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A theory of Ohmic magnetoresistance is developed using the superoperator technique. This theory is found
to be equivalent to that developed earlier when collision broadening is neglected.

The problem of Ohmic galvanomagnetic effects in
semiconductors in quantizing magnetic field has been
of interestfor many years. Several theories (see
Refs. 1 and 2 for useful references) have been devel-
oped to study the magnetoresistance as a function of
magnetic field. A theory using the iterative solution
of Liouville's equation for the density matrix was de-
veloped by Arora. and Miller, ' which was further elab-
oratedby Arora and Peterson, 'by extending the scat-
teringdynamics beyond the strict Born approxima-
tion. In the quantum limit" this theory predicted
magnetoresistance linear in magnetic field in the
regime where electron-acoustic-phonon scatter-
ing is considered to be the dominant mechanism
of scattering, ' in conformity with actual observa-
tions. Recently, Barker has critically discussed
present controversies regarding quantum theories
of crossed-field magnetoeesistance. ' He has pre-
sented the results of a new superoperator kinetic
theory valid for arbitrary field strengths. No
explicit functional dependence of the magneto-
resistance on magnetic field is indicated in this
work. Adams and Holstein's theory, ' with suit-
able cutoff, gives a quadratic in magnetic field
dependence of magnetoresistance for high mag-
netic fields, whereas high-field experiments indi-
cate an approximate linear dependence.

Barker's theory includes the initial-s&te cor-
relations by taking the unperturbed equilibrium
density matrix as p, (H, + V), in contrast to p, (H, )
taken in previous work. "' This was done in pre-
vious work" on the understanding that in the ab-
sence of the perturbing electric field, the colli-
sions will not change the distribution of electrons.
Any change in p, due to inclusion of weak-scatter-
ing interaction is cancelled by a similar change in
the Fermi energy leaving p, (H, + V) =p, (H, ). The
electron-lattice interaction V and electron-elec-
tric-field interaction I were thus included in the
perturbative part of the Hamiltonian and hence
treated on the same footing. In steady state, our
formalism"' presented a familiar "gain-loss"
picture, where the accelerating effect of the elec-
tric field was balanced by collision damping. The
so-called "interference effect" was also f-ound to

(J) = Tr(pJ„),
where p is the steady-state solution of Liouville's
equation

ih =[Ho+H'(t))p, — (2)

where

H, = [p+ (e/c)A]'/2m*,

O'= E+ V= eE ' y+ V. (4)

Here carets denote the commutator-generating
supe rope ra.tors

AB = [A, B].
All other symbols have the usual meaning. '

Assuming the time devel. opment of the system
from an initial time t = —~ (p = p, ) to steady state
at t =0 by switching on the perturbation as

H'(t) =H' exp(et/S),

we have for the steady-state density matrix p, a
solution

be negligible in the development of the above for-

malismm.

The use of superoperators in the theory of mag-
netoresistance does offer a distinct advantage in
the fact that characteristic "gain-loss" relaxive
structure associated with nonvanishing vertex
corrections is built into formalism in a simple
fashion. 'This gives "collision broadening, " which
is important in interpreting the low-temperature
quantum transport effects of the Shubnikov-de Haas
oscillations type and is normally included in a
phenomenonlogical way. In the following, we re-
derive the nonequilibrium density matrix using
the superoperator technique, but using essentially
the same assumptions as used earlier. '

For a system of independent electrons interacting
with the lattice in the simultaneous presence of an
electric field and a magnetic field with magnetic
potential A = (0, Bx, 0), the electron current is ob-
tained from'
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p, = p, + I~ lim dt [H, +H'(t)]p(t)
gap oo

= p, +-lim l~ dtexp—

x exp[- —(H, +H')t]H'p, ,

which can be easily integrated to give

p = po+ lim (Ho+ H' —ie) 'H'po.
two

(8)

approximate R&(e) of Eq. (10) by neglecting Z(c),
so that

R~(&) = (H, —i&) ' =- R~o(c),

Z(~) = [-V+ VRo(&) V]-=Z'(~),

(is)

(14)

where we have kept the terms up to second order
in scattering interaction, assuming weak scatter-
ing. Now, we rewrite Eq. (12) as

[Ho —Z (&) —zE]p '= H po,

Rp(e) = [8,—Z(e) +F te]-', (10)

Z(E) = [-V+ VR~(c)V —VR&(e)VR&(q)V+ ].

Hence, the steady-state nonequilibrium part p' of
the density matrix can be written as

p'= [H, —Z (e)+F —ie] '8' p, . (12)

Equation (ll) is a coupled equation in Z(e). To
calculate the matrix elements of p', we need some
approximations. Firstly, we make the linear
approximation (Ohmic limit), and neglect F in the
denominator of Eqs. (10) and (12). Secondly, we

The field resolvent superoperator (H, +H' —ie)-'
can be expanded into a perturbation series, which
can be partially summed by using the proper con-
nected diagram technique' with the result

(H, +H'- ze)-' =R, (e), (9)

where

e, = (n+ —,') a(u, + a'y,'/2m*. (18)

All symbols have usual meaning as in Ref. 2. By
using the properties of V, the second coupled term
in Eq. (16) is approximated as'

(e)vp'I &=1'*-& 'lp'I & (»)
where

and take the matrix elements. The required ma-
trix elements of p' for averaging electronic cur-
rent operator are diagonal in lattice quantum num-
bers and so is p„whereas V is nondiagonal in
lattice quantum numbers. Hence, all the linear
terms in V will drop out, giving for (n'

I

p'
I
o.'),

where In) is the electronic state of the Hamil-
tonian II„ the coupled equation

(e- - - t~)&~'I p'l~&- &~'I VRl(~) vp'I ~&

(16)
with

Iv. 81' g &V'IFp. l&& v. v. ,g lvs. l'
()+ &g —t —f& gg, (Q' IEpo I

A) Kg, —6 —'lC
g 6, —Cg —tE gg, (ll' Fpo H) e, —6g —te

(20)

The second and fourth terms in Eq. (20) are the
anisotropic terms that vanish for isotropic scat-
tering. I', is the lowest-order complex broaden-
ing whose real part gives the shift in the unper-
turbed eigenvalues up to second order in scatter-
ing interaction, and the imaginary part gives the
Breit-Wigner type of broadening. Equation (16)
along with Eq. (19) can be quickly solved to give
results identical to those obtained earlier"'.

(n'
I
p'

I
o.) = (o' IFp, I

o.)/(e, —I", ) .
In conclusion, we have shown above that the more

elegant superoperator technique gives essentially
our earlier results if the collision broadening is

f

neglected. In contrast, Adam and Holstein' take
only the first few terms of the perturbative expan-
sion of R~(e) given by Eq. (9) which leads to diver-
gent results. This divergence is avoided by re-
suming the series as in Eq. (10). The detailed
comparison with the divergent theories is not
possible because the final results are sensitive to
the cutoff used. The neglect of collision broaden-
ing in approximating Z(e) = Z'(e) may be justified
at high and intermediate temperatures when 5/r
«k~T, but inclusion of this broadening may be
necessary for quantum effects at low temperature.
These studies will be reported in future communi-
cations.
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