields the lowest-order
screening contribution to the interaction function

1

U„(x) = —x —1 ——[2E(x)—2 —(I —x )K(x)]R 2 2

A m'

R «A . (29)

Figure 2 sketches the function in braces, which varies
smoothly. Note that Eqs. (28) and (29) both remain
finite at x =1 owing to the factor 1 —x multiplying
the singular function K (x). In addition, Eqs. (10b)
and (29) provide the approximate expression for the
self-energy of a single flux line at the center of a
small disk with R « A

2.0 i= —ln(R/r, ) —(R/A)(1 —2rr ')

= —, ln(R/r, ) —0.363R/A, R (& A (30)
1.5

L(x, &)

Similarly, Eq. (12b) gives the corresponding magnetic
moment

1.0 mRm=
4A

R
(—n ——)6 9

0.5

1

1 —0384—,R « A
mR R
4A A

(31)

0
0

I

0.5 1.0

and H, i is the ratio of these quantities

2A ln(R/r, ) —0.727R/A
mR 1 —0.384R /A

FIG, 1. Rea) symmetric kerne) L(x,x') [Eq. (25)] for
r 1

X
2 '-

As R/A 0, it approaches the value

H, ~
= (Qo/rrR') ln(R/r, ), R/A 0 (33)
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0 0.5 I.O
For x & 1, on the other hand, substitution of Eq.
(17) into Eq. (6) yields

goo R
J pdpA (p) J((px ) p +—= R /Ax, x ( 1 . (36)

0 A

—0.5

In this way, the amplitude A (p) satisfies a dual in-

tegral equation" that has different forms for x & 1.

The first of these two equations can be satisfied
identically with the series'9

A (p) p g ~ J2 +3/2(p)
m~0

It will simplify the notation to introduce the new
coefficients

(37)

—I.O

I (m+ —)
&m=—

2 m

I'(m +2) J2 (38)

FIG, 2. Lowest-order correction to the screening function
(A/R ) U„(x) for R/A « 1. Curve (a) is the exact result

Eq. (29); curves M =1, 2, 3, and 4 are successive approxima-
tions obtained by truncating Eq. (44) at M terms. cb +—gd„b„=—e

R R

n 0
(39)

and a lengthy analysis of Eq. (36) eventually yields
an infinite set of linear equations

here given in conventional units. As might be ex-
pected, the associated Larmor rotation frequency
Q, (=e'H, (/2m "c for a system of particles with

charge to mass ratio e'/m' (= e/m for Cooper pairs
of electrons) is precisely the critical angular velocity"

fI, (= (h/2rrm"R') In(R/r, ) (34)

for vortex formation in a rotating film of neutral su-
perfluid with particle mass m . It is striking that H, l

varies like R ' for R « A, in contrast to the ap-
oximate R ' behavior ' ' for large films

(R » A). This latter case will be analyzed in Sec. IV.
In principle, the preceding calculation could be ex-

tended to moderate values of R/A by iterating the
integral equation to generate the Neumann series.
Unfortunately, the iterated kernels cannot be evaluat-
ed analytically, so that a more powerfu1 approach is
needed. One possibility (considered in Sec. IV) is to
approximate the exact kernel L (x,x') by one with
the same singularity. Another more forrnal pro-
cedure is to expand A (x) in an appropriate set of
complete orthonormal functions. To generate such a
set, it is convenient to reformulate the problem as a
dual integral equation for the amplitude A (p) in Eq.
(17). Since the superconductor extends only to x =1
(in dimensionless units), it follows that the magnetic
field lines can have no kinks for x & 1. Thus sym-
metry requires h, (x, 0) to vanish in this region,
which implies

——A (xy)}y 'p= JI p'dpA (p)J, (px) =0, x &1
Qy 0

(35)

Herc
' r(/a+2) '

2

I"(m + —) 3+4'"
2 J

——, for in &)11

(40)

and the remaining quantities are defined in terms of
integrals of Jacobi polynomials"" P " ' "(1—2x'):

fl
mn dnm ' X dX PmPn

~J 0
f l

e =J xdxP

(4 la)

(41b)

These polynomials form a complete orthonormal set
on the intervai 0 ~ x ~ l. Alternatively (but with
less motivation) the same set [Eq. (39)}of linear
equations can be obtained directly from Eq. (18) by
writing

A (x) X b xp ( I. —(/2(( I 2x2)
m 0

(42)

and then using the orthogonality of the 3acobi poly-
nomials. The generating function for the polynomi-
als readily yields the value

1 ( —1) I(m+ —,')
e 1—

2m + I 2I'( —,
' )I (m +2):.

(43)

In contrast, d „does not seem expressible in closed
form, but it is easily evaluated for any specific values

'

of m and n.
Given the coefficients (b I, Eq. (42) allows a

direct calculation of the physical quantities. In partic-



FLUX PENETRATION IN A THIN SUPERCONDUCTING DISK 1205

ular, the screening contribution to the total interac-
tion is

R~= —ln ——— b em m
(~ m 0

(45)

In addition, Eq. (39) simplifies the magnetic moment
in Eq. (12) to the expression

4m= 3bp (46)

and the ratio ~/m then gives the exact H, ~
for arbi-

trary values of R/A.
The preceding analysis transforms the exact in-

tegral equation to an infinite set of linear algebraic
equations. Since Eq. (18) has a variational basis, it is

natural to truncate these equations, keeping only the
first M terms (m =0, 1, . . . , M —1) in the expan-
sion Eq. (42). To study the convergence of this pro-

cedure, we have considered the cases M = 1, 2, 3, and

4, evaluating the coefficients b for various values of

00 0.5 I.O

eo ~1
U„(x) = —$ 6 x'dx' P" '/ '(1 —2x' ), (44)

m 0
&x

and the dimensionless self-energy of a single flux line
therefore becomes [see Eq. (10)]

R/A. If R/A 0, the solution for all m is immediate

b =—,R/A 0R em

A c
(47)

and the first four truncated approximations to
(A/R ) U„(x) as R/A 0 are shown in Fig. 2 for
comparison with the exact first-order expression from
Eq. (29). For small R/A, at least, the convergence
appears to be good except for the region x &( 1,
where every term in Eq. (44) has zero slope, in con-
trast to the linear behavior of the exact expression.
Figure 3 shows the approximate functions U„(x) for
R/A =1.0 and 10 with M = 3 and 4; the convergence
of the series apparently worsens for large R/A, In

principle, this procedure could be extended to include
more terms, but the numerical analysis should be-
come quite extensive. Since a involves U„(0),
where the series converges most slowly, this trunca-
tion scheme is unlikely to be accurate in determining

IV. APPROXIMATE SOLUTION

One common approach to integral equations is to
replace the exact kerne1 by an approximate one that
permits a complete solution of the resulting equa-
tion, " If desired, the difference between the approx-
imate and exact kernels is then treated in perturba-
tion theory. Such a technique proves extremely valu-

able in the present problem.
As an introduction, consider the Fourier-Bessel

eigenfunctions"

2~/
x„(x)= Ji(ni„x)

Jo ~1n
(48)

A

"sc

where al„is the nth zero of Jl. These functions are
orthonormal on the interval [0,11 with weight func-
tion x according to

~l
xdx X„(x)X,(x) =8 (49)

To use them in solving Eq. (18), consider the follow-

ing real symmetric kernel

Lo(x,x') -=X ~&„'x„(x)x„(x') .
n~l

(50)

-l.5

FIG. 3. U„{x)for R/A =1.0 and 10, obtained by trun-

cating Eq. (44) at 3 [curves (a)] and 4 [curves (b)] terms.

Lo(xx') =& [J~(w) Y~(wx&) —J~(wx&) Y&(w)]
dw

~c 2(

J, (wx()
J, (w) (51)

Since n~„- m(n + —) for large n, the discussion of
Eq. (23) suggests that Lo(x,x') will diverge loga-
rithmically as ~x —x'~ 0, so that Lo is a good candi-
date for an approximate kernel. Fortunately, the
sum in Eq. (50) can be rewritten as a contour in-
tegra122
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where C is a contour running just to the right of the
imaginary axis from i ~ to —i ~, and Y„ is the Neu-
mann function. '4 If the contour is deformed far to
the right, the only singularities are simple poles at the
zeros of J, ( w), and the sum of the residues precisely
reproduces Eq. (50). Alternatively, this expression
can be transformed by writing w =exp(+i , rr)p—. A

straightforward analysis gives

POO

Lp(x x') = J dp K~(px )I~ (px )

Ki(p)
l, (px)l, (px') . (52)

(60)

so that

OO pl
A p(x) = $ X„(x)( I + u, „A/R ) '

J dx' X„(x')
n~[

2J[(u)~x) [I Jo(u] )]
(I+ui A/R)[Jo(ni, )]' (61)

Substitution into Eq. (55) and use of Eqs. (49) and
(50) gives the expansion coefficients

n]
C„= (I +u, „A/R ) ' „dx'X„(x')

L (X,X') = Lp(x, x') + L
~ (x,x') (53)

where

()
L f (x x '

) —= —
Jl dp I

~ (px ) I
~ (px

'
)

rr o l (p)
(54)

Since L~(x,x) is bounded except as x I, it is clear
that L and Lp have the same logarithmic singularity
for (x —x'( 0 almost everywhere.

Equations (50) and (53) provide an approximate
solution to Eq. (18). First, solve the following in-

tegral equation for the auxiliary quantity A p

Comparison with Eq. (20) shows that the first term
on the right-hand side is just the original kernel
L (x,x'); hence it is convenient to rewrite Eq. (52) as

(62a)

becomes

This solution for Ap is directly analogous to the for-
mal one obtained for A in Eq. (24) in terms of the
unknown eigenfunctions (P„]. Although Eq. (61)
can be rewritten as a contour integral like that in Eq.
(51), the form is not particularly useful in this con-
text and will be considered only in Sec. V.

Our basic approach is now to take A p as a reason-
able approximation to the exact solution A. Since A p

is well defined for all values of R /A, it allows us to
extend the calculations of Sec. III throughout the
range of values 0 ~ R/A ~ ~. In particular, the cor-

responding approximate screening contribution to the
interaction function Eq. (9)

f 1

U„p(x) =——
J»

dx' A p(x')
x

A p+ (R/A)LpAp = (R/A)L pg

where

(55) Jo(ni )][Jo(ni x) Jo(ui. )]
ni„(I+ni„A/R ) [Jo(ui, )]'

g(x) —= x ' (56) (62b)

The special form of L p in Eq. (50) means that A p(x)
has a simple expansion in the Fourier-Bessel eigen-
functions from Eq. (48). Given Ao, the full solution
A is obtained by solving a second integral equation

A +(R/A)LoA +(R/A)LiA

=Ap+ (R/A)LpA p+ (R/A)L, g, (58)

which is better suited for approximation techniques
because Tr Ll is finite.

The solution to Eq. (55) follows directly by writing

A p(x) = $ C„X„(x)
n~l

(59)

Here, we have introduced a matrix notation for in-

tegration over an intermediate variable, so that, for
example

r 1 r l

l.,g —= x'dx'l. ,(x,x')g (x') = dx'l. ,(x,x') .
aJ p dp

(57)

This series is easily evaluated for any particular value
of R /A, and Fig. 4 shows the resulting function for
R/A =1.0 and 10. The curves are qualitatively simi-

lar to those in Fig. 3, except at small x, where the
present approximation should be more accurate
[compare the curve (a) in Fig. 2, which is exact for
small R/A]. Evidently, U„p(x) attains its minimum
value

U„o(0) = —2 X )„ I+ /„— ((Jo( [„)) —I ]'
n l

(63)

at the origin. Since

Jp(ui„) —( —I )"(2/n ni„) ' '

for n )) 1, it is clear from the integral test that
U„p(0) behaves like —ln(R/A) for large R/A. The
approximate self-energy form Eq. (10) thus becomes
independent of R in this limit

where (x„] are the eigenfunctions from Eq. (48). ~o= —, In(A/r, ), R/A &) I (64)
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0'-

-0.5 '

0.5 I.O
where Up is taken to vanish at r =R. This function
is very similar to that obtained from the Fourier-
Bessel series for large R/A. Figure 4 compares the
screening contributions of the two solutions for
R/A=10.

The approximate solution Ao(x) in Eq. (61) im-

mediately provides the corresponding H, io from the
series Eq. (63) and the approximate magnetic mo-
ment [see Eq. (12b)]

A
"sc

J%

Nfo=%' .(69)
,-i aim(1 +ai AN/R ) Jo(ail)

—20

2%5

FIG. 4. Approximate screening conribution Eq. (62b) to
the interaction function for R/A =1.0 [curve (a)] and 10
[curve (b)]. For comparison, the screening contribution
Up(x) —. ln(x ') to Pearl's solution Eq. (68) is also shown
for R/A = 10 [curve (c)).

This limiting behavior reproduces that found by
Pearl for an infinite disk (R ~~). To verify the
correspondence, note that the dimensionless variable
x —= r/R in Eq. (61) becomes smail as R ~ for
fixed r. The function Ji (ai„x) then varies slowly
with increasing rr, and the sum in Eq. (61) can be ap-
proximated by an integral

The integral test again shows that mo behaves like ln

(R/A) for large R/A, in contrast to Pearl's predic-
tion6 r~ i3 rnp= —ir based on Eq. (67). Note, howev-

er, that the integral Eq. ('l l) weights most heavily the
outer part of the disk, which is the region where the
exact solution differs most from that for an infinite
plane. Thus it is not obvious that Ap can correctly
predict the value of m, even for large R /A, and this
discrepancy remains unresolved.

The two series Eqs. (63) and (69) have been
evaluated numerically to give the dimensionless lower
critical field H, io shown in Fig. 5 for R/r, = 10'. If
R = 10 ' cm, for example, the predicted values for
A=10 ', 10 ', and 1 cm, are 1.8x10 4, 8.7x10 ~,

and 7.5 x 10 6, respectively. Conceivably, ob-
servation of H, ~ could provide a direct measure of
the effective penetration depth A. Pearl's picture of
flux penetration in thin films has had only partial ex-
perimental verification so that this possibility is
especially interesting.

100
r r ~/p'

J, (ar/R ) 2~,(r) = da ' 1-(-1)"
1+aA/R %A

, (65)

where the asymptotic form has been used for
Jo(ai„). For R/A ~, the change of variable
u = aA/R leads to the simpler dimensionless expres-
sion

J i(ur/A)
Ap(r) =— du g ~oo

A "o 1+u

which is just that found by Pearl. '6 It can be
evaluated explicitly to give

20
A

CIO
10

r r

R A 1 f rAr(r) ———+ mH, ——Yi-
A r 2 A A

(67)

where H ~ is a Stuve function. '4 The associated di-
mensionless interaction function becomes

I
0

l

5
R/h

IO

(J,(r) = ,
' ~[H,(r/A) y, (r/A—)]—

,
'

rr[Hrr(R/A) —Yo(R/—A)] (68)

lL

FIG. 5. Dimensionless lower critical field H, &0 evaluated

from Eqs. (10b), (13b), (63), and (69) for R/r, =10 .



1208 ALEXANDER L. FETTER 22

The preceding analysis depends on the approxima-
tion of negiecting the kernel L

~
in Eqs. (58), thereby

replacing the exact A (x) by the solution Ao(x) to Eq.
(SS). To investigate the effect of L, , it is convenient
first to rewrite Eq. (58) as

A +LA =Ao+Lg

where

L —= [I+ (R/A)Lo] '(R/A)L,

(70)

(71)
0.5

Although we are most interested in the behavior for
large R/A, it is not, in general, permissible to take
this limit directly. Nevertheless, the new kernel L
behaves better as R/A ~ than does the original
one [(R/A) L in Eq. (18)]. Indeed, L now has a fin-
ite trace, and a perturbation expansion of Eq. (70)
should converge for TrL & 1. To study the depen-
dence of TrL on R/A, we diagonalize the operator
[I + (R/A)Lo] ' with the eigenfunctions from Eq.
(48) to obtain

0
0 l0

R lh
20

TrL=Q I+ R
Aa)„

r

R (L )).„, (72) FIG. 6. Quantity TrL from Eqs. (72) and (77), as a func-
tion of R/A.

where
pl

(Li) „=pi g
xdxx'dx'X (x)Li(x,x')X„(x') . (73)

Use of Eq. (54) and standard formulas yields the ex-
act expression

The Neumann solution to Eq. (70) takes the form

~ =~o+L(g —~o)+

(p'+~( )(p'+~]„)

=&o+[I+(R/A)Lo] '(R/A)L,
(

x [I + (R/A)Lo) 'g + (78)

To make further progress, note that

1, p«1
(75)

and it is therefore natural to introduce the approxi-
mation

where we have used Eq. (SS) in obtaining the second
form. The complete set of Fourier-Bessel eigenfunc-
tions from Eqs. (48)—(50) gives the first correction

y
(R/A)(L1) mn

, (I+R/Aa, )(I+R/An(„)

2K'(p)li(p) = (I+p) ' (76)
I

xX (x)& dx X„(x)~o (79)

The resulting approximate integral is easily evaluated
to give

&1m&in 2'rr In&1m + A]m
L)

~ 1n ~ 1m, I + ~1m
2 — 2

lno )„+~]„
1+a,i„

(77)

.and (L~)„„follows with I'Hopitai*s rule. The in-

tegral test for convergence indicates that TrL is of or-
der (InR/A)'as R/A ~, and numerical evaluation
shows that TrL ( I for R/A( 18.6 (see Fig. 6).
This behavior is to be contrasted with that discussed
below Eq. (26), where (R/A) (TrL')' ' ( I only for
R/A ( 2.05.

Substitution into Eq. (9), for example, provides the
approximate correction to the self-energy of a single
flux line

U„(0)—U„o(0)
——2 1— 1 1—

Jo(~i. )
1

Jo(~i. )

(R/A)(L, ) „
(~,.+ R /A) (~,„+R/A)

If the summation is replaced by a double integral and
the oscillating contributions from Jo(cx] ) and
Jo(a~„) are neglected, use of Eq. (77) shows that the
right-hand side of Eq. (80) is small, of order (A/R )
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(lnR/A)' for large R/A. In contrast, the correction
to m —mo behaves quite differently. in the same limit.
Equation (12b) gives

Cauchy-Riemann equations may be written

VS =V% xz (85)

m —mp= w x dx [A (x) Ap(x) j
A &o

1

Jp(~). )

(R/A)'(L() „
(n( +R/A)(n(„+R/A)

This double summation has essentially the same
structure as that in Eq. (80), and m —mp therefore
diverges like (lnR/A)' for R/A ~. We conclude
that A 0 cannot be considered a good approximation
for all R/A, although Fig. 6 indicates that it is prob-
ably reasonable for R/A & 20. Since Pearl's solution
is likely to describe the regime R/A 10, we believe
that A p suffices in most cases of practical interest.

and Eq. (82a) holds identically because V vanishes
for x = l.

Since the vector potential has the form A = A, r"

+A&8, the same dimensionless variables as in Eq.
(6) reduce the two components of Eq. (3) to

AA, —x A, —2x 2 (jAg

80

2R 1 9O5(y) A, —— q(1 —x), (86a)A'x90
bA g

—x A g+2x
98

i

5(y) A, + g(1 —x) . (86b)2R
A 9x

V. FLUX LINES IN ARBITRARY POSITIONS

In an infinite film, the interaction between two flux
lines depends only on their relative separation, but
the situation is more complicated in a finite disk. To
study this case, it is essential to return to the original

Eq (3). W. e first generalize the phase function
S (r, H) to describe a single flux line located at the
point (rp, Hp). In the gauge '7 A = 0, Eq. (2) re-
quires that S satisfy Laplace's equation. Further-
more, the two terms in Eq. (2) represent distinct
physical contributions to j, and each must produce
zero net flow through the boundary

Here r)(x) again denotes the unit step function, 5 is
the Laplacian. in cylindrical coordinates (x, H,y), and
the Cauchy-Riemann equations have been used. In
addition, the gauge condition requires

(XA, ) + — A =0la le
x9x x90 (87)

x—)R X'x—(g(m)eim() (88a)

It is convenient to write A, =x '8 and A &= A, and
then to expand all quantities in Fourier series

r" OS =0 at r=R (82a) X' g (m) eim() +g (p) (88b)

I" A=0 atr=R (82b) g' @(m)eim()+ qi(p) (88c)

S(r, rp) =ReF(z, zp) (83a)

with

As is familiar from the hydrodynamics of ideal classi-
cal fluids in cylindrical containers, '4 the necessary
function S( r, r p) follows from the method of images
as the real part of the complex potential

Here the prime means to omit the term m = 0, and
the contribution 8' ' may be neglected since it is

simply a constant. The Fourier coefficients in Eq.
(88c) follow by expanding the logarithm in Eq. (83b)
in a Taylor series to give

(

R z zo
F(z, zp) = —i ln-

~o z —z()
(83b)

Here, z = r exp(iH), zp= rpexp(i Hp), and

zp ——(R /rp) exp(iHp). In addition, the imaginary
part is the stream function

q (P)(x,xp) = —lnx),
1

q ( '(x,x()) =
2imi x)

' )m[

(89a)

—(xxp)( ' e

m W 0, (89b)

1 —2xxp cos ( H
—Hp) +x'xp

P=lmF =
2 2

(84)
x 2xxp cos(H Hp) + xp

where x& and x& are the smaller and larger of x and
xp. The gauge condition Eq. (87) becomes

where, as previously, x = r/R and xp= rp/R. The

gg(m)
A (m) m &0

m Bx
(90)
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and the other two equations can be manipulated to
give

1 8 1 8 (p)+— ——+ A
9x & 8& x 9y

r

g(y) A ——g(x —xp) g(1 —x), (91a)2R (o) 1

A X

e(xk) = —, ln(R/r, )+ —,
' ln(1 —xk')+ 'U—„(xk x )

(94c)

is the self-energy of a single flux line at xk [compare
Eq. (10b)]. Finally, the total magnetic moment Eq.
(11) for the system is

l71 = EPl Xk
k

(95a}

9x & 8& x By

g(y) 8& ' —im%' ' q(1 —x), (91b)2R
A t

where
pl

m (x„)= —er—' x'dx' [v)(x' —xk) —x'A"'(x', x )]
A ~o k

for m =0 and m &0, respectively.
As in Sec. II, the most interesting physical quanti-

ties can be expressed directly in terms of the func-
tions A 'p' and 8™.Suppose that there is a flux line
at xp. Integrating the Lorentz force from the edge of
the disk to some final point x easily gives the dimen-
sionless interaction energy U(x, xp) between two
flux lines at x and xp. Since Eq. (2) distinguishes
between the unscreened vortex currents and the in-
duced screening currents, the corresponding interac-
tion function will be written as the sum of two physi-
cally distinct terms

U(x, xp) = U (x, Kp) + U„(x, xp) (92)

A straightforward calculation yields [see Eq. (84)]

U„(x, xp) = O(x, xp)

U„(x, xp) = —
J dx'A"'(x', xp)

(93a)

+ $'im 'ei™eB''(x, xp), (93b)

where we have used the boundary condition 8' ' =0
at x =1. The term U„ is the interaction energy of
two vortices in a neutral superfluid film confined to a
circle of radius R, because the screening contribution
becomes negligible when A &) R. Note that U„has
the expected logarithmic dependence
(~ —ln } x —xp}) for small separations, but only if
}x —xp} is much less that the smaller of 1 —x and
1 —xp. Otherwise, the image vortices at x/x or xp/xp
predominate, and U„ in fact vanishes if x or xo= l.
Thus the presence of boundaries alters the interaction
function significantly because of the long-range in-
teraction in a neutral superfluid.

In a similar way, it is not difficult to show that the
total free energy of an assembly of flux lines at ( xk }
becomes

Before discussing the detailed form of U(x, xp),
we demonstrate the following theorem: In an applied
field H corresponding to many flux lines with non-
overlapping cores (H, i ((H ((H, 2), the equilibri-
um configuration for arbitrary R /A has a constant
flux density, independent of the presence of boundaries
The proof starts from the dimensionless Gibbs free
energy

6 =F—IIm

and replaces the sum over discrete flux lines by an
integration over an axisymmetric continuous sur-
face density t" (x)

G = —,~ ~
d'x d' ' x(txt)ti (x') U(x, x )

—H d'x n (x)m (x)J (97)

G =27T I Jl xdxx dx pl(x)rt (x')
p]

x ln(l/x)) —
J dy A"'(y, x')

RH xdxx'dx'~ x

x [g(x —«) —.x g' &(x',x)], (98)

where only the azimuthally symmetric contributions
appear. In fixed applied field II, the equilibrium con-
dition SG/Sn (x) =0 leads to an integral equation

Here, we have omitted the self-energy contribution
and therefore neglect corrections of order H/H, j.
The angular integrals can be performed explicitly [see
Eqs. (89a), (93b), and (95b)] to give

F = (t/t'/4er'A) F

where

F = Xe(x„}+—,
' X' U(xk, xi)

k kl

(94a)

(94b)

x dx ln(1/» )—„dy+ (y,x ) n(x )

t 1

(x')2dx' [q(x' —x)/x' —A 'P'(x', x ) ]
4A
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—,g(x' —x) —A (o) (x',x ) = J dy f(x',y ).
X X

(100)

where f (x',y ) is a symmetric function of its argu-
ments. A little manipulation then transforms Eq.
(99) into the more transparent equation

t

RI-Iz'
dy

Z
dzf(y'») x'dx'n(x')—

X p
' ' 4p 4A

(

(101)

It is evident by inspection that

ri (x) = RH/2A(= const) (102)

is an exact solution of Eq. (101). To prove that it is
also unique, we expand A 'o'(x, x') in the complete
set of eigenfunctions l (It„(x) l from Eq. (22). A

straightforward calculation shows that the symmetric
function f(y, z) defined in Eq. (100) is given by

whose solution is the equilibrium flux-line distribu- .

tion n (x).
This equation looks daunting, but special properties

of A ' ' ensure that a constant density is the only
solution. To verify this assertion, note that the in-

tegral equation for A 'o'(x, x') differs from Eq. (18)
only in that the integral on the right-hand side runs
from x' to 1, instead of O.to 1 [compare Eqs. (6) and
(91a)]. Consideration of the corresponding Neu-
mann expansion for A ' ' shows that the quantity in

brackets on the right-hand side of Eq. (99) has the
form.

boundaries. For example, the equilibrium distribu-
tion of electrostatic charge on a conducting disk peaks
sharply at the outer edge. " Here, in contrast, the
flux lines act like an incompressible medium. " An
earlier investigation" of rectilinear vortices in a bulk
rotating neutral superfluid had obtained this same
uniform distribution for an arbitrary multiply con--
nected domain, but the analysis depended crucially
on the properties of harmonic functions and the
Green's function for Poisson's equation. Here, in
contrast, the superconducting screening currents
complicate the problem, and the proof of a constant
flux density for a superconducting disk with arbitrary
value of R/A appears to be new. Previously, Maki'z
reached a similar conclusion based on an integral
equation whose kernel differed from that in Eq. (99)
owing to the neglect of the boundaries and associated
image effects. Thus his inferred constant flux densi-
ty was only an approximate solution to the corre-
sponding integral equation.

The preceding study is independent of the detailed
form of the induced screening currents, and it is now
interesting to consider this latter question. A Hankel
transform can reduce each of the partial differential
equations (91) to Fredholm integral equations analo-
gous to Eq. (18), but they have no obvious analytical
solutions. Instead, we rely on the same approxima-
tion used in Sec. IV. It is somewhat simpler to
proceed directly by expanding 8' ' in a Fourier-
Bessel series

f(y, z) = $([t„(y)(l+R/Al„) ((I(„(z) . (103)
n 1

8(m) g J; (m) (y) )t (m) (X)
n 1

where

(107a)

Differentiate Eq. (101) with respect to x and combine
with Eq, (103). The assumed completeness of [(i)„ l

immediately implies that

1

zdz ii)„(z) z J x dx n (x ) z = 0 (104)

for all n As a result, the. areal density n (x) in fact
satisfies the simpler integral equation

t
A

( ), , 2' Jlml(rzmnx)

J( ( (((Z, )
(107b)

is a set of orthonormal eigenfunctions, and a „ is the
n th zero of J . Substitution into Eq. (91b) for x ( 1

shows that F„' '(y) is proportional to exp( —a „ly I).
Use of the discontinuity condition on the vertical gra-
dient at y =0 and recursion relations for Bessel func-
tions yields the approximate solution in the plane of
the disk

x'dx' n (x') =
4 p

RH
4A

(105)
8( '(x, x()) = X

ime

n 1

o)t (m) (x))t (m) (x )
a'„(I +a „A/R )

(108a)

Differentiation with respect to z reproduces the con-
stant solution Eq. (102). In more familiar dimen-
sional variables, it has the expected value

n = n/Rz= H/(I)o (106)

Thus the magnetic flux density B is just equal to H in

the regime H, ~ && H && H, 2, apart from corrections
of order H, (/H. zs

The conclusion that the flux lines assume a con-
stant density in the regime H, ~ && H && H, 2 is plau-
sible but not self-evident because of the presence of

Similarly, Eq. (91a) has the approximate Fourier-
Bessel solution [compare Eq. (61)]

(,) ~ J((~(nx) [Jo(~(nxo) Jo(~(n) ]-
A x,xo =2

(z)„(1+tz)„A/R ) fJo(n)„) ]'
(108b)

The approximate screening contribution to the in-
teraction function now follows by substituting Eqs.
(108) into Eq. (93b). Evaluating the integrals expli-
citly, we find
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I ( „)—,I (,„)][1(,„)—l (,„)],~ . ~„' '( )x„' '(
ni. (I+ni. A/R»jo(ni. )]' . ,-i n'. (I+n .A/R)

(109)

which manifestly vanishes as R/A 0. If either x or
x' 0, this expression correctly reproduces the ap-
proximation Eq. (62b) for a flux line at the center of
the disk.

The presence of nearby boundaries greatly compli-
cates the interaction function, even in the simplest
case [compare Eqs. (84) and (93a)] of a neutral su-
perflui. d without screening currents. Nevertheless,
the approximate total interaction Uo =—U„+ U„o also
correctly reproduces Pearl's solution Eq. (68) for

I

I
fixed r and r as R/A ~. It is first convenient to
rewrite U„ in Eq. (93a) as a Fourier-Bessel series; an
elementary calculation shows that the total interaction
Up has the same form as in Eq. (109) except that
n(n+R/A) replaces —n'(I+nA/R) in the denomi-
nators. The sums over n can then be expressed as
contour integrals that run just to the right of the ima-
ginary axis; as in Eq. (51), writing out the integrals
explicitly gives the equivalent representation

Up(r, r )= 4o "" du u
Ito —

I
r —r 'I

2m A"o 1+u A

Ip( ur/A ) Ip(uf '/A ) Kp( uR /A )

lp(uR/A)

+ [Ip(uR /A) —Ip(ur/A) ] [lp(uR /A) —Ip(ur'/A) ]

(uR/A)l, (uR/A)l (uR/A)

,
. (, , )

I (ur/A) I (ur'/A) K (uR/A)
I (uR/A)

(110)

where we have now reverted to the usual dimension-
al variables. Only the first term in the integrand is
independent of R/A, so that all the remaining contri-
butions reflect the presence of boundaries. In gen-
eral, these latter terms have no simple interpretation
as the effect of discrete images. If R/A 0, howev-

er, it is not difficult to verify that Eq. (110) repro-
duces Eq. (93a) for a neutral superfluid, with the
sum on m W 0 constituting the effect of the pair of
image vortices. In the opposite limit (R/A ~ for

I
fixed r and r ), only the first term of the integrand
contributes, giving Pearl's result [compare Eq. (68)]

I I

R/A-~ 2n3A "o 1+u2 A 8m A A A
I

As expected, this limit restores translational invari-
ance. For small I r —r I, Eq. (111) exhibits the
same logarithmic behavior as Eq. (93a) for a neutral
superfluid, but the screening currents become effec-
tive with increasing separation, and Eq. (111) eventu-
ally decreases like @p2/4m'I r —r I for
I r —r I/A. » 1.

VI. DISCUSSION

The present work has studied the behavior of flux
lines in a thin superconducting disk of radius R.
Since the equations are linear, it is sufficient to in-
vestigate the structure of a single flux line, for the
interaction between pairs then follows directly from

the Lorentz force. Although this connection between
the current around one line and the pair interaction
may at first seem surprising, it has a direct analog in
electrostatics, where the potential and electric field of
a single test charge in the presence of arbitrary fixed
conductors also determines the interaction energy of
an assembly of charges.

The presence of boundaries greatly complicates the
problem, and it has not proved possible to obtain an
exact solution, even for a single flux line at the
center of the disk. We have, however, constructed
an approximate solution Eq. (61) that has the correct
limiting behavior both for large and small values of
R/A. In the former case, it reproduces Pearl's
results, ' and in the latter, it reduces to that for a
neutral superfluid. Thus it provides a convenient in-
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terpolation formula that remains well defined even
for R /A ~. In contrast, a naive perturbation solu-
tion of Eq. (18) in powers of R/A is bound to fail for
sufficientiy large values (in practice, probably around
R = 2A). Our approximate solution determines a

variety of physical quantities, such as the lower criti-
cal field for flux penetration in the disk. Direct mea-
surement of H, ~ would be very interesting, for it
would help verify Pearl's original calculations.

Recent theories of two-dimensional systems have
stimulated interest in thin superconducting films. '

To the extent that the interaction between flux lines
is purely logarithmic, the Kosterlitz-Thouless descrip-
tion and its generalizations apply directly. Such a sit-
uation cannot hold in a large disk (R » A), for the
interactions then behave predominantly like r& '. If
R && A, however, the interactions indeed become
logarithmic, but it is not clear how the presence of
boundaries affects the predictions of the theory.
Even for neutral vortices in thin superfluid films, the
interactions deviate from lnr;, as soon as r„" is some
finite fraction of the radius R [see Eq. (93a)], or
when either r; or r& approaches the edge. Thus the

interaction function Eq. (111)contains important
nonlogarithmic contributions for arbitrary values of
R/A. In this context, the distinction between an in-

finite superconducting disk and a bounded neutral
superfluid film is largely one of detail. Such a
viewpoint raises the interesting question whether any
interaction function that is logarithmic at short dis-
tances will lead to the Kosterlitz-Thouless phenomena.

It is also interesting to consider thin films with oth-
er geometries, for example a long strip of width 2a.
The energy barrier for a flux line to cross this strip'
depends on the ratio a/A, as will the response to an
applied transport current. These questions merit fur-
ther investigation.
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