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Melting of flux lattices in thin-film type-II superconductors is analyzed, ind the phase diagram

as a function of magnetic field is discussed. Several experimental consequences are explored, in

particular the flux-flow resistance of inhomogeneous thin films.

Beginning with Abrikosov's calculations on type-II
superconductors in a magnetic field, ' it has become
clear that in a certain range of magnetic fields and
temperatures, there exists a triangluar flux lattice
consisting of regions of superconductor interspersed
with a regular array of vortex lines, each containing
one quantum of flux

40= hc/2e

Several authors' have shown that triangular vor-
tex lattices are stable and have a well-defined shear
modulus, They have been observed experimentally,
both directly4 and through a novel interference exper-
iment performed by Fiory' from which the shear
modulus of vortex lattices in thin films can be ob-
tained.

In most of the previous work on flux lattices, the
effects of thermal motion of the vortices have been
ignored. In this paper we investigate the effects of
finite temperature fluctuations on the properties of
flux lattices and flux flow in thin films. In particular
we show that above a melting temperature, TM, vor-
tices will no longer form a lattice but will rather form
a fluid with considerably different properties.
Doniach and Huberman' have recently obtained
some results on flux-lattice melting independently„
several discrepancies between their results and those
of this author will be discussed.

In this paper, we emphasize some of the experi-
mental consequences of flux-lattice melting, in partic-
ular the effects of vortex pinning. We first review
the properties of vortices in films and recent results
for films in zero magnetic field. ' In Sec. II
Kosterlitz-Thouless" ' melting of vortex lattices and
the resulting phase diagram as a function of tempera-
ture and magnetic field are discussed. In Sec. III we
discuss the effects of pinning, and in Sec. IV we
analyze the resistive properties of thin films in a
magnetic field. Finally in Sec. V we consider mea-
surements of the shear modulus near the vortex-
lattice melting temperature. The Appendix deals with
more accurate estimation of the melting temperature,
TM.

I. VORTICES

where A( T) —= 2)tsz( T)/d is an effective two-dimen-
sional penetration depth (typically on the order of 1

cm at T, ) with ks(T) the bulk penetration depth and
d the film thickness.

In thin films where d &( A.~, the super current
density and vector potential are uniform through the
thickness of the films and the vortices interact at
separation r )) g [where $(T) is the temperature-
dependent Ginzburg-Landau coherence length] with
a potential (for vortices of the same sign)'4

a+a 2

gmA(T) ' A(T) ' A(T)
(1.3)

In a two-dimensional film geometry, it is not possi-
ble to exclude flux in a magnetic field perpendicular
to the film. ' Thus the lower critical field, H, ], van-
ishes, and in the absence of pinning there will be a

finite resistance due to flux flow in any nonzero field,
[Doniach and Huberman" define a nonzero H, ~(T)
which depends on the sample diameter D and van-
ishes as D ~. At T=0 in a finite film there will be
flux exclusion for small enough fields; however at
any nonzero temperature there will sometimes be
vortices in the film clue to thermal fluctuations in any
field. The average vortex density will thus change
smoothly as a function of field for T ) 0 and there
will be no phase transition and no H, i, in contrast to
statements and the figures in Refs. 7 and 8.]

Several authors' ' have recently pointed out that
in zero /Ield, on the o-ther hand, there can be a
superconducting-normal transition analogous to the
Kosterlitz-Thouless' transition in thin He films.
They predict that below a temperature, T„ there are
no free vortices and the resistance vanishes. Above
T, thermally excited vortices appear and the resis-
tance becomes finite.

While strictly speaking, this transition will occur
only in the limit of infinitely thin films, in practice
the resistance will be immeasurably small below the
temperature, T„ implicitly determined by

T, = &bzo/16m zA( T, ) (1.2)
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where Ho is a Struve function and Yo a Neumann
function. At very long distances r && A,

be approximated by

t (Ta)ao/Tu=4~- (2.4)

V(r) = ~'o 1
4m2 r

(1.4)

and at intermediate distances,

g(T) «r «A(T),
(1.5)

1'(r) =— o
1

r
4ir~A

We note that in this intermediate regime, the
vortex-vortex interactions are proportional to their
length, d. Thus, as the film gets thinner, the interac-
tions get ~eaker. It is this logarithmic interaction out
to distances of the order of A (which diverges as
d 0} which is responsible for the Kosterlitz-
Thouless transition in zero magnetic field.

At high magnetic fields, 8 ~ H, i(T), where H, i is

the bulk upper critical field, the approximation that
the vortices are far apart compared to g( T) breaks
down, the short distance form of the interaction
(r —g) becomes important and it no longer has a
simple form.

To determine the melting curve it is thus necessary
to calculate the shear rdodulus of the vortex lattice.

Several authors have calculated p, in various re-
gimes which we now considers 'o: (1) intermediate
fields ap « A but 8 « H, i(T), where H, i is the
bitlk upper critical field, (2) high fields ao « A and
8 & H, i(T},and (3) extremely low fields ap » A.

All the previous calculations ' are valid only in
the limit that T « TM, At finite temperatures,
T & T~, the shear modulus will be renormalized by
nonlinear lattice vibrations'7 and defects, notably
dislocation pairs. "' ' We cari estimate the melting
temperature for the vortex lattice, however, by use of
the calculated "bare" shear modulus p,o ignoring these
effects, and a correction of the order of unity which
takes into account these renormalizations.

We consider first the most interesting case.

l. Intermediate fields

In the intermediate-field regime,

II. FLUX-LATTICE MELTING AND
PHASE DIAGRAM

'( T) dip A'( T)
(2.5)

In this paper we consider a film in a nonzero per-
pendicular field B with an areal denstiy of free vor-
tices of one sign given by

(2.1)

At low temperatures these vortices will form a tri-
angular lattice with lattice spacing, ao, given by

(2.2)

Kosterlitz and Thouless"" have noted that any
two-dimensional lattice becomes unstable to the for-
mation of dislocations above a temperature, T~,
given in terms of the two-dimensional Lame coeffi-
cients, p, (T}and A. (T), '~ by

it is found that the bare shear modulus (ignoring
thermal fluctuations of the flux lattice) is~

@'o 1 8
4w'A(T) g dip

(2.6)

and Tit is hence independent of magnetic field and is

implicitly determined by

1 1 ~'o

2ir J3 8 4rr'A(Tit)
(2.7)

where A i is a constant of the order of unity (for par-
ticles interacting with a logarithmic potential) which
arises from renormalization of the elastic constants at
finite temperatures from their "bare" valves pp( T)
and A. =~ due to nonlinear lattice vibrations" and
defects" "".

p(Tit)(p(Tit) +i~(T~)]ap
=4m

T~»t (T~}+}(Tu}] (2.3) p, (Tir)(ti. (Tiit) + it(Tir)1

(2ti ( Tir ) + }i(Tiir ) ]tio( Tot)
(2.g)

They predict that the lattice will melt via a second-
order transition at Tir and the shear modulus p(T)
(which ii nonzero for T ~ Tiit) will drop discontinu-
ously to zero.

In the case of a vortex lattice, X is infinite at T =0
due to the long-range vortex-vortex interactions (i.e.,
the system is incompressible). At finite temperature
it will be renormalized to a large but finite value by
the presence of defects. However, if we ignore this
small effect, the criteria for melting [Eq. (2.3)] can

In the Appendix we discuss estimation of the renor-
malization constant A i and conclude it probably lies
in the range

0.4«A i «0.75 (2.9)

The effects of renormalizattion of the shear modulus
have not been discussed by Doniach and Hubermanl;
they assume A i =1.
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As Beasley et al. ' have noted, it is useful to ex-
press the transition temperatures in terms of experi-
mentally measurable quantities. In the dirty limit'9

A(T) =3.56
2
"f',

4~ c c0 . c0
(2.10)

= 2.66
Tc0

as T T0 (2.11)

As R„ increases (i.e., -the film gets thinner), the
melting temperature TM, decreases continuously from
T,0, for small R„ in the experimentally important
intermediate-field regime,

1

I+ 3.8 Rn

c0 ~1 Rc
(2.12)

This will typically be valid for fields down to small
fractions of a milligauss. We can compare this with
the resistive "transition" temperature in zero field
(marked by an x in the figure")

Tc 1

T,p 1+0.173R„/R,
(2.13)

(We note that the coefficient 0.173 above should
probably be somewhat larger due to renormalization
effects. P)

In the limit of extremely high R„, on the other
hand, A will be temperature independent near TM

and T, and we find that

and

T0 R„
(2.14)

(2.15)

where R„ is the normal-state sheet resistance,
R, =lr/e'=4. 12 kQ/0, T, p is the bulk BCS transition
temperature and

T A(T) A(T)
T,p A(0) 2T

where A2 is again a renorrnalization coefficient of the
order of unity [analogous to A ~, see Eq. (2.8)] which
can in this case depend weakly on B. From Eq.
(2.17) .we see that at low temperatures. and high
fields the melting curve has the form

TM ~ [H,2(0) —8]' (2. 18)

(which we note is incorrectly sketched in the figure in

Ref. 7).
It should be emphasized that in thin films there is

no phase transition at the bulk H, 2( T); there is just a

gradual crossover to normal metallic behavior. Its
place is taken by the flux-lattice melting transition.
As can be seen from the above discussion, as the
film gets thicker the melting line TM (8) will ap-
proach the bulk H, q(T)

3. Very low fields

In the very low-field limit,

8 && Cp/A'(T)

we find that

TM = A 3 (0.245), , (2.19)
4~ @p 34m'A T )

This regime is almost inaccessible experimentally
and for the rest of this paper we will restrict our-
selves to fields much larger than 4p/A'.

A sketch of the vortex-lattice melting curve as a
function of B is shown as a solid line in the figure.
The very low-field region is not shown —it would, in

any case, not be visible on this scale.

where A3 is again a con'stant of the order of unity,
appropriate to particles interacting with a 1/r poten-
tial. For this case A3 can be estimated by analogy
with experiments, numerical and analytical results on
the two-dimensional electron crystal"

(2.21)

We now turn to the high magnetic field regime.
A. Hexatic phase

2. High fields

In the high-field limit,

(2.16)

H, 2(TM) —8''
TM ——A 2 0,353—

2m J3 4 H, 2(TM)

(p 2

4m'A( TM )

(2.17)

the melting temperature is determined implicitly by

In addition to the vortex-lattice melting transition
in a finite magnetic field, there will be another transi-
tion at higher temperatures.

Halperin and Nelson" have sho~n that if any two-
dimensional solid melts with a second-order transi-
tion via dislocation unbinding, it will not do so direct-
ly into the isotropic liquid, but rather it will melt to
an anisotropic or "hexatic" liquid-crystal-like phase.
This phase will be characterized by the presence of
free dislocations (and hence exponential decay of po-
sitional order) but only bound pairs of disclinations.
Halperin and Nelson" define a bond-orientation or-
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FIG. 1. Phase diagram of a thin-film superconductor
showing vortex solid, hexatic, and fluid phases. The solid

line is the flux-lattice melting curve (TM) and the dashed

line the hexatic-isotropic flu'id phase boundary (Tz). The
resisitive transition temperature, T„ in zero field, is marked

by an X. For comparsion, the bulk upper critical field

H,2(T) is shown as a dotted line, and the bulk transition

temperature, T,o, is also marked.

der parameter Q(r) =exp[6/8(r) ] where 8 is the
"bond-angle" between an atom (or in our case a vor-
tex) and its neighbor. This order parameter will have
long-range order in the solid phase and power-law de-.
cays in the hexatic phase. At a temperature TH the
disclinations wi11 unbind and for T ) TH there will be
an isotropic liquid with exponential decay of all corre-
lation functions.

In our case, the phase boundary TH(B) will lie

above TM(B) and roughly parallel it (see Fig. 1).
Though its exact location is hard to predict theoreti-

'cally, its position can be crudely estimated if the
dislocation core energy, Eoc, is known (see Appen-
dix). Unfortunately, as in other experimental sys-
tems, there is no known probe which couples directly
to the hexatic order parameter Q and hence the
hexatic-isotropic transition will be very hard to ob-
serve experimentally.

(3.2)

In the intermediate-field regime (which we will as-
sume henceforth) this yields

Up '"(TM) = (2m&3/A, ) TM (3.3)

Often, however, the pinning potential will be consid-
erably smaller than U~ '". Granular aluminum films
(with which several previous experiments on flux
flow have been carried out'" ") typically have inho-

mogeneities on a scale, b,„, considerably less than the
. coherence length. In this case typical values U~, of
the pinning potential will be

U max(6 3 /~g2d )1/2 ( T T )-3/2

and the typical pinning force on a vortex will be

(3.4)

~here the angle brackets indicate averaging over the
distribution of pinning potentials. If a film consists
of randomly deposited grains of size b~, with only ex-
tremely short-ranged (- b,„) correlations in their po-
sitions, (as has been asserted for many different
thin-film systems but may in fact not be correct for
any of them), then I'U(r) will be zero for r ) b,„.
(Note: It will also have this form for any inhomo-
geneity with only short-range correlations. ) For sim

plicity we will consider this to be the case of the pur-
poses of this paper. However, there is at least pre-
liminary evidence that there are in fact long-range
correlations in the pinning potential. ' The effects of
correlations will be dicussed in a future paper.

If, as we will assume henceforth in this paper, the
correlations in the pinning potential are very short
ranged, most of the contribution to the pinning will

be from the interaction of normal vortex cores with
the small scale inhornogeneities. The maximum core
pinning potential, U~, possible can be obtained by
punching a hole in the film24 of radius g which
results in

U '"= (H /Sm) (n g') d = @2

32m'A( T)

III. PINNING
U~/g —(T,o T) ' . — (3.5)

I U(r —r')=(U (r)U (r')) (3.1)

So far we have considered only homogeneous
films. However, in a real film there are always (at
least) small scale inhomogeneities which can act to
pin vortices by interactions with their normal cores,
and the large current densities near these cores.

In this section we will be concerned with pinning of
vortices due to small scale inhomogeneities. The
resulting pinning potential, U~( r ) felt by a vortex
can be characterized by the correlation function
between pinning potentials at different places6

If R„& 100 0 so that TM is relatively close to T,o

and g(TM) is sufficiently large compared to b,„( ro
the film is relatively thick), U~(TM) can be of the or-
der of TM

At the other extreme, however, for films in which
the pinning has correlations on scales much larger
than g, there are large contributions to the pinning
(and nonlinear effects due to the possible presence of
other vortices nearby) due to the dependence on film

thickness of the energy of the large currents around
the core.

In this limit, the pinning potential can be consider-
ably larger than the U~

'" [Eq. (3.2)] arising from the
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2

Tjg Qo
(3.6)

Thus only for B & H, 2 where the intervortex spacing
is only a few times bl, will the flux-lattice melting
curve be appreciably altered by pinning.

The effects of pinning on the dynamic properties of
the vortex system are much larger, however. These
we discuss in Sec. IV.

cores. Consideration of this limit may be necessary
to explain flux-flow resistance data23 2s (see Sec. IV).
While it might be expected that even pinning poten-
tials with U~ on the order of the flux-lattice melting
temperature (probably the weakesr pinning which can
be hoped for in granular films) would drastically af-
fect the vortex phase diagram, in fact due to the
presence of a large number of pinning "sites" per vor-
tex in a granular film with only short-range correla-
tions; the effects are rather small in the intermedi-
ate-field regime for 8 « H, 2. A detailed calcula-
tions (planned to be published elesewhere) shows
that the change in melting temperature in an un-
correlated granular film is

data roughly fit an expression of the form6

Jy- —Rf E+Jp (4.l)

where E is the electric field and R& is the flux-flow
resistance per square given approximately by

Rf = [B/H, ~(T)]R„

with R„ the normal-state resistance. Schmid and
Hauger6 find that the critical current density is

J, ~ (I/p)U~

(4.2)

(4.3)

2. High temperatures T && T~

At temperatures mell above the vortex-lattice melt-
ing, a very different picture is necessary. [It should
be noted that the relevant inequality is really

T TM

A( T) A( T~)
(4.4)

with p. the shear modulus of the vortex lattice and U~
a typical pinning potential (see Sec. III). (Actually,
the critical current, J~, is related to the correlation
function I „, in a complicated way, not just to U~.6)

IV. FLUX-FL0% RESISTANCE

In the absence of pinning forces, the vortices
present in a perpendicular magnetic field will move
transverse to an applied current, causing dissipation. '
There will thus be a voltage caused by this flux flow
at all temperatures and applied currents. In a real
film, as discussed in Sec. III, there will always be in-
homogeneities which tend to pin vortices. In this
section we consider the effects of pinning on the
flux-flow resistance in various regions of the vortex
phase diagram.

Very lo~ temperatures T && T~

At temperatures well below the vortex-lattice melt-
ing temperature, T~, thermal motion of the vortices
can be ignored and we are in the familiar regime
analogous to that in thicker films where there is a
static flux lattice at all temperatures for B (H, 2( T).
This limit has been considered theoretically by
several authors6 and has been well studied experi-
mentally. 5

It is found that below some critical areal current
density, J~, the pinning forces dominate the Lorentz
force of the applied current on the vortices and there
is no flux flow. For transport areal current densities,
J&, larger than J~, the flux lattice will move with an
average velocity roughly proportional to J~ —J~, and
there will be a voltage drop across the sample: 1V

I V=(Cp/e)z x Jr 'OU&(r )+ g(f) (4.5)

where z is a unit vector perpendicular to the film, 1

is a friction coefficient given in the Bardeen-
Stephen 6 approximation by

vrI R.
2g' R„

(4.6)

g is a Gaussian white-noise source satisfying

(p(r) p(r') ) = 2r Tg ag(r r'), — (4.7)

not T && T~, however, for simplicity we will refer
to this regime as high temperature. ] As long as
T & T„ thermally excited free vortices mill be present
only in very small numbers (see discussion at the end
of this section), and we can consider the system as
just a one-component plasma of the free vortices
present due to the appled magnetic field.

Even for T & T„ the potential energy of a typical
pair of vortices will be a factor of about 4 times the
temperature and will hence dominate the kinetic en-
ergy. However, since the temperature is well above
melting, we will assume that each vortex feels only a
random force from the others: i.e., that the vortex
motion is uncorrelated. To calculate the flux-flow
properties of the vortex fluid, it is then sufficient to
consider the motion of individual vortices in the
presence of random noise (simulating temperture).
With a transport areal current density j &, and a pin-
ning potential U~( r ) the equation of motion for a
vortex becomes
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and v and r are the vortex velocity and position,
respectively.

Due to the Lorentz force from the transport
current, FL [the first term in Eq. (4.5)], the vortices
will move transverse to the transport current with a
drift velocity VD, causing dissipation. It is useful to
define a vortex mobility

p,„=Vp/FL

In terms of this the flux-flow resistance will be

R
Rc

(4.8)

(4.9)

While for strong pinning, U~/T && 1, the mobility
will be exponentially activated:

-U (, T))T
p,„—(1/I') e (4.11)

[The exact form of the mobility in this limit will

depend on details of the pinning potential and on
I'U(r) ]At all t.emperatures in the vortex fluid
phase, there will thus be some nonzero resistance
due to flux flow, in contradistinction to the low-

temperature critical current behavior discussed above,
where there is no resistance for small JT in the solid
phase at T =0. However, as in the vortex solid
phase, a large enough transport current in the fluid
phase will dominate the pinning forces and in this
limit the differential resistance will again be given by

Rf. This crossover from the pinning dominated to
the Lorentz-force-dominated regime, will occur at
currents

Jr —(V U~) c/Pp, (4.12)

where VU~ is a typical value of the gradient of U~,
i.e., the pinning force.

Flux-flow measurements on granular aluminum
films carried out by Horn and Parks" show a regime
in which the temperature dependence of the resis-
tance is of the form [Eq. (4.11)]. However, in order
to explain these data, it would be necessary to invoke a

U~ considerably larger than possible, from just core
pinning. This suggests that in fact inhomogeneities
in granular aluminum films have considerable long-
ranged correlations, in agreement with some recent
preliminary results mentioned earlier. '

Intermediate temperatures T —T~

Between the two limits discussed above, the flux-
flow behavior is much more complicated, and the de-

and we thus need merely to estimate the form of the
vortex mobility as a function of temperature. For
weak pinning, U~( T)/T && 1, vortices ar'e thermally
depinned and the mobility is given by

(4.10)

tails, along with discussion of the ac conductivity, will

be left for future investigation. Several points,
though, should be made here.

As discussed earlier, in the absence of thermal
fluctuations a vortex lattice will not move in the pres-
ence of a small current. However, at any nonzero
temperature the lattice will be thermally depinned
and can drift under the influence of an arbitrarily
small JT, causing a nonzero resistance. In addition,
there will be thermally activated defects in the lattice
(such as vacancies and interstitials) which will move
and contribute to the resistance. Both of these
processes should lead to resistances which vanish as
exp( —1/T) as T 0. The first (and probably the
second) will depend in a complicated way on the
pinning-pinning correlation function I'U(G) at
reciprocal-lattice vectors, G, and there will be several
regimes with quantitatively varying behavior—
depending on the nature and strength of the pinning.
There will be no measurable singularity in the flux-
flow resistance at the melting temperature since the
fluid for T & TM will be very solidlike out to length
scales of the vortex-vortex positional correlation
length, g„(T), which diverges extremely rapidly as
T~ T 12, 18

g„(T) —exp [ b[ TM/( T ——T~) ] ]" (4.13)

n g2 ( T) U~ ( T)/ T —1 (4.14)

At this temperature the resistance should start to de-
crease much more rapidly as T is decreased. The
crossover will be the closest to TM and the sharpest
for films in which the pinning is weakest. For this
reason it may be desirable experimentally to use (rel-
atively) thick, high resistivity films (where the rela-
tive pinning energy may be smaller) rather than ex-
tremely thin films of lower resistivity material.

When U~ && U~
'" another flux-flow experiment is

possible which may see a stronger crossover between
the high- and low-temperature regimes. Hebard,
Fiory, and Somekh24 have observed very large critical

where v =0.37 and b is a numerical constant which
will be independent of magnetic field in the inter-
mediate-field regime. ,

As the temperature is increased from TM, the
flux-flow resistance will cross over smoothly from the
complicated latticelike behavior to the simple in-

dependent vortex regime far above TM. This cross-
over will probably be sharpest if the pinn'ing is very
weak, i.e., if U~( T~)/T~ & 1.

In this weak pinning limit, the pinning will not sig-
nificantly alter the flux-flow resistance in the fluid
phase until the vortex fluid becomes strongly corre-
lated. There should be a relatively sharp crossover
from unpinned individual vortex behavior to pinned
latticelike behavior at a temperature, T, above TM

where
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currents (on the order of the theoretical Ginzburg-
Landau critical current) in an aluminum film per-
forated with a regular array of holes to provide strong
pinning centers ( in contrast to the high density of
pinning "centers" considered thus far). If a similar
experiment is performed in a high resistance film
with the separation between holes, SI„ large com-
pared to the vortex-vortex spacing and the holes as
small as possible (to avoid occupation of a single hole
by many vortices) there will be a large change in the
flux-flow resistance somewhere above TM. For
T » TM, most of the vortices will not be in holes
and hence will be only weakly pinned and the flux-
flow resistance will be only somewhat reduced from
its value in the absence of the holes. However, when
the vortex-vortex positional correlation length, tt:„,

becomes of the order of S~, all the vortices will be
strongly pinned up to large transport currents. Since
the vortex density can be varied via the magnetic
field, this experiment could provide a very rough es-
timate of g„as a function of temperature. While this
experiment clearly will not give a quantitative mea-
surement of the vortex-vortex correlations, it may be
possible to observe the effects. of a rapidly diverging

In order to actually measure properties of the vor-
tex system near melting, it is necessary to use a

probe sensitive to very long wavelength properties.
Most experiments (like the flux-flow resistance and
the "hole" experiment discussed above) will observe
only a gradual crossover from vortex liquidlike to
vortex solidlike behavior.

In all the above discussion, we have assumed that
the vortex-lattice melts via a second-order transition
through dislocation unbinding. It is possible, howev-

er, that the Kosterlitz-Thouless melting theory does
not apply for this system. In this case the melting
would probably occur via a first order transition -at a

lower temperature than predicted above and there
would be a corresponding first-order jump in the
flux-fow resistance and other properties of the sys-
tem. While a small first-order jump can of course
not be excluded experimentally, a large first-order
jump should be readily observable.

In Sec. V we will discuss an experiment which, at
least in principle, can be sensitive to very long-
wavelength properties of the vortex system.

Before proceeding, however, we briefly digress to
discuss a possible complication due to thermally ex-
cited vortices.

Ec= Tc (4.16)

Since TM (( Te, ett(TM ) (( I and the effects of
these bound vortex pairs can thus be ignored for con-
sideration of melting and the vortex-lattice phase.

At temperatures well above TM, we have already
ignored the correlations and the details of the interac-
tions between the free vortices in estimating the re-
sistivity (Sec. IV). This approximation will be
strengthened by the screening effects of the polarized
bound pairs and the linear resistance will only be al-
tered by replacing I' in Eq. (4.5) by a new I",tt which
includes the effects of bound pairs.

In addition, for T & T& there will be a nonlinear
resistance due to the breakup of bound pairs by a fi-
nite transport current Jr (Ref. 9) which will decrease
rapidly at T decreases from T~. This will be difficult
to distinguish experimentally in finite magnetic fields
from the nonlinear resistance due to pinning forces
discussed in Sec. IV. For T & T~, the qualitative
behavior of the IV curves will thus not be altered.

Near and above T~, however, there will be free
vortices thermally excited which give rise to the resis-
tance in zero magnetic field. These free vortices will

contribute a term roughly independent of 8 to the
resistance and the distinction between "thermally ex-
cited" and "applied" vortices will break down. The
results of this paper, therefore, are valid in nonzero
fields for temperatures up to around Tq and will

break down qualitatively only when the number of
thermally excited free vortices becomes on the order
of B/&bp.

an equal number of each sign. (It is the unbinding
of pairs of these thermally excited vortices which
gives rise to the resistive transition, T~, in zero mag-
netic field. ' 'p) In nonzero applied field the distinc-
tion between these thermally excited vortices and the
free vortices present due to the applied field is am
biguous. However, for T &( T&, the thermally excit-
ed vortices will be present primarily in tightly bound
pairs and the distinction can be relatively clear.
These pairs will be polarized by the free vortices and
will give rise to an effective temperature-dependent
dielectric constant, e&, which will modify the interac-
tions between free vortices. At low temperatures,
this effect will be exponentially small,

-2FcgT
e~ —1 —e (4.15)

where E~ is the core energy of a vortex

A. Effects of thermally excited vortices

So far we have considered only the vortices of one
sign which are present due to the applied magnetic
field. At finite temperatures, however, there will in
addition be thermally excited vortices, with roughly

V. MEASUREMENTS OF THE SHEAR MODULUS

If a vortex lattice is driven through a random pin-
ning potential at a velocity, VD, by a transport
current, JT & J~, dissipative fluctuations of the vortex
lattice will be excited. By coupling to these fluctua-
tions with a small rf, current parallel to JT, of fre-
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quency, ,f, Fiory' was able to extract the shear
modulus of the lattice from current-voltage rneasure-
ments by using the theoretical analysis of Schmid and
Hauger (SH).6 Steps were observed in the dc
current, J~, at dc electric fields

E~~ = Baof/mc, (5.1)

(where m is an integer) corresponding to motion of
the lattice one lattice spacing, ao, in m periods of the
rf current. These steps, which would be sharp for a
perfectly rigid lattice, have a width

Sx =DE (/E ) (5.2)

arising from fluctuations of the lattice as it moves.
For high frequencies and drift velocities,

1 f d'0B
Sxm =

m' p, 2rr&3c'Rf
(5.3)

where Rf is the flux-flow resistance. At low frequen-
cies or velocities, on the other hand, there are large
fluctuations in the local drift velocity and the width
is'

Sx cc m/f (5.4)

L-a,/Sx, . (5.5)

Thus as Sx~ increases, this experiment becomes sen-
sitive to shorter wavelengths. We find that near T,
at frequencies large enough so that Eq. (5.3) applies,
Sx& will typically be of the order of 0.1 or larger and
hence this experiment will, unfortunately, not be
sensitive to very long-wavelength properties of the
flux lattice. In fact Fiory's experiments' on films
with R„=10 0/0 observe steps with widths satisfy-
ing Eq. (5.3) for B & H, 2 in a region of the phase di-

agram in which, from the extracted shear modulus,
one expects the vortex lattice to have melted by the
Kosterlitz-Thouless" stability criterion [Eq. (2.3)].
However, it is found that in this region the experi-
mentally observed Sx~ is & 0.2 and hence the experi-
ment is only sensitive to a short-wavelength shear

Because of this 1/f dependence of Sx at low fre-
quencies, it is necessary to carry out the experiments
at frequencies large enough so that the 1/f contribu-
tion to the width can be ignored and the shear
modulus can be extracted by Eq. (5.3). This implies
that there is a minimum value of Sx as a function of
frequency which can be used to calculate p, . As not-
ed by SH, if Sx is extremely small, it will be sensi-
tive only to the very long-wavelength transverse
modes of the vortex lattice and hence to the desired
long-wavelength shear modulus. However, this is not
true in general. Analysis of SH's calculations shows
that Sx~ (the m =1 step is the primary one observed
experimentally) is determined mostly by modes of
wavelengths

modulus which will be present for T ) T as long as
the correlation length g„(T) [given by Eq. (4.17)1 is
larger than a few lattice spacings. We note that for
T &( TM, on the other hand, Sx~ becomes very
small; the experiment becomes sensitive to long
wavelengths and the results agree well with the calcu-
lated values of the bare shear modulus, po( T).2 5

For T ——TM, however, deviations will be expected

from the bare shear modulus due to nonlinear lattice
vibrations" (see discussion in Appendix). While
quantitative comparisons with experiment have not
been made, Fiory's5 data for p, ( T) tend to lie some-
what below po(T) for temperatures in this range.

While it may prove difficult to measure the long-
wavelength flux-lattice shear modulus near TM (only
the long-wavelength shear modulus includes all the
effects of dislocation pairs) by the interference exper-
irnent discussed above, the shear modulus may be
measureable more directly. For example, if one part
of the lattice is strongly pinned (say by holes) and
another part is moved by a transport current, it may
be possible to measure the shear restoring force of
the lattice. This and other possible experiments, we
leave for future consideration.
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APPENDIX

V (r) = —q (T) ln(r/a) (Al)

[for the case of superconducting vortices, q2 = 402/

4rr'A; in these units TM = A ~/(16m J3)q'(T~) ] can

In this appendix, we discuss the possibility of es-
tirnating the effects of nonlinear phonon interac-
ions" and thermally excited dislocation pairs" "'

on the flux-lattice melting temperture in the inter-
mediate magnetic field regime. To achieve this it is
necessary only to calculate the effects of these non-
linearities on the long-wavelength Lame coefficients
p(T) and X(T) and hence the melting temperature
renormalization factor A

~ defined by Eq. (2.8).
The renormalization of the shear modulus due to

nonlinear phonon interactions for a lattice of particles
interacting with a potential
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be systematically calculated in perturbation theory
about T=0

(A2)

where Cl = —28, pp is the bare shear modulus (ignor-
ing fluctuations) and the calculation of C2 involves
numerically evaluating 12 Feynman diagrams. The
other Lame coefficient, X, is not renormalized by
phonon-phonon interactions for the case of loga-
rithmically interacting particles.

To estimate the effects of dislocation pairs, it is
necessary to know the core energy of a dislocation in
the lattice under consideration, EDc ~ q'. At low

temperatures the number of dislocation pairs in the
lattice will be""

(A3)

and the renormalization of the shear modulus [and
X(T) ] due to these p'airs will also be exponentially
small. As the temperature is increased, the effects of
dislocation pairs on the long-wavelength Lame coeffi-
cients can be calculated by using Eoc and p, p„( T),
and integrating the renormalization-group equa-
tions"" of Halperin and Nelson. "

The resulting shear modulus, p, (T) will generally
be less than p, »(T) and will have a singularity at the
Kosterlitz- Thouless melting temperature. "'

p, (T) = p, (TM) +Dl(TM T)" (A4)

where v is defined after Eq. (4.13) and D~ can be es-
tirnated given EDc. Note that X will also be renor-
malized to a large but finite value.

For particles interacting with 1/r potentials (e.g. ,
electrons or superconducting vortices in the extreme-
ly low magnetic field regime) Eoc has been calculated
by Fisher, Halperin, and Morf, "and the first term in

p, „p(T) by this author. " Morf has found, using a
linearly termperature dependent happ( T) (i.e., assum-
ing C2=0, etc. ) and the calculated Eoc, that by in-

tegrating the renormalization-group equations, one
finds a temperature-dependent shear modulus in ex-
cellent agreement with his molecular dynamics calcu-
lations, " and a melting temperature which agrees re-
markably well with the experimentally observed
phase transition in electrons on Helium. This cal-
culation yields an estimate for the renormalization
factor for particles interacting with a I/r potential

A, =0.6 .

If ED& were known, a similar calculation would be
possible for logarithmically interacting particles,
which would give (one hopes) a reasonable estimate
for A

~
and hence TM. In absence of a specific nu-

merical determination of EDc for this case, a few
comments on the probable range of 3 i are useful, In
reduced units (i.e., those in which the bare melting
temperature is the same for 1/r and lnr potentials)
the linear term C|T in p,„(T) is roughly the same
for 1/r and lnr potentials.

However there is some reason to expect that the
quadratic term C, T' which appears to be small (from
Morf's results) for 1/r potentials may be considerably
larger for lnI potentials. ' If we assume for simplici-

ty, however, that the terms in p, » higher order than
C, are negligible (or negative) for T ( TM then we
can set a rough upper bound for A 1, valid in the limit
that Eoc is extremely large, by taking

p (T) = pp(T) (1+C) T/q2) (AS)

this yields

W, ~0.75 . (A6)

At the other extreme, if Eoc is small ( —few times
TM or less) then there will be a large number of
dislocation pairs present for T ( TM. The Kosterlitz-
Thouless" theory assumes that the dislocation densi-
ty is small and that nonlinear interactions between
dislocations are unimportant. If the dislocation pair
density is large, the theory may break down and
melting may be driven by another mechanism (e.g. ,
grain boundaries; see discussion in Ref. 22) or be-
come first order. It is reasonable to doubt the appli-
cability of the theory if the renormalization due to
dislocation pairs are much bigger than a factor of 2.
Hence if the flux-lattice melting is a Kosterlitz-
Thouless transition, we can guess that

0.4&3, &9,75 . (A7)

A numerical evaluation of Eoc and C2 is neces-
sary, however, to make a real estimate of A2 and test
the applicability of the theory.

We note, finally, that while the full effects of the
renormalization of p, due to dislocation pairs will only
occur at very long wavelengths, " the effects of non-
linear phonons will be measurable even at wave-
lengths of a few lattice spacings.
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