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Real spin-glasses possess both anisotropy and remanence. To interpret spin. wave, electron
spin resonance (ESR), and related experiments on such systems, one must develop an appropri-
ate macroscopic spin dynamics, thus extending the hydrodynamic theory of Halperin and
Saslow. It is found convenient to employ a local spin coordinate system represented by 7 and 6,
so that the macroscopic variables are (7, ) and the magnetization . The equations of motion,
for small disturbances about the remanence iy, are analyzed. Longitudinal spin waves and
transverse spin waves are obtained; for pure uniaxial anisotropy, the transverse spin waves pos-
sess an anisotropy-induced gap. For a static field A along My (so M =g+ x,,ﬁ ), the ESR line
satisfies w = yH + w,, where w, « m~!. The phenomenological free energy is made consistent
with these results. The effective transverse susceptibility il, for small transverse fields, is also
calculated. It is noted that measurement of mg, X;, and the zero-field values of X, and the ESR
frequency completely determine the parameters of the theory, so that a measurement of the
field dependence of )~(1 can serve as a check on the theory. Spin waves at finite wave vectors,
and the effects of remanence on the low-temperature specific heat are also discussed. It is noted
that, on the basis of the ESR data, one may conclude that there is an exchange coupling
between fiig and X"ﬁ, for small transverse fields.
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I. INTRODUCTION

Recently, Halperin and the author developed the
hydrodynamic theory of spin-glasses and other non-
collinear spin systems.! Anisotropy and external
fields were ignored, and systems with remanence
were only briefly discussed. Since real spin-glasses
exhibit both anisotropy and remanence, and since
they are studied in the presence of magnetic fields,
the work of Ref. 1 has only a limited validity. Most
particularly, being a hydrodynamic theory it is valid
only for long-wavelength disturbances (kK zﬁ, where
K is the wave vector), and then only if the following
conditions are satisfied. First, the predicted frequen-
cies w; must be much lower than any "internal" fre-
quencies not describable by the hydrodynamic vari-
ables (so that, e.g., from perturbation theory, the fre-
quencies w; will not be significantly affected by a
coupling to the internal frequencies). Second, they
must be much lower than the inverse of the charac-
teristic equilibration time of the system (so that the
parameters employed in the hydrodynamic theory,
which assumes local equilibrium, do not depend upon
frequency). Because the gap induced by anisotropy
dominates the K =0 behavior of spin systems, the
theory of Ref. 1 does not apply near k =0, even if
the above two conditions would be satisfied. Only if
a certain "window" of wave vectors develops, for |El
not so small that anisotropy dominates yet not so
large that the long-wavelength expansion becomes in-
valid, can the results of Ref. 1 be expected to apply

2

to real systems without remanence.

In fact, some of the most interesting properties of
spin-glasses are associated with remanence. The
remanent magnetization of a field-cooled spin-glass
[or thermoremanent magnetization (TRM)], the
remanent magnetization of a zero-field-cooled spin-
glass to which a field has been applied [or isothermal
remanent magnetization (IRM)], and the temporal
decay of the remanent magnetization, are all proper-
ties that are not completely understood.? Further-
more, spin-glasses often show displaced hysteresis
loops and sharp jumps in the magnetization on going
from one branch of the loop to another.> A recent
study on CuMn summarizes much of what is known
about hysteresis in spin-glasses, and points to the ex-
istence of a well-defined anisotropy constant for the
spin-glass state.* (See the work of Kouvel® and of
Iwata er al.,% for additional studies bearing on aniso-
tropy.)

Because real spin-glass systems possess remanence
and anisotropy, it is not clear that the theory of Ref.
1 can be subjected to a clear-cut experimental test.
On the other hand, recent electron-spin-resonance
(ESR) measurements by Monod and Berthier on
CuMn provide a probe of the |k| =0 mode of a
spin-glass with remanence and anisotropy.” These
authors find that the ESR frequency is well described

by the form
(1.n

w=w)tw, ,

where wo=7yH is the Larmor frequency (y is the
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gyromagnetic ratio and H is the applied field), and
g <« m™! (m is the total magnetization). It is one of
the major purposes of this paper to explain this
result. This requires extending the theory of Ref. 1
to include an external field as well as remanence and
anisotropy. Besides the ESR data, the magnetization
induced by a small static transverse field is also con-
sidered. If these experiments are performed, in addi-
tion to the ESR work, the theory can be put to a
stringent test, since its parameters will be overdeter-
mined.

Before the theory can be presented, a number of
questions, both experimental and theoretical, must be
discussed. Section II contains a review of experimen-
tal work bearing on remanence, anisotropy, and other
questions pertinent to the present investigation. Sec-
tion III considers the relationship of the hydrodynam-
ic approach to other approaches. Section IV provides
the basic theory, both the equations of motion and
the free energy, upon which the present paper is
based. In Sec. V the spin waves are obtained (both
longitudinal and transverse), and their implications
are discussed. Section VI considers the transverse
response of the system, for small transverse fields.

In Sec. VII an estimate of the domain wall thickness
is made, supporting the view that there are long-
range correlations in the system. The significance of
disorder for explaining the unusual properties of the
spin-glass state is also discussed.

II. EXPERIMENTAL EVIDENCE FOR
LONG-RANGE CORRELATIONS

Because the ESR experiments’ have been per-
formed on CuMn, we will focus attention on experi-
ments pertaining to CuMn. We begin by noting that,
since the ESR experiments observe the free-electron
g factor, the Mn ion is probably in an S state, which
should have a weak crystal-field interaction, and low
single-ion anisotropy.®

Furthermore, despite the vastly differing environ-
ments of individual Mn ions, the line is sufficiently
narrow that the ions must all have about the same ef-
fective anisotropy field acting on them. This can be
understood if the spins are coupled together through
a strong exchange interaction. Thus, any weak, local-
ized, anisotropy fields acting on isolated ions produce
an averaged effect on the system, which is strongly
coupled as a whole.

The NMR experiments of Alloul provide strong
support for this view.>!% Alloul has studied the
zero-field Cu NMR of the first- and fourth-nearest
neighbors of Mn in powdered CuMn (1%).° Using a
spin-echo technique, he observes an enhancement of
the pulsed rf field and of the signal intensity, as the
remanence mg increases. This he interprets in terms
of a strengthening of the external torque (g % H)

relative to a fixed anisotropy torque that hinders the
rf rotation of the Mn spins producing the local field
H_ at the Cu nuclei. (This H,, which is primarily
due to the neighboring Mn, determines the position
of the resonance.) Such an argument holds only if
the spins are strongly coupled to one another, feeling
an averaged anisotropy torque. In addition, because
he finds an enhancement factor which is uniform
over the entire system, Alloul concludes that the
spins are coupled over macroscopic distances.
Another consequence of such reasoning is that one
can define an effective anisotropy field, H,, which
should vary as mg!. Indeed, this is found experi-
mentally. A detailed discussion of these points is
presented in Ref. 10.

Another indication that the spins are coupled over
macroscopic distances comes from the hysteresis
studies of Ref. 3. There it was found that a crystal of
CuMn, showing sharp hysteresis loops, would occa-
sionally develop states of zero net magnetization
which, when pulled across a field coil, gave evidence
for two oppositely magnetized macroscopic domains.
(It is likely that the small m, and thus the small field
energy, is responsible for the large size of what ap-
pear to be domains.)

From these experiments, we conclude that the
spins in a spin-glass are strongly coupled to one
another, with a correlation which extends over mac-
roscopic distances, and with an anisotropy energy
which is an average over the anisotropy energies for
individual ions. Furthermore, for the small trans-
verse tf fields employed in Ref. 7, the anisotropy acts
upon the total magnetization, not just the remanent
magnetization. This must be built into the free ener-
gy employed in Sec. IV. Note that hydrodynamics,
being a phenomenological theory, cannot explain the
underlying physics of the systems it describes. Thus,
for spin-glasses with anisotropy and remanence, it is
only possible to implement the anisotropy in a
phenomenological fashion, not to explain it; this
must be done by another, more microscopic theory.

IIIl. THEORETICAL REVIEW

Until the observation, by Cannella and Mydosh,!!
of a sharp cusp in the susceptibility of a spin-glass
(AuFe) as a function of temperature, there was no
strong indication that the spin-glass phase represent-
ed a qualitatively new state of matter. (Previous to
this work, only broad susceptibility maxima had been
observed, a result explained by Ref. 2 in terms of the
remanent properties of spin-glasses.) Edwards and
Anderson have described the spin-glass system in
terms of an order parameter which involves the
long-time memory of each spin for its initial orienta-
tion.!2 Implicit in this picture is the view that the
system possesses a very complex type of long-range
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order, and thus the spin-glass transition is a true
thermodynamic transition. It is this viewpoint that
was taken in Ref. 1.3

The approach of Edwards and Anderson was to
construct a mean-field theory, applicable near T, the
spin-glass transition temperature. Another approach,
taken by Walker and Walstedt,' has been to study
the ground-state properties of the spin-glass Hamil-
tonian. This is taken to be of the form

% =—1 3455, . 3.1
s

where the §,— are spins on a lattice (not necessarily
periodic), and the J; are coupling constants between
sites. The specific form taken by Walker and Wal-
stedt was

Jy=A cos(2kory +¢)/ri . 3.2)

" the asymptotic form of the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction. (Here 4 is a
material-dependent parameter which may be taken by
comparing with experiment, kg is the Fermi wave '
vector of the host material, r; is the separation
between §,» and §~j, and vy is a phase.) For a suffi-
ciently dilute system, where the value of 2kry is typ-
ically very large, cos(2kor; + ) is very like a random
number chosen between —1 and +1. As such, J;
scales as the concentration ¢, and this has led to a
number of scaling laws which are very well satisfied.'’
Because the work of Ref. 14 provides us with
much of our knowledge about the properties of spin-
glasses with the RKKY Hamiltonian of Egs. (3.1)
and (3.2), it is worthy of an extended discussion. In
that work, large periodically repeated cubes of an fcc
lattice were taken, with N =96 and 324 spins ran-
domly chosen to occupy either 0.3 or 0.9% of the
sites. Thus, the equilibrium configurations (EC’s)
were periodically repeated. It was found that there
were many nonidentical but nearly degenerate EC’s,
each of which "seem to consist of different arrange-
ments of nearly identical regions containing ~ 20
spins." Once a given (periodic) EC was determined,
its k=0 spin waves were determined. These were
found to have (on the scale of the histogram) an ap-
parently continuous distribution of frequencies from
zero to a maximum frequency. Furthermore, on the
average, the "localization index" increased with fre-
quency. (Note that the localization index of Ref. 14
does not give the spatial extension of a’'given mode,
but rather provides a measure of the number of spins
participating in that mode.) Treating the spin waves
as bosons, and calculating their specific heat C,, it
was found that, despite a decidedly nonconstant den-
sity of states, a nearly linear specific heat was found
over a wide range of temperature, in reasonable
agreement with experiments then current.!® It should
be noted that this involved temperatures sufficiently

. high that the modes contributing to C,, were relative-

ly localized.

To understand better the low-frequency end of the
spin-wave spectrum of Ref. 14, it is useful to review
some of the predictions of Ref. 1, which specifically
studied this regime.'” There it was shown that the
hydrodynamic modes associated with a nearly uni-
form, slowly varying, rotation of the spin system
have a linear dispersion relation, with a velocity!

v=y(ps/X)? . (3.3)

Here p; is the spin stiffness constant, whose upper
limit p? is given by!

p?=18V)7 31}y (SiS)) G.4)
V)

(with V the volume) and X is the magnetic suscepti-
bility.

To compare the results of Refs. 1 and 14, one
must be sure that the EC’s considered in Ref. 14
have no net magnetization, otherwise certain of the
predictions of Ref. 1 must be modified. It turns out
that the EC’s employed in Ref. 14 did indeed have a
small net magnetization. One of the consequences
was that a low- (but nonzero-) frequency mode was
produced, as is seen in the inset to Fig. 2 of Ref. 14.
As myg approached zero, it was found that the fre-
quency of that mode also approached zero.!®* Thus,
for no remanence, the model considered in Ref. 14
gives three pairs of zero-frequency modes when
k =0, in agreement with the predictions of Ref. 1 for
k=0.

Additional information is difficult to extract, for a
number of reasons: first, the spin-wave velocity can-
not be directly determined because the kK # 0 excita-
tions were not studied; second, because of the finite
sample size, the system may not appear to be isotro-
pic, nor may its density of states per spin saturate to
the bulk value.

The following should be noted. For a spin-glass
with no remanence or anisotropy, the results of Ref.
1 (linear dispersion) would predict that C,, o T> at
low T. No evidence for this has been seen to
date.!?° Ejther the temperatures studied so far have
been too high (i.e., the localized modes are dominat-
ing C,,, due to their large density of states) or the ef-
fects of remanence and anisotropy cannot be neglect-
ed, or both.

IV. EQUATIONS OF MACROSCOPIC
SPIN DYNAMICS

Because the presence of anisotropy gives the spin-
wave spectrum a gap, so that the w7 —0 limit may
not be taken, the theory that follows is not a truly
hydrodynamic theory. However, since the kI —0
limit may be taken (where /is either a characteristic
mean free path or internal dimension of the system),
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we are still studying the macroscopic dynamics of the
system. '

In order to construct a hydrodynamic (or here, mac-
roscopic) theory, one must be able to determine the
macroscopic variables which will enter into the
theory. When there is no remanence, the macro-
scopic variables for a spin-glass are the magnetization
fil and the average infinitesimal "angle" @ by which
the spins are rotated from equilibrium. (To appreci-
ate the difference between i and 8, consider a col-
linear antiferromagnet. If an external field His ap-
plied perpendicular to the initial alignment axis, a
magnetization develops by a tipping of the spins to-
ward H, but @ is zero. On the other hand, if the
alignment axis is rotated, then m remains zero but )
is _nonzero. ) IfS ; represents the jth spin, then
ds ;= xS j represents the change inS ; caused by
the rotation by 8. We take 8 =0 in equilibrium.

Rotations may also be represented by a right-
handed triad of unit vectors. When there is
remanence, it is convenient to employ such a
representation, where the equilibrium value of one of
the triad, A, is taken along 1y, the remanence direc-
tion. Rather than employ the other two unit vectors,
which would overspecify the system, we use an addi-
tional angle #, measured with respect to an arbitrary,
but fixed, direction in the plane perpendicular to .
Because of the uniaxial symmetry of the remanent
spin-glass, the absolute value of 0 should be ir-
relevant, so we take 8 =0 in equilibrium. When the
system is disturbed from equilibrium, so 6(=0)
—6+d08(=d6), we have di =d 6 X /i and d#
=d8-h, so that d0 =Ad9+ A x dh.

The equations of motion satisfied by m and 3, in
the absence of remanence, anisotropy, and an exter-
nal field H, were derived in Ref. 1. They are

Am o/t =—y51/50, , 4.1)
90./3t =vy8f/ém, , 4.2)
where f is the free energy density,

af/aoagaf/aoa_

and similarly for 8f/8m,. To include anisotropy and
remanence, it is necessary only to change the form of
f; the equations of motion are unaffected.

Intuitively, we may appreciate these equations as
follows. Equation (4.1) is a statement that the (spin)
angular momentum is driven by the torque, the
torque being written in terms of the negative angular
derivative of the free energy. Equation (4.2) is a
statement that the orientation of the spins is driven
to align with the internal field. This is more easily
seen by considering

3 /0t = (38/81) X A =yh x (—8f/5) .

Since 8f/6m is conventionally known as the internal

V-185/8(F0)1 , 4.3)

field h this equatlon _says that h causes 7 to precess
opposite to the y#A x H precessxon caused by an exter-
nal field H. (In equilibrium, h =H."

In Ref. 1, the free energy was taken to be of the
form

fo=3X"i +3p,(T9)?
which satisfies

dfo=x"'m-diti +p; 0, d(76,)
and thus gives

8f/dma=X"m,, 8f/80,=—p;V?0,

To include anisotropy, which is defined with respect
to a remanence Mg = myz, we must do a number of
things. For one, X and p; should be converted to
tensors. In addition, an explicit anisotropy energy,
depending upon 7 and 8, must.be incorporated. The
hysteresis measurements of Ref. 7 indicate that this
anisotropy has a uniaxial component. For most pur-
poses it will be sufficient to write the anisotropy free
energy fa, as

fa=Kiil +K 8 , (4.4)
apphcable fo)r small 7, (defined with respect to Z, so
Ay=~A—h =h—2) and small 8. For large 4, and
large 6, one may continue to use the (7,)2 form, but
6? should be replaced by a trigonometric function like
sin%@. A truly uniaxial system will show no depen-
dence on 8, corresponding to K;=0.

Simply modifying fo to make X and p; tensors, and
adding in f,, is still not sufficient to provide an ap-
propriate free energy, for the remanence further
complicates the issue. If m;=mi-Zis changed, then
df = hdm,. If the internal field h differs from its
equilibrium value h© by only a small amount, then
my, differs from its equilibrium value m.f") by

dmy=x,(h - h®) = Xydh . ) 4.5)

Since #® = H,! this means that, if H is changed by
dH, dm,=X,dH. This empirical relation holds, for
constant Xy, over a wide range of values for H.2°
Thus we will employ m{® =mq+ x,H, where mq is
the remanence magnetization.

Even letting X~"'mydm,— hdm, is still not sufficient
to provide us with the desired free energy. This is
because we wish to make the final requirement that,
in the absence of f,,, it should not cost any energy to
rotate my to some other direction. This will be neces-
sary to explain the work of Ref. 7. This means that
the transverse part of the magnetic energy must have
the form

TXII(I_I‘IJ.—'_G. X l'--l"l")2 .

In this way, if a (small) rotation by 9 in spin space is



1178 W. M. SASLOW 22

performed, so that

ﬁ‘l1=—0. Xr’ii"(=6xz‘m“), ;I_l=_9. Xz ,

the magnetic part of the free-energy density is un-
changed. (Note that such a free energy implies that
mg and x.,ﬁ are exchange coupled for small trans-
verse fields.) It is assumed, of course, that my is
small.

Thus we will employ an f whose differential is
given by

df = 3x7'd (@i, — 8 x iy)? + hdmy
+2pad (V82 + 3 pud (7 6)?
+K,d(0) +Kd(62) . (4.6)
In the above, we used
ne=C(i)x=6,, n=(i),=—0,, 0=9, ,
@7

so that (7,)?=(8,)2

~ The following should be noted. For a wide range
of values of cooling fields H., and applied fields H,
Kouvel has found that X, appears to remain nearly
constant.® Thus X, for H.#0 is rather close to the
(isotropic) X for H.=0. We would expect the same
to be true for X, yet for small fields, X, is found to
be much enhanced over X;. In the next section we
will show how Eq. (4.6) leads, for small fields to an
enhanced effective susceptibility X,, due to the possi-
bility that my can rotate into the direction of an ap-
plied transverse field H 1. For large fields, after my
has been tipped along H 1, the transverse differential
susceptibility is found® to equal X;.

To include the effect of the magnetic field, we go
to a rotating frame of reference. The extra magnetic
free-energy density is —ﬁi-ﬁ, in the rest frame. The
extra term in the rotating-frame free-energy density
is —@-S, where @ is the angular velocity of the rotat-
ing frame, and S =mmi/y is the spin-angular-momen-
tum density. We choose these terms to cancel: That
is, ® =—yH. In that way, Eq. (4.6) gives the free-
energy density in the rotating frame, and Egs. (4.1)
and (4.2) give the equations of motion in the rotating
frame. However, the equations of motion in the lab-

oratory frame are given, with @ =— yﬁ, by
dm/dt =0m/ot + @ x i , 4.8)
d0/dt=36/d+a , 4.9)

di/dt=9R/dt +B xi=080/3t xhi+@xA , (4.10)
do/dt=r-do/dt . 4.11)

In the following sections we will apply these equa-
tions to various situations.

V. SPIN WAVES

We now study the spin-wave modes of this system,
for H=H:.

A. Longitudinal modes

Equations (4.8), (4.1), and (4.6) yield

dm,/dt=—‘y(2K“0—p,"V20) . (51)
Further, Egs. (4.11), (4.2), (4.6), and (4.5) yield
do/dt =y(h —H) =yXj'sm, . (5.2

The uniform equiiibrium solution to these equa-
tions is obtained from 8m, =0 and §=0. Combining
Egs. (5.1) and (5.2) gives

d*0/dt* =—y*xy' (2K 0 — psuV26) . (5.3)
For 8 <expli(k-T —wt)], Eq. (5.3) yields

w? =y Xi' (2K + psuk?) (5.9
or

o’ =k +vjk? , (5.5)
where

wl=v" 2K/ Xy) (5.6

gives the uniform resonance frequency w,f, and
vi=y2(ps/X0) (5.7

gives the longitudinal sound velocity v,. This mode
is analogous to the mode occurring in longitudinal
antiferromagnetic resonance?!; hence the subscript af.
w,r and vy will be estimated in Sec. VB. Note that
for an antiferromagnet there is also a transverse reso-
nance?! with w?=w}+y2H? this is not applicable to
the transverse modes of the present system, which
will now be discussed. )

B. Transverse modes

The linearized equations of motion are given by
dmy/dt = — yIx7'my(m, — n,my)

—2Kn, +ps V1 +ym,H ,(5.8)
dmy/dt =—y[X7' (= my) (my — nemy)

+2K 1 — p V0, 1 — ymxH ,(5.9)
dny/dt =y(H —my/X) n, +yXi'm, , (5.10)

dny/dt=-—y(H-—mu/X1)nx—yXI'm, . (511)

[In the above, Eq. (4.7) has been employed to elim-
inate 6,.] Letting m =, +im, and ny=n, +in,,
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these equations become
dmy/dt =—iy(H —m/X)m
—y(m} /X, +2K,—pyVn, , (5.12)
dnifdt=—iy(H —my/X)ne—iyXi'my . (5.13)
For m4, ny«expli(K-T —wt)], we get
lo—y(H—=my/X)1Im,

—y(m} /X, +2K,+po kD=0 , (5.14)
—yXi'my+lo—y(H—m/x)1n,=0 . (5.15)
The roots are given by
w+=y(H —m/Xy)

+y[(my/x)?+ QK +pak® /X172 . (5.16)
If m§ >> 2K X, then
wi=yH +y(K +3puk?)/my , (5.17)

w_=yH =2ym/X, . (5.18)

Note that |o_—yH| >> |w+—yH]| in this case.
Monod and Berthier see a k =0 mode which is
described by Eq. (5.17), but not one described by Eq.
(5.18). This may arise either because |w-| is too
high in frequency to be observed with their ap-
paratus, or because it is a solution which has become
unphysical because it is of so high a frequency that it
merges with the continuum of localized states,'* and
therefore it violates the first of the two criteria given
in the initial paragraph of this paper.

Before discussing the implications of Eqgs. (5.17)
and (5.18), note that w, corresponds to i,
=9, x . In other words, for w, the induced i,
is solely caused by the rotation 51 acting on my;
whereas, for - the induced m; is equal and opposite
to its contribution from 79'1. Effectively, w4 corre-
sponds to a magnetic analog of an acoustic phonon,
with the internal variables m, and 51 X fmy nearly
completely in phase; whereas w- corresponds to the
r_xgagnetic analog of an optical phonon, with m, and
0, x m, nearly completely out of phase.

The mode whose frequency is described by w. cor-
responds to transverse ferrimagnetic resonance. (In
the past it has often been associated with transverse
antiferromagnetic resonance.®??) From the data of
Monod and Berthier,’ it is possible to extract a value
for K, which is K;=2.1 x 102 erg/cm’. Note that
2K,x,/mé¢ =0.3, consistent with the assumption
made in deriving Eq. (5.17). (For the sample of Ref.
7, mo=0.53 erg/G cm?, and we take X, = X,
=2x10"* emu/cm’.) For H =0, Eq. (5.18) gives
| f-| =16 GHz, thus indicating where the second
ESR line should lie, if it does not overlap the contin-
uum of localized states.

We now consider what may be expected for kK #0.
To do so we need p;, the exchange stiffness constant.
In Eq. (3.3) an expression is given which provides an
upper bound for ps. Preliminary calculations indicate
that p,s is down from this upper bound by a factor of
2 or 3."® Hence p; can be estimated. We will do this
by employing ps = X(v?/¥?) and an upper-bound esti-
mate for the spin-wave velocity v. Specifically,
Huber and Ching derive an approximate upper bound
for v, appropriate to an RKKY interaction, given by?

V2 =272S(S +1)cA?/275*(2ko)S . (5.19)

Here c is the number of spins per unit volume,

A =A4'(2kg)? is the amplitude of the RKKY interac-
tion of Eq. (3.2), and kg is the Fermi wave vector of
the host material. For CuMn (1%) we have
c=845%x10cm™3, 4'=9.5x 10737 ergcm?,'* and
ko=1.36 x10% cm™.* With § == this gives
vep=1.1 X 10 cm/sec. If we take p; to be down
from its upper bound by a factor of 4, then we may
estimate that v is down from vy, by a factor of 2, so
that v = 5.5 x 10° cm/sec. With this value, and the
value X =2 X 103 emu/mole for MnCu (0.97%),* or
X=1.6 x10™* emu/cm?, we obtain p; =1.3 x 1077
erg/cm. If we take this value to be appropriate to ps;
in Eq. (5.17), then ps k2 = 2K, for k. ~5.7 x 10*
cm~!. Since only values of k above ~10¢ cm™ can
be observed, this means that Eq. (5.17) is inappropri-
ate for the interpretation of a neutron scattering mea-
surement. Indeed, for such large values of k we
probably have

(Psi/)(‘l)k2 >> (2K1/X1) + (M|I/X1)2 Y
so that Eq. (5.16) yields

w:tz‘Y(H"MII/Xl) +vk , (5.20)
where
vu=y(p/x)"? . (5.21)

For H =0, v;=5x10° cm/sec, and k =10 cm™,
one finds v,k =5 x 10!! sec™!; whereas, for m,=0.5
emu and X; =2 x 10~ emu, one finds — ym /X,
~—5x10'"sec™!. Thus, in this case, the remanence
shift should be about one-tenth of the smallest ob-
servable energy. (Note that w. shifts down and w-
shifts up.) In terms of frequency, we have f,
= (w+/27) =70 GHz. This is about 60 times as high
as the 1.2-GHz ESR frequency observed by Monod
and Berthier.” Since their line already had a notice-
able linewidth, and since they observed an increased
linewidth as the ESR frequency increased (caused by
decreasing myg), so large a value of frequency as 70
GHz might be accompanied by a large amount of line
broadening. The splitting of w4 and w_—, proportional
to mo, might be a useful signature in identifying what
might otherwise be a hopelessly broadened line.

We now consider the position of the longitudinal
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resonance line. Let us begin by making the unlikely
assumption that K, = K, thus overestimating the
value of K. With K; =210 erg/cm? and X, = X,
=2 x107* esu, Eq. (5.6) gives that for=w,/2m =4.4
GHz. At such a frequency, we would expect the line
to be broadened. If, in addition, ps= ps;, then

vy =v,. Hence, for observable values of k, neutron
scattering would measure

o= yk +w§f/211||k ,

the second term being about a twentieth of the first
term for k =10° cm™.

However, it is far more likely that K;;=0 (other-
wise the system would possess some element of biax-
ial symmetry, and there is currently no evidence that
typical spin-glasses possess such symmetry). In this
case w,r=0 and thus w = vyk. At k =10%cm™., this
corresponds to an energy of 0.3 meV, or a frequency
of 80 GHz. Our observations about the broadening
of the transverse spin wave probably apply here also,
despite the different. symmetry; in other words,
broadening may be significant. Note that this line
should be unaffected by H, and should lie between
the two transverse waves at vik *y(H —my/xy). It
is worth noting that, if K, =0, the longitudinal spin
wave is a true hydrodynamic mode, with w —0 as
k —0.

We close this discussion with some considerations
on the possible effects of remanence and anisotropy
on the specific heat C,. In an earlier section we not-
ed that, for no remanence or anisotropy, C,, «= T° at
low T, due to the hvdrodynamic modes with linear
dispersion. With remanence and anisotropy, the
transverse modes develop a gap A, and thus they
contribute a term to C,, which varies as exp(—A/T)
at low 7. For large remanence, where these modes
are observable by ESR,’ they probably lie lower in
energy than the localized modes, and thus dominate
C,,. Since A « mg! for large mg, the low-temperature
C,, should show a dependence on m,. To our
knowledge, no measurements of C,, for my = 0 have
been performed.

VI. STATIC TRANSVERSE RESPONSE

If the free energy given by Eq. (4.6) is correct,
then it is possible to obtain the magnetization in-
duced by a small magnetic field applied transverse to
the direction of field cooling. Performing such an ex-
periment (to obtain the effective value of the trans-
verse susceptibility) should provide an additional con-
straint on the parameters of the system. We will as-
sume that Z is the remanence direction and we will
take H = £H, + 5H,, where H, will be assumed so
small that 7, is also small. The equilibrium condi-
tions are obtained by requiring that dmy/dt =0,
dn,/dt =0, d@/dt =0.

The equations for dm,/dt, dm,/dt, dn./dt, and
do/dtyield 8m; =0, m,=0, n,=0, and §=0. The
equations for dm,/dt and dn,/dt take the form

0=dmy/dt =—y(H, —my/X,) m,
—yQKy +mi/x)ne+ymH, ,  (6.1)
0=dny/dt =—ymy/X,—y(H, — my/X) ny +yH, .
(6.2)
Their solution is
e =2my/xy— H) 2my/x,— H +2K/m) ™ (me/my)
| 6.3)

where
_Xxt mi [K,—mX,H,/2K,
x 1+M||HZ/K1—X1H22/2K1

H, . 6.4)

In the absence of anisotropy (K;—0) these yield
my — myH./H,, n,— H,/H,, as expected. In the lim-
it as H, —0, we have

mx—'(xl+m02/K1)Hx . (65)

Thus, for H, =0, the effective transverse susceptibili-
ty is given by

il-=—8mx/6Hx=xl+m()2/K1 . (6.6)

We believe it is likely that X; = X;. Kouvel’s stud-
ies on CuMn (see, e.g., Fig. 3 of Ref. 5) indicate that
the high-field transverse susceptibility (3m,/dH,) is
the same as the high-field longitudinal susceptibility
(dm,/dH,). This point can be tested, for small
transverse fields by direct measurement of my,

X1, Xy, and the zero-field resonance frequency. The
theory involves the four parameters mq, Xy, X3, and
K, and the four measurements can serve to deter-
mine them. For finite H,, Eq. (6.4) can provide a
check on the theory.

VII. SOME OBSERVATIONS ON THE NATURE
OF THE SPIN-GLASS STATE

There is a great deal of evidence that spin-glasses
possess both uniaxial anisotropy (the usual kind) and
unidirectional anisotropy (associated with the direc-
tion of the remanence).>% If we may assume that the
domain walls are determined only by the uniaxial an-
isotropy energy, then we may employ the following
result for the domain wall thickness?’

Na = (kgT./K,a)'? .

Here a is the characteristic separation of magnetic
ions and T, is the transition temperature. For CuMn
(1.35%) we take @ =107 cm, K, =210 erg/cm’, and
T.=15 K, and we obtain Na = 10~5 cm=10° A.
Since domains themselves must be much larger than
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the domain wall thickness, we conclude that domains
must be much larger than this dimension. This is
consistent with the work discussed in Sec. II.

The evidence for macroscopic domains leaves one
somewhat perplexed, because it invalidates the mag-
netization cloud picture, based on the Néel model of
ferromagnetic grains.?%?’ This picture has the advan-
tage that it can explain a large number of the proper-
ties of the TRM and IRM, as functions of field H,
temperature 7, and time t. Despite the evidence
against the presence of small weakly interacting mag-
netization clouds, it would be attractive if certain as-
pects of this picture could be retained. In this regard,
note that computer experiments on Ising spin-glasses,
which have no spin waves, reproduce most of the ob-
served qualitative properties of the remanence.28-30
Thus, for Heisenberg spin-glasses, it would appear
that details of the spin-wave spectrum are not partic-
ularly relevant for the unusual remanence behavior
of such systems. Rather, it would make sense if the
"nearly identical subregions containing ~ 20 spins,"!*
which may also appear for Ising spin-glasses, were
candidates, within the framework of the Néel model,
for the magnetization clouds which may be employed
to explain the remanence behavior of spin-glasses.
However, this remains to be seen.

It should be noted that such subregions exist only
because the system is disordered (or, to be more pre-
cise, it has the complex spin-glass order). There is
other evidence, of an experimental nature, that the
property of disorder, rather than noncollinearity or
"frustration" (or both) is the key to the unusual ;
remanence behavior of spin-glasses. (By "frustration"
one refers to the fact that the molecular fields set up
by the neighbors of a given spin do not all point in
the same direction, thus leaving the spin with some
uncertainty as to the direction in which it should
point. See Toulouse.’!) We refer now to the work of
Kouvel and Kasper on the magnetic properties of the
disordered face-centered-cubic alloy (Ni;—xFe,);Mn.

For x < 0.4, high-temperature-susceptibility data’?
give 8 >0, whereas 6 <0 for x > 0.4. In addition,

for x <0.5, the alloys possess remanence and a dis-
placed hysteresis loop,3? but elastic neutron scattering
for x =0 gives no evidence for periodic long-range
order.* All this is consistent with the spin-glass
state. For x > 0.5, the alloys possess no rema-
nence,*® and elastic neutron scattering indicates a
periodic long-range order.>* This is consistent with
an antiferromagnetic state. However, x-ray diffrac-
tion does not reveal the tetragonal distortion expect-
ed for a collinear antiferromagnetic structure, but it is
consistent with a noncollinear tetrahedrally coordinat-
ed (TC) spin structure of cubic symmetry (with the
spins pointing along different (111) directions).*
We will accept this latter interpretation. Thus, as the
parameter x is increased, the system goes from the
spin-glass state to the TC state. On the one hand,
both of these states possess noncollinearity and frus-
tration; on the other hand, one state is periodic
whereas the other possesses the complex spin-glass
order. Only this latter state possesses an unusual
magnetic behavior.

In closing, the reader’s attention should be brought
to the early "exchange-anisotropy" model of Kouvel,*
which qualitatively explains the hysteresis curves and
torque measurements for materials we would now
call spin-glasses. Although the underlying microscop-
ic picture presented there may not be accurate, the
model itself makes a number of qualitatively correct
predictions, and for this reason the model deserves
more attention than it has received.
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