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Peak profiles of the Okorokov effects for heavy ions in a crystal
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Detailed peak profiles of resonant excitation probabilities of a heavy ion along the crystal axis
are calculated taking into account energy-level shifts, splitting of electron states in the heavy

ion, and dwell-time differences for different channeling paths. The temperature effect is also

studied by calculation of the Debye-Wailer factor. The shape of peak profiles calculated for
Ns+ Au (1 l l) agrees well with the experimental results obtained by Moak et al. However,

quantitatively, fe~ differences are found for the higher Miller indices.

I. INTRODUCTION

Recently, Moak et al. ' observed the Okorokov ef-
fect' for heavy ions (N6+ ions) into Au (111),in
which the detailed peak profiles of the resonant
coherent-excitation probability was given as a func-
tion of the ion velocity. The peak profile has a spe-
cial asymmetrical shape, and the peak width is very
large.

Here, making use of our previous theory, 3 we per-
form detailed calculations of peak profiles of the
Okorokov effect, taking into account energy-level
shifts and splitting of electron states in the heavy
ions, dwell-time differences for different channeling
paths, and lattice vibrations.

In Sec. II, we give a general formulation for the
probability function of the resonant coherent excita-
tions. We perform the detailed calculation of the ma-
trix element and the probability function over the
channeling path in space and time in Sec. III. Nu-
merical results and comparison with experiments are
shown in Sec. IV.

II. GENERAL FORMULATION

When the ion moves along the atomic row of the
crystal, it experiences the perturbation of the periodic
Coulomb potential with the crystal lattice. The angu-
lar frequency of the perturbation is 2wtt/d, where u is
the ion velocity and d the lattice constant. %e use b
for the position of the ion in the section of the axial
channel and r for the coordinate of the electron as
measured from the ion center. The coordinate of the
ion is represented by (see Fig. 1)

We expand the perturbation potential for the ion in

Fourier series with components for the axial direction
of the reciprocal-lattice vector, g, = m/d(ttt an integer),

V(t) = V(R(t)) = V(b, v, r, t )

(3)

where

F' '(b, r) =—X Va idexp( —i2wg. b)
tk

8g

x exp( —t2rrgq. rl i 2rrmz/d) —. (4)

We insert the perturbed Hamiltonian V in the
Schrodinger equation, and expand the wave function
+ with the eigenfunction of the unperturbed Hamil-
tonian IIO,

itt = (IIa+ V)%
Bt

p(t ) = XA&(t)r(tk exp( —iEkt/f )
k

b,

Ka(t) = b+ vt, b j.v

and the coordinate of the electron by

R(t) =K,(t)+r . (2)

FIG. 1. The ion moving in the periodic Coulomb fields
{the subscript I means the number of the string, and bt the
impact parameter for the string).
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where Ho(I)k = F.„Q„, from which we obtain

—A„(t) = x XF„'k '(b) exp(t&„'k 't)Ak(t), (7)
k m

where F„'k ) is the matrix element of Eq. (4) and

may obtain the set of the differential equations
4—A o= —X F(o )" exp( —i e„o 1)A„+Foo A o

n 1

—A„=F(o ) exp(ie(o)t)Aod

.4

+ g F„'„'A„(n=1—4)
k 1

(9)

( ) ~n —&k 2mmv
&nk

d
(8)

The resonance condition means that

E„—Ek 2nmv
d

(8')

Here we take into account the excitation between
the ground state and the first excited states only.
When the ion velocity is close to the resonance velo-
city, the cross terms of these two states mainly con-
tributes to the time integral of Eq. (7) for m W 0 and
the cross terms of degenerate states (including the
same states) contribute for m = 0, but the contribu-
tion from the other terms is small.

We represent the ground state with n = 0 and four
degenerate first excited states, 2p, (m, =O, m, being
the magnetic quantum number), 2s, 2p((mo =1), and
2p )(mo = —1), with n =1—4, respectively. Then we

where V'o' =itr F'o' [ V'o' is the average potential or
the continuum potential] and eIo'=a)o'=a)o'
=6 p~1m) ~(m)

The diagonal terms of the matrix elements of F' '

are not zero, and also the nondiagonal terms of 2s,
2p1, and 2p 1 are not zero. Therefore we diagonalize
them, and we represent the states w'ith n in which the
matrix elements of F' ' are diagonalized. Then the
first-order differential equations which we have to
solve are

4—A, = —X F„' exp( —t a"t )A„+F(o)A, ,
dt

d—A„= F( e)xp( t."t) A, +F„(o)A„(n =1-4) .

It is difficult to solve this equation exactly. Here we
take the two-states approximation in which the
ground state and the single excited state are con-
sidered. We obtain

4 F(m) 2

IA. (t) I'= („) (,) (,'), , ( ) I,
sin'( —,

' (["'+(V.'."—Vo'o')/&]'+41F(o' I' )'"t) .

where V„'„' is the first-order correction of the eigenenergy of the nth state.
From Eq. (11), the resonance condition [Eq. (8')] may be modified by

[(E„+V„„o ) —(Eo+ V()() ) ]/g = 2rrm v/d (12)

As mentioned above, the resonance condition is not Eq. (8) but Eq. (12), which depends on b and each excited
sate.

III. CALCULATION OF THE MATRIX ELEMENT

Because the extent of the wave function is small for the ground and the first excited states, i.e.,
g r(l

we may approximate

exp( —(2rrg r) =—1 —t2mg„x —t2rrg~y —t2w(m/d)z + —(—t 2mg ) x + —(—t2rrg~y ) + —( —t27rm/d) zz

Inserting this into Eq. (4), we obtain

F (b, r) =—1+x +y —i 2' z+ —x + —y— —2rr —z V td(b)
()-- m 1 2 g 1 2 Q 2 m (13)

If Q6& /by d

We take the Moliere potential as the interaction potential between the electron and the individual atoms in the
solid, i.e.,

V, (r) =—Zze' ' P;rXa;exp-r; 1 aTF
(14)
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where (a; } = (0.35, 0.55, 0.10}, (p, } = (0.30, 1.20, 6.00},and Z2 and aT„- are the atomic number of the solid
and Thomas-Fermi screening length, respectively.

Then we may calculate the potential V gq(b) in Eq. (13)

y &d(b) = —Xe I
Jl y ((b2 +z2)I 2)ei2m(™~d)z

d (

r r

Pi 2&ill

aTp d

2 12/2

(IS)
where Ko is the zero-order modified Bessel function of the second kind, and 5(d is the deviation of the Ith atomic
row to the 1st atomic row for the axial direction (see Fig. 2).

First we will calculate the matrix elements between ls, 2p„2s, 2p, ())), = 1), and 2p I(m4 = —1). Caiculations
are not so complicated but are long-winded. So here we show only two matrix elements as an example.

/F (m) (b)
)

2Z 2e i 2n m 5/ b(x —
/b/y

2

d ( b(

x Xo,.

2 &/22' w Pi

d aTp

'2 ' '2 1/21
I2 7rlllpi,

1 I
d aTp'

f r 5 f

ao—4
3 Z )

(16)

y (0) (b)

r i r

2Z2e'
~ p;bi 1 p; p; „d, , aTp b( aTp aTp

1 P;
2 aTp

K 'b +K 'b,
arF, a+ Z

. (17)

By the way, we note that

F( ) m(b) F(m)» (b)

nalized matrix is S ' ( V'0')S], the basis set of the
matrix or the eigenstates of the energy is

((()0(() '(})2'43' (i4') S ( ()0 Pl ()2 P3 ()4)

y(0) (b) y(0) (b) y(0) () (20)

(21)

4

X S, I(„)( )')= 2, 3, 4)
n 2

Therefore,

(22)

Now we represent ls, 2p„2s, 2p}, and 2p ( by
n =0—4, respectively, The matrix formed by the ma-
trix elements of V' ' can be diagonalized by diagonal-
ization of the partial matrix with 2s, 2p], and 2p ],
and we can obtain the first-order correction of the
eigenvalue of the energy. 1f the matrix [ V'0'] could
be diagonalized with the transform matrix S [diago-

4

I,"(m) . g ~ p(m) (&&' 2 3 4)
n 0 Iln

n~2
(23)

IV. RELATION TO THE EXPERIMENTAL

Hereafter we omit the prime indication for simplicity.

FIG. 2. The ion moving in the axial channel. b/ is the
impact parameter from the ith string, and 8/d is the devia-
tion of it to the 1st string for the axial direction.

Moak e( al, ' observed the rate of the ions which
were not ionized (survival fraction) after the passing
through the crystal with various velocity, considering
the fact that the ion can be easily ionized when it is
in excited states. In Fig. 3, the experimental result'
is shown for the ionization probability from N'+ to
N'+ by the electron impact in the solid, At the top of
the figure, we show the subtraction of the survival
fraction from the background.

Now we calculate the ionization probability on the
assumption that only the ionization channel, where
the ion is excited by Okorokov effect and the.excited
ion is ionized by electron impact in the solid, exists.
%e denote subscript "old" when we ignore the ioniza-
tion process, and subscript "new" when we consider
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gives the ionization probability

0.80

4

(ta) I' = I —exp —X N o„DP„(ta)
n I

t

fs l0
P„(t,) =— IA, (t) I2~adt

(28)
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FIG. 3. Experimental ionization probability of N + ions
into Au (111) by Moak et at. (Ref. 1).

4

I A o(t ) log + X IA (t ) Iota = I
n I

(24)

the ioinization process. %e denote subscript "~"for
ionized states. The probability conservation shows
that

where D is the thickness of the target and to the
dwell time through the crystal. In the above, P„(t )a

means the averaged excitation probability by the
Okorokov effect.

V. CHANNELING AVERAGE AND PEAK PROFILE

Finally we make an average of the excitation prob-
ability for the channeling path. %e do this with the
statistical-equilibrium spatial distribution (SESD) of
the ion path for the parallel incidence and the perfect
alignment.

In Fig. 4 we show Au (111) axial channel. We
make the channeling average only for the shadowed
region in the Fig. 4 because the other regions are
identical.

The first-order corrections of the eigenenergies for
the four first excited states [ V„'„a' —Vqaa' (for
n =1—4)] were calculated in detail. We show our
results for V„'„O' —Vooo' in Fig. 5. The solid curve in-

dicates the changes of these quantities from 0 to C
and the dashed curve the changes along the 0 —X
direction in Fig. 4.

In Fig. 6, we show the averaged excitation proba-
bilities, (Pn ),„,„„,~, , for each excitation level (I—4)
in the case of N + Au (111) (m =4,6). v„„means

n I

Here we note that the ratio of the occupation weight
for every discrete level is not changed when we con-
sider the ionization process. Thus we obtain

(26)

and the time differential coefficient of the ionization
transition probability IA (t)l is calculated by

4
= X Nvrr„ IA„(t) I2(a(1 —IA (t) I')

(27)

where N is the density of the electron which contributes
to the ionization of an ion by the impact, and «r„ the
ionization cross section. The time integral of Eq. (27)

AU &111) Axial Channel

FIG. 4. Au (111) axial channel. The shadowed region is

a symmetrical one.
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FIG. 5, Impact-parameter dependence of V„'„'—Vpp . The solid curve is for the direction 0-C and the dashed for 0-L in

Fig. 4. The value of the bold line is positive.

the velocity of the Okorokov condition. The excita-
tion profile for 0 2 is most modified from the
symmetrical kinematic profile. On the other hand,
the excitation profile for 0 1 is not so modified
(except the peak position).

We show the total (averaged) ionization probabili-

ties, (IA I').h,.„„,~, in Figs. 7—9 for N'+ Au (1 1 1).
The upper right is the experimental curve by Moak
et al, ' By comparison, our theoretical profiles agree
well with the experimental, especially the asymmetry
of the profiles that are interpreted by our calcula-
tions. However, the profile for high index (m = 6)
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FIG. 7. Total (averaged) ionization probabilities

(IA I2),„,, „«i for N6+ Au (111)(m =4). The upper right
is the experimental curve by Moak et al, (Ref. l).

does not agree, which will be discussed in the next
section.

VI. CONCLUDING REMARKS

= Au (111&, m=6
&P„(t.)&channei

--0 5

By a dynamical theory, taking into account the
ground state and the one excited state whose energy
level splits into four states due to perturbation of the
channeling wall atoms, we have calculated the de-
tailed peak profile of the resonant coherent exciton of
channeling ions. The peak profiles obtained here
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FIG. 6. The averaged excitation probabilities (P„),a,„»,i
for each excitation level (1—4) for N6+ Au (111) (m
=4, 6).

FIG. 8. Total (averaged) ionization probabilities
(I& 12),a,. „«i for N6+ Au (111)(m = 5). The upper right
is the experimental curve by Moak et al. (Ref. l).
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TABLE I. ' Calculated Debye-Wailer factors for various
temperature and Miller indices.
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FIG. 9. Total (averaged) ionization probabilities

( I& I'),ha„«, &or N + Au (111) (m =6). The upper right

is the experimental curve by Moak et al. (Ref. 1).

Where u, is the thermal displacement of the atomic

agree well with the experiments except for higher
Miller indices.

The peaks for the higher Miller indices are sharper'
than the experimental ones. The temperature effect
will contribute to a decrease in the peak height by the
Debye-%aller factor. Table I shows the Debye-
Waller factor exp( —2M, ) for various temperatures
and the mirror indices, where M, is defined by

M, = —,
' (2nm/d )'(u, ')

position in the channeling direction. It is noted that
the Debye-Wailer factor is only 0,817 for m = 6 and
that the peak height decreases by 20%, which is not
comparable to the experimental peak decrease. The
energy loss or the stopping power may also modify
our peak profile. However, it is not so easy to take
into account the stopping power for the solution of
Eq. (10).

Datz et al; 4 and Crawford and Ritchie5 have point-
ed out the importance of the wake potential. They
calculated the level splitting due to the wake potential
for planar cases. However, in our calculation, we did
not take into account the wake effect. In our case
(axial channeling) the ion trajectories approach the
atomic position more than the planar case and the
splitting will be caused mainly by the lattice potential.
However, the wake effect may also contribute to our
calculation of the peak profile, which will be studied
in the near future. It is noted also that the de-
excitation process of ions while passing through the
crystal prevents a coherent excitation profile.
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