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The linear rigorous cellular {LRC) band-structure method is extended. to the description of dispersion
effects in two-dimensionally periodic systems. The method is used to calculate band structures of isolated

hexagonal rare gas monolayers xenon to neon. The theoretical dispersion of krypton monolayers agrees well

with an experimental band structure derived by angle-resolved photoemission for krypton physisorbed on Pd
{100)presented here for the first time. For argon physisorbed, on Pd (100) the measured separation of the
bands at normal emission agrees fairly well with ihe theoretical separation at I . Further, data for xenon on
Pd (100) published recently are also in good agreement with our theoretical results.

I. INTROBUCTION

The electronic structure of a free atom or
molecule is modified upon adsorption on a, solid
surface. The adsorbate orbitals may admi. x some
substrate character due to the bonding intera. ction.
The degree of mixing depends on the orbital and
the mechanism and strength of the substrate-ad-
sorbate bonding. At higher coverages, adsorbed
particles may additionally exhibit interaction with
each other either directly (through space) or in-
directly (through substrate). This leads in many
cases to the formation of two-dimensional ordered
overlayers. Because of the periodicity of the over-
layer the electronic states of the adsorbate a.re
then Bloch-type functions characterized by their
two-dimensional wave vector k i.n the surface
Brillouin zone (SBZ), and the electronic energy
levels are bands in a, two-dimensional band struc-
ture c(k) rather than discrete levels of the free
species." Recently, two-dimensional band struc-
tures of atomic and molecular adsorbates on tran-
sition-metal surfaces have been measured using
angular-resolved photoelectron spectroscopy
(ARPgS). ' ' While band formation in adlayers
has been theoretically predicted, ' comparison of
experiment with theory has been restricted to
rather simple theoretical models"' except for
the case of oxygen on Al (111) in which a Korrin-
ga, -Kohn-Rostoker (KKR) surfa, ce band-structure
calculation using a jellium-type substrate wa, s
carried out." It is desirable to compare experi-
ment with other types of band-structure calcula. —

tions in order to gain insight into the type a.nd
strength of the lateral interaction between the ad-
sorbed particles. ~' lf the adsorbate-substrate

interaction is sufficiently weak, f or example, in
the case of physisorption of rare gases, the sub-
strate has only little effect on the electronic struc-
ture of the adsorbate, and the dispersion of its
electronic levels is predominantly determined by
the direct lateral interaction. Physi sorbed laye rs
thus appear to be model systems for band calcula-
tions where only the isolated monolayer is con-
sidered, and the influence of the substrate on the
adsorbate electronic structure is neglected. This
concept has been successfully applied to the sys-
tem xenon on Pd (100} (Refs. 4, 5), where the Xe
5p band disperison determined from ARPES data
of the adsorbed layer was found to be in good
agreement with the dispersion calculated in a
simple tight-binding model for the isolated mono-
].ay el

In the present paper, we compute the valence
level dispersion of isolated hexagonal monolayers
of xenon, krypton, argon, and neon using a layer
version of the linear rigorous cellular (LRC)
method. "- A0 a, test case, we compare our results
for a xenon layer with the experimenta. l disper-
sion curves obtained by Horn et a/. for Xe: Pd
(100).' For the case of a krypton layer, we com-
pare theory with an experimental band structure
derived from ARPES measurements of krypton
on Pd (100) which are presented here for the first
time. Our theoretical dispersion curves for iso-
lated xenon and krypton monolayers agree well
with the experimental band structures. In the case
of argon on Pd (100},the energetic separation of
two peaks observed in experiment agrees well with
the values computed for the 3p-derived bands at
I' for the isolated monolayer. Because of the in-
herent width of the Ar emission peaks which is of
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similar magnitude compared to the extent of spin-
orbit splitting and dispersion, it was not possible
to unambiguously decompose the spectra into three
3p-derived bands for different polar angles, and
thus to determine an experimental band structure
of this system. For neon, no measurements were
carried out owing to the limitations of the present
experimental setup.

The paper is organized as follows: in Sec. II we
discuss the computational details. Section II A de-
scribes the geometries used in the calculations,
while Sec. II 8 briefly outlines the layer LRC
method. Section III gives some experimental de-
tails, and results and discussion are presented in
Sec. IV.

II. COMPUTATIONAL DETAILS

A. Geometrical consideration

The electronic interaction within the adsorbed
rare-gas monolayers is modeled by isolated mono-
layer films with hexagonal geometry. The nearest-
neighbor distance of the Xe film d~, is taken from
the experiment. Low-energy electron diffraction
(LEED) data for Xe adsorbed on the Pd (100) sur-
face indicate" that near saturation coverage two
orthogonal domains with hexagonal structure are
formed which are oriented along the Pd [010] and
Pd [001] directions. The observed nearest-neigh-
bor distance is dx, = 4.48 A (Ref. 12) being larger
than the respective bulk value [6=4.3'I A (Ref. 18)]
by about 3%. Hexagonal xenon overlayers with
nearest-neighbor distances d~, = 4.4-4.5 A have
been found for a number of different transition-
metal substrates and surface orientations, ""in-
dicating that the substrate while determining the
overall orientation of the monolayer has little
influence on the adatom spacing. From LEED ex-
periments it is found that Kr adsorbed on Ag (111)
and Cu (211) surfaces" forms hexagonal overlay-

0
ers with nearest-neighbor distances dK, =4.19 A.
This value being larger than the respective Kr
bulk value [d= 4.04 A (Ref. 18)]by about 4/o has
been taken also in the model calculations. At pre-
sent no LEED data for the Kr: Pd (100) system
seem to be available. Ordered monolayers of Ar
or Ne on transition-metal surfaces have not been
studied so far but it seems plausible to assume
hexagonal structures on the basis of the very weak
van der Waals interactions involved in the forma-
tion of the adlayers. In the model calculations
nearest-neighbor distances d&, = 4.03 A and dN,
= 3.36 A are used which are larger than the re-
spective Ar and Ne bulk value [d = 3.84 A for Ar,"
3.20 A for Ne (Ref. 18)]by 5%%uo. This seems to be
a reasonable extrapolation from the results ob-
tained for Xe and Kr.

B. Electronic structure

p layer (r) g p atom(r Rp) q (2)

where the self-consistent charge density of the
free atom is obtained using the scalar relativistic
approximation to Dirac's equation. "'" For the
exchange-correlation part of the potential, Slater's
approximation" is used, that is,

U„,(r) = -3n [(3/v) p „y„(r)]'~',

where the scaling factor a is chosen to be n =0.6V

for xenon, O. VO for krypton, 0.72 for argon, and
O. V3 for neon, quite close to the values proposed
by Schwarz. " The starting potential of the system

The electronic structure of the rare-gas mono-
layers is calculated using the LRC (linear rigo-
rous cellular) band-structure method. This lin-
earized version of the rigorous cellular meth-
od' ' h3s been successfully applied to various
bulk systems ' as well as tp thin metal films. '
Here we restrict ourselves to a discussion of the
basic ideas of the method since the formalism is
described in detail elsewhere. "'"

For the following let the z axis of the system be
perpendicular to the hexagonal monolayer with z
=0 defining the plane of the atomic nuclei. Then
the elementary unit cell about each atom is a hex-
agonal prism whose planar faces A.;, i=1, . .. , 6
are perpendicular to the vectors

r =+ (1,0, 0), r =+ (-,', v 3 /2, 0), r =+ (--,', ~g/2, 0)

at distances —,'d from the atomic center, where d
is the interatomic distance. This prism is divided
into three cells, the "atomic" cell V, about each
nucleus where z &-,'d and two empty cells t/„and
V„characterizing the vacuum region above and
below the layer where ~z

~
& d, respectively.

The electronic states gg(r) of the system are
computed as approximate solutions of the one-elec-
tron equation

&.itt (r) = ~(k)4u(r)

in an effective one-electron potential U(r) inside
each cell and by imposing appropriate boundary
conditions at the boundaries of adjacent cells as
will be discussed in the following. Since the mono-
layer is assumed to be two-dimensionally periodic,
the one-electron states pg(r) can be classified by
a two-dimensional wave vector k = (k„,k,) and the
electronic energy spectrum e(k) is represented as
a two-dimensional band scheme.

The starting potential U(r) of the system is com-
puted from a linear superposition of free-atom
charge densities p„, (r) about the respective atom-
ic centers 0& of the layer
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has to be improved by iteration to self-consisten-
cy. However, in the case of rare-gas monolayers
where strong charge deformations by covalent or
metallic binding between the atoms do not occur,
self-consistency is of minor importance and the
starting potential represents already a very good
approximation as will be discussed below.

The one-electron states gt;(r) of the system are
represented in each cell by a linear combination
of appropriate basis functions. Inside the atomic
cell V, the electronic potential U(r) is, to a good
approximation, spherically symmetric about the
atomic center R,. Thus, for the computation of

U, (ir —R, i) =— U(r)dQ.
+O

The solution of the scalar relativistic one-elec-
tron equation" for this averaged potential can be
written as

(4)

)p, (e, r) =It)(e, ~r —R, ~)Y', (r —R,),
where the ra.dial part R) (e, r) for a given energy e
is computed from the radial equation

basis functions we replace the electronic potential
U(r) inside V, by its spherical average (cf. Ref. 11)

l (l + 1) — 1 — (d U, (dr) (r) (d/dr)+ 2 + [U, (r) —e] 1 ——,[U, (r) —6] —
2(1 (lf 2)[ ( ) ]] Q)(g r) = 0 (6)

and the angular part Y') (r) is a spherical har-
monic.

The wave functions )p) (e, r) define a basis set
in cell V, which serves for an expansion of the
one-electron states gg(r) of the system for a given
energy c, i.e.,

gg(r) = pc, cp, (e, r)

inside V,. In the rigorous cellular method" the
energy dependence of the basis functions )p)„(e, r)
is accurately accounted for, resulting in a nonlin-
ear eigenvalue problem for the computation of the
expansion coefficients c, and the energy values e
of the system. However, it is found in a number
of systems" that the basis functions vary quite
smoothly with energy. Within a range of -0.5 Hy
about a given trial energy c, the energy depen-
dence of )p, (e, r) can be described approximately
by its first-order Taylor expansion

)'p)„(c, r) =)'p)„(eo, r)+ (s(se) cp, (e, r)~, , (c —eo)

=)p, (e„r)+p) (e„r)(c—e,), (8)

suggesting that g), (r) for energies c within a rea-
sonable range about e, can be a.pproximately de-
scribed as

q%(r)=Q [c)„y) (e ro)+ dj) (e&), r)] (9)
l, m

using a basis set ()p) (c„r), )p) (e„r)] which does
not va. ry with energy e. Inside the empty cells V„
and V„ the electronic potential U(r) varies quite
strongly with dista, nce z from the monolayer while
its variation pa.rallel to the layer is much smaller.
Thus, for the computation of appropriate basis
functions we replace U(r) inside V, by its planar
average

1
rr (z) = —.f ))(r)dxd) .

+0 0 6~e
(10)

qk(r) =pc'-y'-(e, r), i=1,2
G

(13)

inside V„. For the same reasons mentioned above
we replace (13) by an expansion

yg(r) =Q [c' )p-'(e„r)+d'-)p'-(e„r)], i =1,2 (14)
G

where the basis functions do not vary with energy
6 ~

The coefficients c, , d, , and c', d'~ of (9) and
G

(14) are determined in a two-step procedure. In
a first step the coefficients are optimized such
that different expansions from adja, cent cells join
smoothly at the respective cell boundaries and the

Since the electron density inside the empty cells
is quite smaO, relativistic effects become neg-
ligible and then we can restrict ourselves to basis
functions which are computed using the nonrela-
tivistic one-particle equation. For the averaged
potential U, (z) the solutions of the one-electron
Schrodinger equation can be written as

VG(~ r)=fG(~ z)e'"' '")) (11)

where the normal part fG(e, z) for a given energy
is obtained from a one-dimensional Schrodinger
equation

(-d'(dz'+ U, (z) —[e —(4+k)']}fG(e,z) =0. (12)

Here r„= (x,y), 5 is a two-dimensional reciprocal
lattice vector of the layer, and k is an arbitrary
wave vector of the two-dimensional Brillouin zone.
The solutions )po(c, r) define a basis set in cell
V, which serves for an expansion of the one-elec-
tron states g-„(r) of the system for a given energy
E') l,e,
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Bloch condition between adjacent atomic cells is
valid [obviously expansions (14) guarantee that
the Bloch condition between adjacent empty cells
holds] ~ In a second step the coefficients are re-
optimized such that gg(r) is an approximate solu-
tion of the one-electron equation of the system
yielding the respective one-electron energies

e(k). These two steps will be discussed in the fol-
lowing.

Since for computational reasons expansions (9)
and (14) have to be truncated at some finite value
l,„and 6,„, respectively, the above boundary
conditions cannot be satisfied rigorously. Thus we
define an overall mismatch function

S'=Q [lg~(r+R ) —($(r)e' ~l'+ In 'Vg&(r+R ) —n„Vg'-„(r)e'" ml']do
m

+ J~ [lt'-, (r) —0'-„'(r) I'+ ln v0'-„(r) nv—0p(r) I']d o
A top

+ [lf~(r) —gp(r) I'+ In vp~(r) —n. vg'&'(r) I']do,
bottom

(15)

gX(r) = g argy(r) . (16)

The coefficients az are computed by minimizing
the expectation value of the Hamiltonian 3C,&. This
variational problem leads to linear eigenvalue
equations for the coefficients a}, of the form

where g'-(r), g'-„'(r), and g'~'(r) stand for the trun-
cated expansions (9) and (14) of gg(r) in the re-
spective cells. The first part of S' represents the
mismatch with respect to the Bloch condition of
the expansion (9) and its derivative. The second
and third part of S' represents the mismatch with
respect to a smooth transition between empty-cell
and atomic-cell expansions at the respective boun-
daries. A more detailed discussion of the mis-
match function S' is given elsewhere. "'"

Minimization of S' with respect to all expansion
coefficients under the constraint that the norm of
the wave function be constant leads to linear eigen-
value equations depending on the trial energy e,."
However, within the LRC scheme it is assumed
that expansions (9) and (14) for fixed e, define a
good basis for wave functions with energies about

So, for wave functions within a reasonable en-
ergy range about c, the eigenvalue problem has to
be solved only once for each wave vector k. As a
result of the eigenvalue problem one obtains sets
of coefficients for different eigenvalues A. and
hence functions g-(r) optimized with respect to
the boundary conditions of the system. Since A.

gives the magnitude of the mismatch function S'
for g&~(r} it can be used as a direct measure for
the quality of the function. Obviously, the g~(r),
given by expansions (9}and (14), do not solve the
one-electron Schrodinger equation (1). Theref ore,
in the second step we determine approximate solu-.
tions gg(r) of the one-electron equation as linear
combinations of g-(r) for different A. :

]f

[H-~(k)X]a=o, (17)

where H is the Hamiltonian matrix, N the overlap
matrix, and a contains all coefficients a), . The nu-
merical solution of Eqs. (17) yields the one-elec-
tron states gg(r) and their energies e(k) of the sys-
tem.

In order to obtain good convergence of the basis
functions P~(r) angular moinentum expansions (9)
inside V. up to l,„=6 and Fourier expansions (14)
inside V, with as many as seven 6vectors are needed.
Test calculations show that for the present sys-
tems the number of energy derivative basis func-
tions j, and jo-' in (9) and (14) can be reduced
to l,„=2 and C=O, respectively, without introduc-
ing serious errors. Altogether, in the first op-
timization step where the detailed spacial behavior
of the wave function is important we obtain quite
large matrices compared to those of other stan-
dard band-structure methods such as the linear
combination of muffin-tin orbitals" (LMTO) or
KKR." However, in the second step, expansions
(16) can be restricted to the seven smallest X val-
ues in order to achieve good convergence of the
energies resulting in quite small 7 xV eigenvalue
matrices. Further, since here the wave function
enters via volume integrals the angular momentum
expansions (9) of the basis functions P~(r) com-
puted in the first step can be truncated at E =2
and the Fourier expansions (14) can be restricted
to the 5=0 term without appreciable loss of ac-
curacy in the energies.

The basis functions g~k(r} in expansion (16) have
been computed from numerical solutions of a one-
electron equation using geometrical averages (4)
or (10) of the potential U(r) in each cell. How-
ever, in the second optimization step (17) the true
non-muffin-tin potential U(r) can be introduced
into the matrix elements of the Hamiltonian ma-
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D(c) = Q D, (c)+D,„,(e).

Integration of the different contributions between
the bottom of the valence bands Eb,«, and the
Fermi energy E~ yields the respective fractional
occupation numbers

Ey 1 E~
D, (e)de, q,„,=J

+bottom @bottom

of the atom in the monolayer. In the present cal-
culations we find that q,„t is always small com-

D,„,(e)dk (19)

trix quite easily, thus allowing for non-muffin-tin
corrections beyond approximations (4) and (10).
Since in rare-gas monolayers strongly directional
covalent bonding between the atoms is very un-
likely to occur, non-muffin-tin corrections beyond
(4) and (10) are of minor importance and there-
fore can be neglected for the present purpose.

Obviously, the numerical solutions of th'e scalar
relativistic one-electron equation" used for basis
functions g-„(r) inside V, do not include correc-
tions due to spin-orbit coupling which become
quite important for elements as heavy as xenon.
This effect is exactly accounted for if Dirac's ful-
ly relativistic one-electron equation is used in-
stead of its scalar approximation. However, the
use of spinors instead of scalar functions increases
the size of the eigenv'alue matrices considerably,
thus making the calculation much more expensive
in terms of computer time. " Therefore, in the
present calculations the basis functions g&(r), re-
ciuiring rather large expansions (9) and (14), are
computed from numerical solutions of the scalar
relativistic one-electron equation, whereas in the
second eigenvalue problem (17), the energy op-
timization involving much smaller expansions
(16), the spin-orbit coupling contribution is ex-
plicitly included in the Hamiltonian 3C. The use of
bispinor instead of scalar wave functions doubles
the dimension of the eigenvalue matrix (17). This
procedure has been found to yield results in good
agreement with fully relativistic I.HC calculations
for bulk metals, e.g. , lanthanum. '

Self-consistency of the band structure is achieved
in an iterative procedure. In a first calculation
the band structure e'(k) of the monolayer is deter-
mined as described above. The valence density of
states D(e) of the band structure e'(k) then follows
from standard numerical routines. " Since the
one-electron states gg(r) described as (16) are
given by expansions (9) inside the atomic cells V,
and (14) inside the empty cells V„one can decom-
pose D(&) into its angular momentum contributions
D, (g) inside V, and a contribution D,„,(c) of the two

empty cells V, where

pared to the dominant angular momentum contri-
butions q, . Therefore q,„, will be neglected in the
following. In a second calculation the self-consis-
,tent charge density of the free atom with the above
fractional occupations q, is used to construct a
new one-electron potential of the layer by linear
superposition. For this potential a band structure
e'(k) is computed from which new partial densities
D, (c) and occupation numbers q, follow. This pro
cedure is repeated until the occupation numbers

q, from two successive iterations differ by less
than 0.005.

III. EXPERIMENTAL

All measurements were performed with an
ADES-400 ultrahigh-vacuum electron spectrome-

/

ter (VG Scientific, Ltd. ) mounted in a mu-metal
vacuum chamber which was pumped by a Pfeiffer
(Balzers) TPU 400 turbomolecular pump; after
bake-out, base pressures of 5&&10 "torr were
regularly obtained. The instrument allowed in-
dependent setting of the photon angle of incidence
and electron emission angle. The analyzer ac-
ceptance window was situated in the plane of in-
cidence of the light beam. The 5-cm-radius hemi-
spherical electron energy analyzer was operated
at a pass energy of 10 eV, energy resolution being
about 200 meV. For the argon measurements,
resolution was increased to 40 meV (2 eV pass en-
ergy). Photoelectrons were detected by a channel-
tron and recorded with the aid of a PDP-11 com-
puter. The Pd (100) crystal, which was cut and
polished to within —,

'' of the desired orientation,
was cleaned by oxygen treatment at high temper-
ature, as well as by cycles of argon ion bombard-
ment and annealing. It was mounted on a crystal
holder which allowed cooling to 30 K using cold
helium gas, or even lower using liquid He."

IV. RESULTS AND DISCUSSION

A. Theoretical results

Figures 1-3 show the band structures of the Xe,
Pr, Ar, and Ne monolayers computed by the for-
malism described in Sec. II. Here the valence
energy levels e (k) are given as a function of the
wave vector k for characteristic paths within the
two-dimensional surface Brillouin zone (SBZ) as
shown in the insets of the respective figures.

There are always three different bands origina-
ting from the highest p orbitals of the respective
atom (5p for Xe, 4p for Kr, 3p for Ar, 2p for Ne).
At 1 (k = 0) the wave function of the energetically
lowest band e, is characterized by quantum num-
bers j = —,', m, =~ —,'. The wave functions of the two
energetically higher p bands at I' are described
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FIG. 2. Calculated band structure of an isolated
hexagonal krypton monolayer.

FIG. 1. Calculated band structure of an isolated hex-
agonal xenon monolayer along the main syxnmetry dir-
ections, as weQ as the direction I"H. The SBZ is shown

in the inset. In the right part the computed DOS is
shown.

by j = 2, mz —-+—,
' (lower band e,) and j = 2, m,. =+ —,

'
(higher band e,), respectively. For k vectors away
from l the wave functions of the three bands ad-
mix quite small 8- and d-type contributions as a
consequence of the electronic interaction between
neighboring atoms of the monolayer. However,
for the present systems this interaction seems to
be quite weak as the dispersion width of the three
bands being a direct measure of the interatomic

coupling turns out to be always rather small as
can oe seen from Table I.

The dispersion widths of Table I are quite
strongly dependent on the interatomic spacing of
the layer. If the nearest-neighbor distance of the
xenon layer is increased by io%%uo from the experi-
mental value, the calculated bandwidth of the j =-,'
band e, reduces from 0.028 to 0.015 Ry. A de-
crease of the nearest-neighbor distance by lo%%uo

results in an increase in bandwidth from 0.028 to
0.05V Ry for e,. Thus, as expected, the interatomic
interaction in the layer depends strongly on near-
est-neighbor distance.

The energies of the three valence bands at I',
e,. (I'), and the respective separations

A6 g
= E 2(I ) —t ~(I ) = E(jl =

~ q»'~ =j2 q i ) —f (j = 2 ~». =k 2 ) p) )

~~2=&3(i) &2) =~V =~2~», =+2~~) —~(j = 2~»q =+2, i')

E (Ry)

-0.69-

DOS (o.u. )

0 80 160 240 320
I a I . I

are given in Table II for the four rare-gas mono-
layers. It is obvious from this Table that the en-
ergy separations ~c, and ~e, decrease. monotoni-
cally from xenon to neon. This is to be expected

t

for two reasons: first, spin-orbit interaction de-
creases with decreasing atomic number. There-
fore the two high-lying and low-lying bands ex-
perience a successively smaller separation in
going from xenon to neon. Secondly, the inter-
atomic distances of the monolayers decrease much
less with atomic number than the respective co-
valent radii. Thus, the valence orbitals of neigh-

-0,71-

-0.73-

-0.75 A(-

E(Ry)

-094-

K M I H

r /K

DOS (o.u, )

0 80 160 240 320
I . I . I . t

TABLE I. Computed dispersion width sv; for the
three valence bands &; of the hexagonal rare-gas mono-
layers. Here nr; is defined as the energy range between
the lowest and highest energy of the band &;. The ener-
gy values are given in By.

-0.96-

-0.98-

FIG. 3. Calculated band structures of isolated hexa-
gonal argon and neon monolayers.

Xe
Kr
Ar
Ne

0.028
0.023
0.019
0.010

0.034
0.026
0.022
0.012

0.043
0.032
0.019
0.017
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TABLE II. Computed energies and energy separations of the three valence bands at I' for
the hexagonal rare-gas monolayers. For definitions of &; and &&; see text.

&& (I') (Ry) &2 (I') (Ry) &3 (I') (Hy) &&& (Ry) (eV) ~&2 (Ry) (eV)

Xe
Kr
Ar
Ne

-0.583
-0.652
-0.726
-0.974

-0.486
-0.600
—0.702
-0.961

-0.454
-0.581
—0.694
-0.957

0.097
0.052
0.024
0.013

1.32
0.71
0.33
0.18

0.032
0.019
0.008
0.004

0.44
0.26
0.11
0.05

boring atoms in the layer will overlap less if the
atoms become smaller, resulting also in a suc-
cessively smaller separation between the valence
bands in going from xenon to neon. The reduced
overlap between valence orbitals also explains
the decrease in dispersion width with decreasing
atomic number as can be seen from Table I.

The right parts of Figs. 1-3 show the two-di-
mensional densities of states (DOS) of the re-
spective monolayers computed with standard nu-
merical methods" using 660 different k points in
the full SBZ. Here, energies corresponding to
small curvatures in the band schemes can be
clearly identified as peaks in the DOS curves. A

decomposition into angular momentum partial DOS
reveals that the dominant contributions always
come from p-type functions with s- and d-type ad-
mixtures being quite small as one would expect.
Integration of the partial DOS curves over the
valence energy range results in configurations of
the atoms in the monolayers which are almost
free-atom-like; they are given in Table III. This
further substantiates the rather weak interaction
between the atoms of the layers.

a test case to compare with our theoretical re-
sults using the LRC method.

In Fig. 4 our calculated band structure is com-
pared to ARPES data obtained by Horn et al."
Xenon adsorbs on Pd (100) in a hexagonal layer
with two domains orthogonal to each other. Thus,
photoelectron spectra measured in any one ari-
muthal direction will be the sum of emission from
the two domains, except in the unique direction la-
beled I H (corresponding to the [011] Pd azimuth)
in the figure which is common to both domains,
but does not represent a high symmetry direction.
The calculated band dispersion for this direction
is compared with experimental data, in Fig. 4(a).
Here the computed band scheme is rigidly shifted
such that the value of the lower band e, (j = —,')
coincides with the respective experimental value
at I'. This shift is introduced in order to account
for local relaxation effects in the photoemission
process that are not contained in the present cal-
culations. For T.'JI, good agreement of the theoret-
ical dispersion curves with experiment is obtained
for the whole range of k vectors (k vectors with

IkI & 0.838 A ' refer to k points outside the first

B. Experimental results and comparison

1. Xenon monolayers

The formation of hexagonal xenon overlayers on
the Pd (100) surface has been studied recently by
Horn et al. ' using angular-resolved photoemission
spectroscopy (ARPES). It has been shown" that
the experimental dispersion curves can be de-
scribed by a two-dimensional band scheme on the
basis of a simple tight-binding method. Here, we
use the ARPES data of the Xe: Pd (100) system as

50=
LLI

P 6.0-
C

LU

0 0 rKirM

~ y ~ OO ~

I M

I K

I M

Xe
Kr
Ar
Ne

5p5. 92

4p5. 95

3p5. 97

2p6 ~ 00

5d 0.07

4d 0.04

3d 0. 02

6s'"
0.01

4 0.01

TABLE III. Computed electronic configurations of the
atoms in the monolayers. The fractional occupations
are determined from the partial DOS curves of the re-
spective band structures.
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FIG. 4. Comparison between theoretical and experi-
mental band structure for xenon along the I'H direction
(a) and the superimposed IK:I'M directions (b). The
appropriate quantum nuxnbers for the Xe 5p states at
I' are shown in (a). The computed band scheme has
been rigidly shifted such that the lowest band at I coin-
cides with the experimental value.
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surface Brillouin zone).
Good agreement between theory and experiment

along I'IJ in particular implies that the experimen-
tal separations between the bands at I', Ae„and
Ae, (see Table II) are reproduced by our calcula-
tion. These band separations are strongly depen-
dent on the interatomic separation of the xenon
atoms. In test calculations, a reduction of the
nearest-neighbor distance of the layer by 10%

- from the experimental value results in increased
energy separations Ae, =1.57 eV and Ae, =0.63 eV,
while an increase in interatomic distance by 10%
results in hE'y = 1.30 eV and ~e, = 0.24 eV. Thus a
fit of the computed band energy separations at 1"

with the experimental values could be used to de-
termine the nearest-neighbor distance of the ad-
sorbed atoms; the I FED experiment, however,
will be much more precise.

In Fig. 4(b) we compare the calculated band dis-
persions along I'K and I'M with experimental data
for the [001j azimuth for the Xe': Pd (100) system
in which I'M and I'K are superimposed due to the
presence of the two orthogonal domains. For k
vectors inside the first SBZ (i.e., for ~k~ &0.81A
in the I'M and ~k~ &0.935 A ' in the I'K direction)
where the computed dispersions along I'K and I'M
are almost identical, good agreement with the ex-
perimental data is obtained. While the low-lying
band is clearly split outside the first SBZ in the
experiment, due to the superposition of I"M and
I'K, such splitting of the high-lying bands is not
evident from the experimental band structure in
Fig. 4(b). An inspection of the data presented in
Fig. 1 of Ref. 5 gives the explanation: because of
the inherent width and the small energy separation
between the bands with (j= —,', m,. = +—,') and (j = —,',
m,. =a-,'), the spectral features are broadened and
superimposed over each other for emission from
outside the first SBZ. Here, one would expect to
observe four bands in all (two for I'K and two for
I'M), but the half-width of the peaks does not allow
a clear distinction. The imporant result, however,
is the good agreement inside the first SBZ.

2. Krypton monolayer

In Fig. 5 we show angle-resolved photoemission
spectra of krypton physisorbed on Pd (100) at a.

crystal temperature of 50 K. These are the first
photoemission data of krypton adsorbed on a tran-
sition-metal surface. The d band of palladium ex-
tends from E~ to about 4 eV below E~, and the
strong extra emission at about 6.5 to 8 eV is due
to the adsorbed krypton. For normal emission
(8=0') two peaks are observed at 7.55 and 6.7 eV
below E~, and a rather small peak at 6.35 eVbe-
low E~. With increasing 8, all peaks shift to high-

k rypton: Pd(100)
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FIG. 5. Photoelectron spectra of krypton physi-
sogbed on Pd (100) at 50 K for different polar angles
of electron emission 0. Photon angle of incidence is 50 .
Shifts in energetic position of the krypton 4p-derived
peaks around 6.5 to 8 eV below Ez are indicative of en-
ergy dispersion effects.

er binding energies and the small peak at 0= 0'
strongly increases in intensity. Unfortunately, no

LEED data on the Kr: Pd (100) system are avail-
able at the present time. Since krypton forms a
hexagonal layer on other transition-metal sur-
faces"" with a nearest-neighbor distance only
around5'%%upsmallerthanthatof the respective xenon
layer, we assume the Kr layer on Pd (100) to be hex-
agonal and oriented exactly in the same way as
the xenon layer. Thus two orthogonal domains
are assumed, with the I'K and I'M direction super-
imposed and oriented along the [001j Pd azimuth.
The spectra can then be used to derive an experi-
mental two-dimensional band structure using the
procedure outlined elsewhere. ' The experimental
values for e(k) are shown as dots and compared to
the results of our calculations in Fig. 6. Again,
the calculated band dispersion has been rigidly
shifted to bring the energy of the lowest band at
I in coincidence with the experimental value.
Good agreement of the three dispersion curves
along I'H [see Fig. 6(a)] is obtained for the whole
range of k vectors measured (~k~ & 0.896 A ' re-
fers to k points outside the first SBZ). The ex-
perimental separation of the three bands at I', Ae,
=0.80 eV, and Ac, =0.38 eV is reasonably well re-
produced in the calculations (see Table II). Since
there is some uncertainty about the value of the
nearest-neighbor distance, and the calculated sep-
aration of the bands is strongly affected by this
value, the small discrepancy between theory and
experiment is not too disturbing.

Figure 6(b) compares the calculated band disper-



K. HERMAN%, J. XOFFKE, AID K. HORN

(b)
argon: Pd{100) g, = 50 8=0

6.0-

o
Uj

O

7.0

I H I"K/I M

I M
I"K
I M

I K

~~- I M0- —=rKe0

0.5 1.0 1.5
H

I I I

0 0.5 1I0 1.5

k„(&-~I

FIG. 6. Comparison of the calculated band structure
for a hexagonal krypton monolayer (Fig. 2) with the
experimental band structure derived from data shown in

Fig. 5.

sions along I'K and I' VI with the experimental data
for the [001]azimuthal direction. Again, we find
good agreement between theory and experiment for
k vectors inside the first Brillouin zone (IkI
&0.865 A ' in the I'M direction and lk ~

& 1.00 A '
in the I'Ã direction) where the computed disper-
sions of the three bands along I'E and I'M are al-
most identical. For larger k values, the emission

2 bands ~2 and e3 cannot be well re-
solved into separate peaks owing to the problems
discussed for xenon above; here, the width of the
peaks near the top is indicated by bars in Fig. 6(b)
for k values outside the first SBZ, and agrees well
with the range covered by the four j = —,

' bands (two
from the E'K, two from the I'M direction). The
good overall agreement between the computed band
structure and the measured dispersion suggests
strongly that Kr adsorbs on Pd (100) in a hexa-
gonal structure with a nearest-neighbor distance
quite close to the value used in the calculation.

Thus our model calculations using the I RC meth-
od do agree well with the experimental band struc-
ture of xenon reported in the literature, as well as
with the experimental band structure for krypton
reported here for the first time. The calculations
also reproduce well the energetic splitting of the
Xe 5p and Kr 4p bands in the adsorbed phase,

3. Argon rnonolayer

Adsorpbon of argon on transition Qletals re-
quires crystal temperatures below around 35 K
because the physisorption energy is very small.
An angle-resolved photoemission spectrum of
Ar: Pd (100) is shown in Fig. 7, recorded at 30 K.
It was taken at normal electron emission and a 50
angle of incidence, using He I (21.2 eV) radiation.
We are not aware of any previously published pho-
toemission or LEED results of argon adsorption

I

2 1 E11 10 9 8 7 6 5 & 3

Energy below EF (eV)

FIG. 7. Photoelectron spectrum of argon physisorbed
on Pd (100) at 30 K. The two photoemission peaks due
to the argon 3p levels are observed at 8.5 and 8.9 eV
below E&. Owing to the small separation, a splitting of
the high-lying band into two components is not observed
here.

on any transition-metal surface. Thus, we have
to base our assumptions about the nearest-neigh-
bor distance in this layer on a comparison of the
measured energetic distance of the two peaks ob-
served in Fig. 7 with the results of the LRC cal-
culation. Since good agreement was found between
theory and experiment for xenon and krypton, this
is not a serious drawback.

Only two peaks are observed in the experimental
spectrum. This ean be understood by looking at
the theoretical band structure shown in Fig. 3(a).
The calculated splitting between the two j = —,

' bands
is around 0.12 eV, too small to be resolved, con-
sidering the experimental half-width of the bands
of around 0.25 eV. The spectrum for normal emis-
sion shows one peak at 8.90 and another at 8.50 eV
below E~. Interpreting the high energy peak as
due to emission from the j =-,' band e-„and the low
energy peak due to the combined j =-,' bands e„e„
we get a.n experimental separation Ae = 0.40 eV
which is in good agreement with the energetic sep-
aration Zc =0.38 eV calculated for a hexagonal
monolayer. (Since we cannot experimentally sepa-
rate c, and e„we have to take a mean value 4c
= he, +-,'Ae, .) This indicates that the value used in
our calculations for the nearest-neighbor distance
is not too far off. A full comparison of the theo-
retical band structure will be possible when LEED
a.nd angle-resolved photoemission results at dif-
ferent polar angles are obtained. Such experiments
as well as studies of a neon monolayer, which was
not feasible with our experimental setup, are in
preparation.
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C. Conclusions

The above comparison has shown good agreement
between two-dimensional band structures calcula-
ted by the LHC method and experimental band
structures of rare-gas monolayers on Pd (100).
These layers certainly present a unique opportun-
ity to test layer band structure calculations, since

the interaction with the surface can be neglected
to a large extent. The inclusion of the geometric
and electronic structure of the substrate into cal-
culations using the LRC scheme should make this
method also applicable to systems with strong
adsorbate-substrate interaction, e.g. , oxygen on
aluminium (111) (Ref. 10) or sulfur on Pd (100)."
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