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Equilibrium properties of the fluxoid lattice in single-crystal niobium.
I. Magnetization measurements
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The field derivative of the superconducting magnetization (dM/dH, ) of a single-crystal niobi-

um sphere was measured with the applied magnetic field parallel to the three high-symmetry

crystal axes, A field-sweep technique was used to make direct, continuous measurements of
dM/dH~, and the data were numerically integrated to obtain the magnetization M Excellent

magnetic reversibility indicates the attainment of equilibrium conditions. The Meissner state,
the intermediate mixed state, the mixed state, and the normal state show up as distinct field re-

gions of the dM/dH, vs H, plots separated by discontinuities in dM/dH, . The results are com-

pared with microscopic theory and with related experimental studies of niobium. The magneti-

zation measurements are compared directly with small-angle neutron-diffraction measurements
of the fluxoid lattice in the same sample reported in the following paper.

I. INTRODUCTION

A. Motivations for this work

In this paper and the following one' (hereafter re-
ferred to as II), we describe a thorough study of the
equilibrium mixed state of a niobium crystal by mag-
netization and small-angle neutron-diffraction mea-
surements. By combining the two types of measure-
ments on one sample, we have been able to make
direct comparisons between observations of the mi-
croscopic structure of the fluxoid lattice and the rna-

croscopic flux density, The neutron-diffraction tech-
nique proved to be most useful for measuring the
fluxoid lattice symmetry and the flux density precise-
ly at low fields, while the bulk magnetization mea-
surements enabled (less precise) investigation over
the whole field range up to the upper critical field.

The equilibrium magnetization of niobium has
been investigated experimentally by a number of
workers " and has served as a test of the
Ginzburg-Landau-Abrikosov theory of the mixed
state and its extensions. '2 In addition, the anisotropy
of the upper critical field in single-crystal niobium has
been carefully studied 5—6, &3—&8 %c extend this work
by measuring the anisotropy of the magnetization
throughout the mixed state. Moreover, since we
have measured the field derivative of the magnetiza-
tion directly, our results for this quantity may be
compared with theoretical values at thc upper critical
field more reliably than is possible with earlier mea-
surements. Our technique also makes available for
thc first time an experimental determination of the
field derivative of the magnetization at the lower crit-
ical field. In addition, the excellent reversibility of
our samples makes our determination of the lower

critical field more reliable than earlier measurements.
Although most of the isotropic microscopic theory

of the mixed state has been compared adequately
with the measurements on polycrystallinc niobium,
some recent theoretical advances have not been com-
pared in the literature. Therefore, this paper includes
a brief review of the relevant theoretical results and
their comparison with our experimental values aver-
aged over all crystal orientations. In addition, we
present direct comparisons between our data and the
most comparable previous data where our rneasure-
rnents repeat earlier ones.

There has been a theoretical and experimental ef-
fort to understand the relative anisotropy of the
upper critical field of niobium. Although no theory
at present exists for the anisotropy of the magnetiza-
tion, some calculations are in progress. ' It is hoped
that our measurements will stimulate further theoret-
ical effort in this area.

8. Thermodynamics of the mixed state

In order to better present the salient features of the
magnetization data, we first review the thermo-
dynamic description of the equilibrium mixed state.
Equilibrium in the mixed state occurs at the
minimum of the Gibbs potential

g=g(B) — B H,
4m

where B is the macroscopic flux density, f(B) is the
Helrnholtz free-energy density of the material, and H
is the equilibrium magnetic field defined thermo-
dynarnically by

H =4rr'7a f
21 1980 The American Physical Society



21 EQUILIBRIUM PROPERTIES OF THE FLUXOID. . . I. . . .

where '78 is the gradient with respect to B. The
free-energy density f(B.) must be calculated by using
microscopic theory with some material-dependent
parameters. In an isotropic material, fdoes not
depend on the direction of B, but only its magnitude.
In general, f depends on the orientation of B with
respect to the crystal, and H and B may have dif-
ferent directions. In practice, f depends only weakly
on the direction of B, so that the angle between B
and H is small.

In niobium and other type-II superconductors with
low Ginzburg-Landau parameter ~ (see Sec. I E),

~

V's f ~ initially decreases as 8 is increased from zero,
goes through a minimum, and then increases with 8
at larger 8. The presence of the minimum of ~'7s f ~

produces a first-order transition between the Meiss-
ner state (B=0) and the mixed state. At this transi-
tion the fluxoid lattice of flux density Bo is in equili-
brium with the Meissner state and with the magnetic
field H, i. That is,

H, t =4~Vsfl s
and

(4)g =f(Bo) — Bo H.i=f(o)
4m

In materials with higher ~, ~'Vs fl increases mono-
tonically with 8, the transition is second order, and
H, i is given by

where f„(0)is the free-energy density of the normal
state in zero field. The thermodynamic critical field
H, is defined by

HP =f(0) —f„(0) (7

H, ~=4m lim '7sf .B~0
Microscopically, when the transition is second order,
the interaction between fluxoids is always repulsive.
A first-order transition is associated with a lang-range
attractive interaction between fluxoids that produces
the minimum in

~
V sf l. At the field H, ~, fluxoids

in a low-K type-II superconductor are separated by
the equilibrium spacing associated with the flux den-
sity Bo. At flux densities 8 larger than Bo, the flux-
oids repel each other and are in equilibrium with a
larger field H.

The Gibbs potential of the mixed state is lower
than the Gibbs potential of the normal state (B=H)
for all values of B below the upper critical field H, 2.
At H, 2, the mixed state and normal state are in
equilibrium, and their Gibbs potentials are equal. In-
tegrating Eq. (2) over any equilibrium path and using
the equilibrium condition at H, 2, one readily arrives
at the conclusion that the condensation energy of the
superconducting state is given by

+~c2
f(0) —f.(0) = J (B —H) dH, (6)4~

Unlike Ij,t and H, 2, H, is independent of the direc-
tion of B.

The occurrence of a first-order phase transition at
H, i suggests the possibility of metastable states. '
The Meissner state may persist (superheat) in in-
creasing field above H, i until the field in equilibrium
with an isolated fluxoid

Because the presence of a magnetic sample distorts
the magnetic field, the relation between the applied
field (as measured by the external current producing
it) and the induced moment or the flux density is not
direct. However, the boundary conditions are such
that a uniform applied magnetic field produces a uni-
form magnetization in a homogeneous ellipsoidal
sample. Moreover, the applied field H, is related in
a simple way to the magnetization M, the flux densi-
ty B, and the field H that is in equilibrium with B.
The. shape of the ellipsoidal sample is described by a
demagnetization tensor D. The relation is

H=H, —4aM D

where the magnetization as usual is

M= (B—A)
4m

(9)

H, ~=4' lim 'oaf,8~0

is reached. When the transition is first order,
H, ~ & H, i. In an ideal sample initially in the Meiss-
ner state, isolated fluxoids must be created at the
surface before they can fall in to form the lattice of
flux density Bo. Thus when flux first enters the sam-
ple the field must be at least H, ~. However, if the
sample is not ideal, any defect at the surface that per-
mits the formation of fluxoid lattice (e.g. , a region
with a low H, t) serves as a nucleation site for the
mixed state as long as the field is larger then H, i.

Likewise, the mixed state may supercool in de-
creasing field to the minimum value of 4'�~'7sf ~

(H, ~. The minimum supercooling field may not be
observed because some defect in the sample may per-
mit nucleation of the Meissner state at a larger field.
Since we always observe a nonzero
'7s H =4mV&~f, we conclude that we have never
supercooled the mixed state to the minimum of
4' ~'7s f~. Evidence for some slight supercooling of
the mixed state will be presented in the accompany-
ing paper.

Metastable states can also occur as a result of flux-
oid pinr ing by microscopic defects in the sample '

and as a result of the interaction of fluxoids with the
shielding currents at the surface of the sample. " The
sample was prepared in such a way to minimize both
these effects. The sample preparation is described
below.

C. Magnetization of a sphere
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For a sphere, D is a scalar equal to one third, and

(10)H=H, —
3

mM

H&
—p/3 Hc1

Hp= p/3 HCI + I/3 BO

Hct BO

The applied field H, is identical to the field in the ab-
sence of the sample, and it can be measured indepen-
dently of the magnetization of the sample by measur-
ing the current that generates it. The magnetic field
H outside the sample is the sum of H, and the
nonuniform field produced by the moment of the
sample. The field produced by a uniformly magnet-
ized sphere is a dipole field.

In genera1, B depends on the orientation of the
sample in the applied field H, and is not parallel to
H, even for an isotropic material. In order to ob-
serve small anisotropies of material parameters, it is
necessary to know the sample geometry accurately.
The best way of accomplishing this end is to use a
spherical sample, because D is a scalar for a sphere
and because it is possible to make a sample accurately
spherical.

A type-II superconductor with a first-order transi-
tion at H, ~ (hereafter referred to as type-II/1) exhi-
bits an intermediate mixed state (IMS) that is analo-

gous to the intermediate state of a type-I supercon-
ductor. In a sphere, the Meissner state is stable only
for applied fields less than —,H, ~. As H, is raised

above Hi = —,H, i, mixed-state domains of flux densi-

ty Bo, which are in equilibrium with the Meissner-
state domains, gradually fill the sample. Setting
H =H, ~ in Eq. (10), we see that the magnetization
increases linearly from the value —H, ~/4m at
H, =

3 H, ~ to the value —(H, ~
—Bc)/4m at

H, =H2= 3H, i+ 380, where the sample is filled

with fluxoid lattice. As the field is further increased,
the fluxoids move closer together until the magneti-
zation disappears at the upper critical field H, 2.

The magnetization curve of a spherical type-II/1
superconductor and its derivative are illustrated
schematically in Fig. 1 and compared with the mag-
netization curve of an infinite cylinder of the same
(isotropic) material in the axial field. In the Meiss-
ner state (H, & 3 H, t) and in the intermediate mixed

state ( 3 H, ~ & H, & —,H, ~ + T8a), the equilibrium
2 2 1

magnetization plot depends only on the shape of the
sample and on H, i. In the mixed state, the repulsive
interaction between fluxoids produces the curvature
shown. The field derivative of the magnetization is
discontinuous at each of the three transitions—
between the Meissner state and the IMS, between the
IMS and the mixed state, and between the mixed
state and the normal state. Because of the discon-
tinuities, a direct measurement of dM/dH, is most
useful for identifying the transition fields. The solid
curves in Fig. 1 represent the equilibrium situation.
The effects of superheating the Meissner state and
supercooling the mixed state are indicated by dashed
curves.

D. Misalignment between B and H

The flux density B, and field H, and the magneti-
zation M are not parallel in general. However, the
symmetry of the free energy f(B) (as well as every
other scalar function of a vector argument) must re-
flect the symmetry of the crystal. As a result, the
free energy as a function of the direction of B must
have extrema at the high-symmetry crystal directions,
and H must be parallel to,B at those directions. At
off-symmetry directions B and H are not parallel by
virtue of the fact that fdepends on the direction of
B. The mathematical statement of these characteris-
tics is

I i I

H( Hp Hc(
I

Hop

fB x Hf =4rr/B x P'sf]

=4 [V;fi &0

O

p

3/p

3/p

FIG. 1. Ideal magnetization curves M(H~) of a long
cylinder in an axial field and a sphere of the same material,
and dM/dH~ of the sphere. The solid curves indicate the
equilibrium magnetization, while the dashed curves illustrate
superheating and supercooling effects.

except at the extrema of f(8). Here 8 is the unit
vector in the direction of B and V~ is the two-

dimensional gradient on the surface of the unit
spheres in B space.

Associated with a misalignment between B and H
is a torque 7 on the sample,

7=J1,H, x'7H gdV
s+s

MxH, dV, (12)

where V~ is the two-dimensional gradient on the
a

surface of the unit sphere in H, space. The volume s
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is the volume of the sample, and s +s' is all space.
Equation (12) follows from the well-known relation

, dgdV=„M dH, dV—,d(H, ) dV
S+S ~s 8' + s+s

(13)

The torque on a niobium crystal in the mixed state
has been measured by Holzhauser" and by Schneider
et al. ' The neutron-diffraction measurements
described in II are the first direct observation of the
misalignment.

Although the relation between the misalignment
angle and the anisotropy of the magnetization is rath-
er complicated in general, two simple relations can be
derived at H, ~ and H, 2. Near H, 2 both the torque
and the magnetization go to zero in proportion to
0,2

—H, but the angle ~ between M and H ap-
proaches a finite value. The angle- e is given by

tan e(B) = IM XAI/IM Hl

=IB~HI/IB II-H'I

=I~;fl/8' 4-
98 BB

%sf—4m

Then

4vr(6/88)(%sf)
(Ifi/8 8)l g,

(16)

tan &(Hc2) I /s+ig21/Hg2 (17)

A similar argument is used in II to relate the angle
between Bo and H, in the IMS to the anisotropy of
Hc

E. Microscopic theory of the mixed state

The microscopic theory of the mixed state has been
reviewed thoroughly by Fetter and Hohenberg. ' In
what follows we review briefly those theoretical
results that can reasonably be compared with our
data. We discuss some recent results that have ap-
peared since Ref. 12.

The first theory of the mixed state was developed
.by Abrikosov" on the basis of the phenomenological
Ginzburg-Landau theory. All later theories depend

Expanding both the numerator and the denominator
to first order as a Taylor series in (8 —H, 2), we ob-
tain

4m I (8/88) ( Vsf) +
tan e(B) = 15

H [I 4(d'f/dB') I g—,] +
C2

Differentiating the relation
H,2(B) =4m (Bf/'dB) Ig leads to

heavily on the concepts introduced by Abrikosov.
The Ginzburg-Landau theory was assumed to
describe superconductors with spatially varying prop-
erties near the critical temperature T,. Abrikosov
showed that a mixed state should exist when the ma-
terial parameter K was larger than 2 ' ', and he calcu-
lated the upper critical field H, 2, the field derivative
of the magnetization at 0,2, and the lower critical
field H, ~. To the extent that Ginzburg-Landau
theory applies to any real material, extrapolation of
measured values of H, ~/H„H,2/H„and [dM/dH]H
to T, should be given by the single parameter K.

Shortly after the introduction of the microscopic
theory of superconductivity by Bardeen, Cooper, and
Schrieffer (BCS),"Gor'kov extended the BCS theory
to permit calculations of spatially varying properties.
He showed that the Ginzburg-Landau equations fol-
lowed from the microscopic theory when
T, —T && T,. At lower temperatures, the Gor'kov
equations include nonlocal effects; therefore, they
have a more complicated form than the Ginzburg-
Landau equations. Gor'kov's theory has permitted the
generalization of Abrikosov's theory to all tempera-
tures. It also provides a basis for understanding the
influence on mixed-state properties of electron
scattering by impurities.

Historically, the first solution of Gor'kov's equa-
tions at lower temperatures was in the limit of short
electron mean free path (dirty limit). 29 However,
those theoretical results cannot be applied to our rela-
tively clean sample. The first extensions of the Abri-
kosov theory to pure materials at lower temperatures
were the calculation of the temperature dependence
of 0,2 by Helfand and Werthamer, ' and the calcula-
tions of the limiting temperature dependence of
H, ~/H„H,2/H„and [dM/dH]H at T, by Neumann

and Tewordt;" Later, Eilenberger calculated H, 2/H,
and [dM/dH]~ at arbitrary temperatures. 32

C2

Eilenberger's solution gave the wrong value of
[dM/dH]0 . The problem was first noted by U.
Brandt" and later discussed in more detail by Del-
rieu ~ and E. H. Brandt. ' Pesch and Kramer solved
Gor'kov's equations for an isolated fluxoid, thus
determining H,'~, at arbitrary temperatures and mean
free paths. Recently, E. H. Brandt has given nu-
merical solutions of the Gor'kov equations for pure
materials at all temperatures and fields. 3~ (In Ref. 37
Brandt also reviews recent developments in Gor'kov
theory. )

The microscopic theroy of BCS and Gor'kov is
based on the free-electron model of a metal with a
vanishingly small electron-phonon interaction. Cer-
tain band-structure and many-body effects can be in-
corporated into the microscopic theory simply by re-
normalizing the free-electron-model parameters.
However, certain other real-metal effects such as
multiple bands, a finite retarded electron-phonon in-
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teraction, and anisotropy of the Fermi surface and of
the electron-phonon interaction cannot be incorporat-
ed into the theory in a simple way. As a result, BCS
theory predicts several universal laws of correspond-
ing states that are only approximately obeyed by real
materials. Similarly, the temperature dependences of
observable quantities predicted by BCS theory (and
by Gor'kov theory) differ from the observed depen-
dences, and anisotropy cannot be described theoreti-
cally. The application of completely realistic micro-
scopic theory to some of our data will be discussed
elsewhere. Here we consider the influence of
Fermi-surface anisotropy on the mixed state. Hohen-
berg and Werthamer calculated the relative aniso-
tropy of H, 2 in the nearly local limit (applicable near
T,) and showed that anisotropy can enhance H, q(T)/
T, [((dH, 2/dT) ~ r ]. Recently, Teichler has related

the relative anisotropy of 0,2 at all temperatures
to the anisotropy of the Fermi surface and of the
electron-phonon coupling for cubic superconductors
with arbitrary mean fret'. path. Takanaka and Hu-
bert have calculated 0,'~, and Takanaka and
Nagashima4' and more recently Berthel and Pietrass"
have given (dM/dH) ~H in the nearly local limit, for

a material with an anisotropic Fermi surface.
A recent theoretical development has been the use

of field theoretical techniques to derive equations for
the spatial variation of magnetic fields in supercon-
ductors. Like Gor'kov's theory, the new approach is
based on the BCS model Hamiltonian; however, the
solution involves a different set of approximations.
The result, which has been named the boson formal-
ism, ' is a set of field equations that are analogous
to, but simpler than, Gor'kov's equations. The
theory is incomplete in that the energy associated
with the normal core of the fluxoid is taken into ac-
count in a phenomenological way and is not a funda-
mental part of the solution. Also, it is unclear at the
present time whether the boson theory reduces to
Ginzburg-Landau theory near T,.

In the boson formalism the parameter K~ plays a
role similar to that of K in Gor'kov theory. The
boson-theory parameter Kg may be calculated within
Gor'kov theory to be Kg =1.04K. Although a unique
value of K for niobium may be determined by extra-
polating features of the magnetization curve to T„
the value of K~ obtained by multiplying the experi-
mentally determined K by 1.04 suffers from the defi-
ciencies of Gor'kov theory mentioned above. There-
fore, that value of K~ may not be appropriate for
comparing boson-theory results with data. The
phenomenological parameter 5 =H, q (0)/H, (0)
enters the theory independently of ~~. In the boson
formalism, the finite electron-phonon interaction is
described in an approximate way by a single parame-
ter N(0) V. Mixed-state properties appear to be
weakly dependent on W(0) V. Calculations are in

progress to determine the effects of anisotropy of the
Fermi surface and of the electron-phonon interac-
tion. '9

In comparing the results of Gor'kov theory with our
data, we have made use of the experimental value of
~ obtained by extrapolating our measurements of
H, 2/H, and (dM/dH) ~0 to T,. There is no compar-

able way of determining the appropriate value of Kg
for testing the boson theory. Mancini et a/. recently
have compared boson-theory results with experimen-
tal results for niobium. 44 They chose K~ and 5 to ob-
tain the best overall agreement between theory and
experiment. We have simply reproduced their
theoretical results here.

II. EXPERIMENTAL METHOD

A. Sample preparation and characterization

The niobium crystal was grown by zone refining an
arc-cast rod. After the first zone passes were com-
pleted for purification, the 1-cm rod was thickened
during one pass to its final diameter of about 15 mm.
There was one final zone pass of the 15-mm rod to
improve the crystal quality. Using neutron tomogra-
phy, 45 a section of the rod was selected for its crystal-
line quality. A sphere was spark cut from the select-
ed portion. After the spark damage was removed by
etching, the sphere was lapped to its final nearly per-
fect spherical shape. It was necessary to etch the
sample again to remove about 50 p, m of surface layer
damaged by the lapping process. The sample was
then annealed at 2200'C for 50 hours in a vacuum
that was better than 2 && 10 ' Torr at the end of 50
hours. Finally, the sample was heated to 400'C for
five minutes in an oxygen atmosphere. This last step
is known empirically to reduce the surface barrier of
niobium samples without altering the purity of the
material in the bulk. 46 The final diameter of the
sphere was 13 mm, and its eccentricity was found to
be less than 0.035. Hereafter, this sample will be re-
ferred to as Nb-l.

A second sphere (Nb-2) was cut from the same
rod, and a third sphere was cut from another single-
crystal rod prepared at a different time. A few mea-
surements made on these other samples showed
slight variations that will be described later. All three
samples were prepared by identical procedures, ex-
cept that Nb-2 was not lapped; therefore, it showed a
larger deviation from perfect spherical geometry.

The resistivity of each sample was measured in
zero field just above its superconducting transition
temperature by a mutual-inductance technique. 47

The resistivity of Nb-1 was found to be 32 nA-cm,
which corresponds to a residual resistivity ratio of
p(295 K)/p(10 K) =450. For the third sample men-
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B. Measurement technique

The magnetization was measured by a field-sweep
technique. The apparatus is shown schematically in
Fig. 2(a). The sample was placed in one of two
identical pickup coils connected in series opposition.
The sample and both coils were situated in the
uniform-field region of a sixth-order superconducting
solenoid. The current through the solenoid was
ramped at a constant rate from below —,H, i to above

H, 2. Then the current was ramped down at the same
constant rate to below 3 H, ~. The voltage induced in

the pickup coils, which was just proportional to
dM/dH„and the current through the superconduct-
ing magnet were simultaneously plotted on an x-y
recorder and digitized and stored by a programmable
data-acquisition system. Typically, about 80 points
were stored digitally in the field range
2 1

3
H ] +

3 Bp (H (H 2 and another ten points for

H, )H, 2 for each direction of field sweep. Because
of the large sample size and its high conductivity, the
magnetic-diffusion time was rather long, and sweep
rates had to be kept below 1.5 Oe/sec (0.4 Oe/sec at
temperatures above 7.5 K). The digitally stored data
w'ere later numerically integrated to obtain the mag-
netization and Gibbs free energy. Since the data we
obtained were a slowly varying and nearly nonhys-
teretic function of magnetic field in the mixed state,
only the mixed-state data (i.e., H2 ~ H, ~ H, 2) were
integrated. The equilibrium magnetization curves for
H, & H2 were constructed. In this way, we avoided a
number of problems: (i) The rapid variation of the
signal with field at H~ and H2 would make accurate
numerical integration difficult. (ii) The signal was
much noisier in the IMS than in the mixed state.
(iii) The signal was history dependent in the IMS.

HIGH
VACUUM

T

EXCHANGE
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IjC
UTPUT

COPPER BLOCK~—

HEATER~

EPOXY POTTED X &
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~.CONTROL THERMOMETER

gQQg+y
—CO L FD

l 'E

DRIVE
CIRCUIT

) I (6.8 kn

DRIVE
CIRCUIT

p I

$6,8 Kn

FIG. 2. (a) Experimental apparatus for measuring mag-
netization. (b) Schematic diagram of the MOSFET chopper.
The MOSFET's are type MFE 3002.

tioned above, p(295 K)/p(10 K) =690. With the ex-
ception of a few qualitative comparisons, only data on
Nb-1 are reported in this paper.

C. dc amplifier

In order to amplify the low-level dc voltage in-

duced in the pickup coils, we used a technique similar
to that developed by Younge and Harper. A
metal-oxide-semiconductor field-effect transistor
(MOSFET) signal chopper located in the liquid-
helium bath chopped the dc voltage. The resulting ac
signal was amplified and synchronously detected by a
PAR 124A lock-in amplifier. This technique provid-
ed good dc stability as well as good noise immunity
and relatively fast response.

A schematic of the MOSFET chopper is shown in
Fig. 2(b). The isolated drive circuits each provided
0-to-15 V square-wave signals of opposite phase to
turn on the four MOSFET's in pairs. The ac signal
at the input to the preamp was a square wave with an
amplitude equal to the dc voltage induced in the pick-
up coils. We used a high-input-impedance preamp to
avoid field distortions arising from currents flowing
in the pickup coils. A square-wave generator was the
primary timing source; it drove the reference circuit
of the lock-in amplifier, and it triggered the chopper
drive circuits through optical isolators.

Essential to the performance of the chopper is the
high degree of isolation between the low-level signal
circuit and the chopper drive circuit. Without this
isolation, one observes large chopping spikes that
arise from currents required to charge the gate-to-
source and gate-to-substrate capacitance of the
MOSFET's. The optical isolators and the high-
impedance input to the PAR 119 preamp prevent
these charging currents from flowing in the low-level
signal circuit.

Our relatively high-impedance signal source posed
a more difficult problem for the signal chopper than
was encountered in the earlier design, which was
used to amplify thermocouple voltages. 4s (The self-
inductance of our pickup coils was 62 mH. ) Since a
small portion of the charging currents still must flow
through the signal source, we found it necessary to
short-circuit these transient currents by connecting a
capacitor in parallel with the pickup coil. The resis-
tors in series with the pickup coil damped the result-
ing ringing. Values of the components were chosen
to minimize the contribution of the switching tran-
sients to the apparent dc voltage. The ringing fre-
quency was much higher than the chopping frequen-
cy. The damping time constant was longer than one
cycle of the ringing frequency but much shorter than
one half cycle of the chopping frequency.

Ih nearly all of the measurements, we used a chop-
ping frequency of 47 Hz, no ac signal filtering, and a
300-msec, 12-db-per-octave dc output filter in the
lock-in amplifier. At these settings, both thermal
noise and the switching transients were negligible.
The primary source of noise was variations in flux
motion in the sample.
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D. Temperature control and measurement

As shown in Fig. 2(a), the sample was placed in a
cylindrical sample chamber whose wall was molded of
Emerson & Cuming Stycast 2850 GT. The pickup
coils were potted within this wall. Coil foil made
from No. 30 copper wire was molded into the inner
surface of the epoxy wall, and the sample chamber
was filled with helium to insure that the entire sam-
ple chamber remained at a uniform temperature. A
high-vacuum space isolated the sample chamber from
the liquid-helium bath. Temperature control was ac-
complished by electronically regulating the power
supplied to a heater mounted on a copper block near
the top of the sample chamber. The control ther-
mometer was a 100-0 carbon resistor mounted in
the copper block. We measured the temperature by
using a calibrated germanium resistance thermome-
ter, which was in contact with the sample. Cooling
took place mainly through a copper wire connecting
the copper block with the top flange of the vacuum
can. When the sample temperature was belo~ 4.3 K,
the pressure over the liquid-helium bath was regulat-
ed to keep the bath temperature about 0.1 K below
the sample temperature.

E. Sample alignment

gain into the control loop of the power supply (to in-
crease the effective output resistance) proved to be
an unsatisfactory solution because the magnet current
became too noisy for our measurements. It was
necessary to overdamp the oscillations by (i) remov-
ing some of the capacitance across the power-supply
output, (ii) adding resistance in series with the mag-
net, and (iii) increasing the load by placing a resistor
across the power-supply output in parallel with the
magnet and the series resistor. As a result of these
modifications, the power supply responded only slow-

ly to the control voltage, but after some 10 sec after
the ramp generator was started, the magnet current
ramped quietly at a constant rate.

During the measurements of dM/dH„ the field
was determined by measuring the voltage drop across
a 0.1-ohm standard resistor that was wired in series
with the superconducting solenoid. To calibrate the
solenoid, we compared it with a previously calibrated
solenoid by measuring the magnetoresistance of plati-
num wire. The precision of our magnetic-field mea-
surements was limited by field due to trapped flux in
the superconducting windings. This trapped field was
measured to be 5.6 Oe on the average (after raising
the field to several kOe) with an uncertainty of about
3 Oe, depending on field history. There was an addi-
tional uncertainty of about 0.2% of H, 2 (0.5 mm) in
reading the critical fields off the x-y recordings.

In order to maintain alignment of the appropriate
crystal axis with the magnetic field, the sample was
mounted on a cylindrical post that fit closely inside
the chamber. The initial orientation of the sample
was accomplished by mounting it on a goniometer
and obtaining successive x-ray Laue patterns while

adjusting the goniometer. When the desired orienta-
tion was obtained, the goniometer and the cylindrical
post were mounted in a lathe. The sample was glued
to the post and then removed from the goniometer.

While alignment could be maintained to within 0.5'
in transferring the sample to the post, the sample
chamber could not be aligned with the magnetic field
to better than about 2—3'. Since our interest was pri-
marily in the three high-symmetry orientations, this
uncertainty of 3' in the alignment was acceptable.
However, a more elaborate orientation scheme would
be required to investigate off-symmetry orientations.

F. Magnetic-field measurement and control

The magnetic field was generated by a sixth-orde'r
superconducting solenoid. A Kepco dc power supply,
which was controlled by a specially constructed ramp
generator, supplied current to the magnet, The high-
ly capacitive output impedance of the power supply,
which is typical of high-current dc supplies, gave rise
to ringing currents in the magnet. Introducing more

III. RESULTS

A. dM/dH,

A typical dM/dH, plot is shown in Fig. 3, along
with the magnetization curve that is obtained by nu-
merical integration. The data show all the qualitative
features of the idealized plot of Fig. 1. The Meissner
state, the IMS, the mixed state, and the normal state
are clearly distinguishable regions of the dM/dH,
curve. As noted above, the mixed-state region is
smooth and shows almost no hysteresis; therefore, it
is the most appropriate region to use to infer equili-
brium properties. Hysteretic effects that appear clear-
ly in the dM/dH, plot between Ht and H2 are visible
in the M(H, ) plot only near Ht

The region near H, 2 is shown in the inset with the
vertical scale expanded by a factor of 10. The transi-
tion takes place within 20 Oe (10% to 90%), allowing
H, 2 to be determined to this precision. We took H, 2

to be the midpoint of the transition. The slope of the
magnetization at H, 2 was determined by extrapolating
the measured curve to the midpoint of the transition.
As the data show, dM/dH, varies with field over the
whole mixed state, so that earlier experiments, ' 6 in
which dM/dH, at H, 2 was evaluated by fitting a
straight line to the magnetization curve near H, 2,
must have produced systematically high values of this
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FIG. 3 Experimentally measured dM/dH, and M(H, )
obtained by numerical integration.

quantity. A narrow peak in the dM/dH, data was ob-
served just below H, 2 in increasing field, and a corre-
sponding dip was observed in decreasing field. The
entire peak occurs within 10 Oe of the midpoint of
the transition. Its presence implies a field-
independent hysteresis in the mixed-state magnetiza-
tion of about 3 G.

The transition at H2 between the mixed state and
the intermediate mixed state was also about 20 Oe
wide; however, the transition began at the same field
(to within our field resolution of about 5 Oe) in both
increasing and decreasing field. Therefore, we took
the field at which the transition started to be the best
measure of H2.

The start of the transition at Hi in increasing field
defined accurately the field at which flux first entered
the sample. We take this field to be Hi for the pur-
poses of discussion of the data. Below, we show that
Hi is slightly larger than 3 H, i. The transition in de-

creasing field was too broad to serve as a useful mea-
sure of H, i.

In order to test the importance of dynamic effects
ori the transitions, we made a brief study of the
sweep-rate dependence of the dM/dH, curve. While

the sweep rate had little effect on the transition at
H, 2, the width of the transitions at H2 (in increasing
and decreasing field) and at Ht (in increasing field
only) increased with sweep rate. The peak that oc-
curred near H2 in decreasing field disappeared into
the noise as the sweep rate was decreased, suggesting
that it was entirely a dynamic effect. In contrast, as
the sweep rate was decreased, the peak that occurred
near Hi in increasing field became narrower and
higher, while the area under the peak approached a
constant value. This behavior suggests that the
Meissner state is metastable at Hi, as indeed we
found from other, more conclusive, evidence dis-
cussed below.

Although the data at 4.25 K were representative of
data obtained over a wide range of temperatures,
some changes in the dM/dH, curves were noted both
at the lowest temperatures and near T,. The peak
near H, 2 decreased in size as the temperature was
raised and was absent above 5 K. The data showed
greater hysteresis, and the transition at H2 was less
well defined below 2 K. The discontinuity in
dM/dH, at H2 decreased with increasing temperature
and became unobservably small at 8.3 K. The inter-
mediate mixed state could not be observed above 8.7
K. These last two observations could be interpreted
to mean that the first-order transition at H, i in niobi-
um becomes second order sufficiently close to T,.
On the other hand, it must be recognized that good
measurements were increasingly difficult to obtain
above 8 K. The compression of the entire magneti-
zation curve into a small field range required the use
of a slow sweep rate and a corresponding reduction in
the signal-to-noise ratio. Even at our slowest sweep
rate of 0.4 Oe/sec, dynamic broadening of the transi-
tions was a significant problem near T,.

B. Low-field results

The lower critical field H, ~ is the value of the
equilibrium field H at which the mixed state and the
Meissner state are in equilibrium. It depends both
on temperature and on sample orientation. We
determined H, i from our measurements of H2 and

M(H, ) by using the relation

H, t =H2 —
3 m M(H2)4 (18)

The field of first flux entry, Hi, proved to be an un-
reliable measure of H, i because the Meissner state
superheated to applied fields slightly in excess of
2

3 H, i.
Measured values of the lower critical field normal-

ized by the thermodynamic critical field are plotted in

Fig. 4. For comparison with our data, we have also
plotted the smoothed results reported by Finnemore,
Stromberg, and Swenson, 3 the Gor'kov-theory results
of Brandt" for ~ =0.773 (the measured value for this



94 H. R. KERCHNER, D. K. CHRISTEN, AND S. T. SEKUI.A 21

0.96

0.94

I I

~ H II [$11]
~ ~ [[ fg]0] ~ GORKOV

~H [[ foot]

the cubic harmonic of angular momentum l evaluated
in the direction of the applied magnetic field,
e =H, /H, .'p In terms of the direction cosines, n, p,
and y (with respect to the crystal directions [100],
[010], and [001]),

+o= 1 r (20a)
0.92

0.90

0.88

H cl /H
0

a Ik/
FSS

0.86 I

0.2
I

0.4 0.6 0.8 f.o

FIG. 4. Temperature dependence of the lower critical
field H, ~ normalized by the thermodynamic critical field H, .
Our data and our smoothed, spatially averaged results are
compared with the smoothed results of Ref. 3 (FSS) and
with the theoretical results of Refs. 37 (Gor'kov theory) and
44 (boson theory).

The temperature dependence of the spatially averaged
H, t/H, is plotted in Fig. 4, and the temperature
dependences of the coefficient of the cubic harmonics
are plotted in Fig. 5. The 1=6 term is small over the
whole temperature range investigated; therefore, the
values obtained should not be considered significant.
The coefficients obtained from the neutron-
diffraction measurements of H, ~ made at 4.3 K (see
Fig. 6 of II) are shown in Fig. 5 for comparison. The
theoretical anisotropy of H,'~ near T, is

," = —0.281 ' "' —0.2 1 — Ãg(H)
H,'), (~')

(21)

X4 ———„'~21(~'+P'+ y' ——', ), (20b)

~6= "' ~26[~'P'y'+ 22
(~'+t3'+&'

5 ) ip5 ] .6 8

(20c)

sample), and the boson-theory results of Mancini,
Tachiki, and Umezawa. The field 8,'~ in equilibri-
um with an isolated fluxoid, which was calculated by
Pesch and Kramer, lies almost entirely off scale
above this plot. At low temperature, the Pesch and
Kramer value of H;t /H, is nearly 1 for K =0.773 and
decreases to Brandt's result at T,. The boson-theory
result is also a calculation of H, ~, but it lies below
our data, falling to only 60% of our measured H, ~/H,
at low temperatures.

Near T„Gor'kov theory simplifies to Ginzburg-
Landau theory. 28 Anisotropy must disappear, and the
Brandt and the Pesch and Kramer'6 values of
H, t/H, must coincide with the Ginzburg-Landau
value calculated numerically for small ~ by Harden
and Arp. For K =0.773, the Ginzburg-Landau
result is H, ~/H, =0.949. This value is slightly smaller
than the extrapolated value H, t/H, = Cpp =0.966 ob-
tained. from our data [see Eq. (19) below]. Con-
versely, H, ~/H, =0.966 yields ~ =0.75 according to
Ginzburg-Landau theory.

The anisotropy in H, ~, although small, is clearly
evident in Fig. 4. %e fitted the expression

for K =0.773. Here v is the Fermi velocity, v„is
the component of the Fermi velocity projected onto
the [100] crystal direction, and ( ) indicates an
average over the Fermi surface. Identifying H, ~ with
H,'~, we obtain from our data
(v„')/(u') —0.2 =—0.037.

(to ')

F(t e) = Cpp+ $ X C t(1 t) "Xt(e) (19)
n-1 I 0,4, 6

0.2 0.4 0.6 0.8 1.0

to the experimental values of H, ~/H, . Here N =3,
t = T/T, is the reduced temperature, and3Ct( e ) is

FIG. 5. Temperature dependences of the cubic-harmonic
coefficients for H, j.
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In Fig. 6 we have plotted —,H1, that is, the field of
first flux entry scaled up to compare with H, 1. The
curves corresponding to the least-squares fit of
H, t/H, for each of the three orientations are shown
for comparison. Although the effects are almost ob-
scured by the scatter in these data, two qualitative
observations may be made. First, —,H1 is systemati-

cally larger than H, 1, indicating a superheating of the
Meissner state. Second, —,H1 is anisotropic with a

different anisotropy than H, 1. The superheating is
most pronounced for H ll [ill], while there is no
superheating evident for H II [110]. Since one ex-
pects the attractive fluxoid —fluxoid interaction to be
strongly anisotropic on theoretical grounds, ' " that
effect (i.e., the anisotropy of H;~ —H, ~) may account
for this observation. One also expects a surface bar-
rier to be anisotropic because the interaction between
a fluxoid and the surface currents depends on the
(anisotropic) penetration depth. " However, it would
seem unlikely that either effect ~ould go to zero in
one orientation.

Surface roughness reduces the superheating field
and may be distributed unevenly in such a way as to
produce a spurious anisotropy of the superheating
field. For this reason, it is unlikely that H1
represents an ideal superheating field. The quantity

—,H1 —H, 1 is smaller than H;1 —H, 1 calculated on the

basis of Gor'kov theory, and it is strongly anisotropic.
The equilibrium flux density Bo at H, 1 was deter-

mined from our measurements of H2 and M(H2) by
using the relation

B,=H, +—', ~m(H, ) . (22)

The anisotropy in Bo is smaller than the scatter in
our data and could not be determined from the mag-
netization measurements. Therefore, Bo/H, is plot-
ted in Fig. 7 for one orientation only. The anisotropy
in Bo is discussed in II, where the inherently more
accurate neutron-diffraction results are reported. For
comparison, we have plotted the neutron-diffraction
measurements of BD for the same orientation, the
measurements of Kumpf, ' Brandt's calculated
Bo/H„"and the boson-theory result of Mancini
et al. 44 %hile there are small differences in mea-
surements of Bo from sample to sample, the mea-
surements lie well below the Gor'kov-theory result
and well above the boson-theory result. As in the
plot of H, ~/H„we assumed ~ =0.773 in the Gor'kov
theory and ~~ =0.75 in the boson theory.

The field derivative of the magnetization at H2 can
be read directly from the x-y recordings. %e have
converted those measurements to values of
(dH/dB) ~H, , which are plotted in Fig. 8. Again, the

data for only one orientation are plotted because no
anisotropy of this quantity could be observed. Com-
bined with the measurements of Bo and H, 1, the
measurement of (dH/dB) ~H, provides information

c1
about the degree of nonlinearity in the thermo-
dynamic function f(B) at low B Theor.etically, both
Bo/H, and (dH/dB) ~H, should approach zero as

nonlocal electrodynamic effects become unimportant
for Tnear T,. Near T„(dH/dB) ~0, appears to drop

to zero while Bo/H, is still finite, indicating that

f(8) is nearly linear in B over the finite range Bo.
However, the uncertainty in the measurements gets
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FIG. 7. Temperature dependence of the equilibrium flux

density Bo at H, 1 normalized by the thermodynamic critical

field H, for H II [110]. Our data (points) are compared
with the smoothed results of Ref. 8 (Kumpf) and with the
theoretical results of Refs. 37 (Gor'kov theory) and 44 (bo-
son theory).
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The data obtained at the upper critical field 0,2 are
presented in Fig. 9 as values of the parameters K~ and
K2, which are defined by

at = H, 2/J2H, (23)

K2 —'

2

&/2

1 —(3P)-'+ 4~P-„-,(24)
g H2

4~ Ir, = [p(2~2 —rt) + —,
'

1 ',
dH,

r

(25)

where we assumed P =1.1596, as for a hexagonal
fluxoid lattice. The experimental values of K~ for
each orientation were fitted to a quadratic polynomial
in (1 —T/T, ) The value of .Kt averaged over all

crystal orientations was determined from the three
polynomials, and the result is shown as the solid
curve labeled at/K. The experimental values of K2

were fitted to an expression of the form given by Eq.
(19) with N =4. The solid curve labeled a2/~ is the
spatially averaged value of Kq/K [i.e., the coefficient
of Hp(e)].

In the absence of a realistic microscopic theory of
the mixed state below H, 2, Eq. (24) must be con-
strued as an arbitrary experimental definition. Equa-
tion (24) coincides with the interpretation of earlier
experiments, and K2 as defined by Eq. (24) ap-
proaches K as T T,. In Gor'kov theory

FIG. 9. Temperature dependences of the generalized
Ginzburg-Landau parameters K~ and K2. Our data and our
smoothed, spatially averaged results are compared with the
smoothed results of Ref. 3 (FSS), with the Gor'kov-theory
results of Ref. 32, with the boson-theory results of Ref. 44,
and with the zero-temperature calculations of Refs. 55 and
56, which include real-metal effects.

where q is a temperature-dependent function that de-
crease monotonically with increasing temperature to
ri =1 at T„andp is a fluxoid-lattice sum that would
increase from the value p =1.1596 if the lattice were
distorted from hexagonal symmetry. Since Gor'kov
theory is isotropic, it cannot account for an anisotro-
pic f(B), for misalignment between M and H, (in a
sphere), or for the nonhexagonal fluxoid lattices that
we observe. '

Our result for K~ is indistinguishable from the
smoothed results of Finnemore, Stromberg, and
Swenson (FSS).3 However, they obtain slightly
higher values of K2 at low temperatures. From the
extrapolations to T, of the least-squares fits to these
data, we obtain K =0.773 +0.003. For ideally pure
niobium we find Kp=0.75 by using Goodman's ap-
proximate relation, K=Kp+7.5 X10 Jyp, the elec-
tronic specific-heat coefficient y =7.2 & 10
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II.
2 = J2$0ico/4r/H,

Our measurements yield A. =210 A(l —T/T, ) ' '
near T,. This result can be compared with the direct

(26)

erg/cm K,"and our measurement of the resistivity

p =32 nAcm. This value is 4% lower than the value
of K measured by Finnemore, Stromberg, and Swen-
son3 in spite of the high purity they report. Our
value of Ko is also 8'/o lower than reported by French
and 7% higher than reported by Alekseyevskiy
et al. " The reason for these discrepancies is unclear.
They may arise from (i) difficulty with extrapolating
lower-temperature data to T„(ii)difficulty with the
identification of H, 2 in inhomogeneous samples or
samples with strong surface-sheath currents, (iii) un-

certainty in the measurements of H, in less reversible
samples, or (iv) difficulty with extrapolating resistivi-

ty measurements on a high-purity sample to zero
field and zero temperature.

It is well known that KI/~ and K2/~ calculated on
the basis of Gor'kov theory fall well below the experi-
mental results for niobium. We have presented only
the simplest possible comparison with Gor'kov theory
in Fig. 9, Two details of the theory have been
neglected; they both make the agreement slightly
worse. First, the electron scattering by impurities
reduces both ~I/K and x2/~ from the clean-limit
results, which are shown. Second, the correct
theoretical expression, EII. (25), predicts a larger
value of (dM/dH, ) iH than one obtains by approxi-

mating q = 1 as we did when deriving K2 from the
data. Since the theoretical value of (dM/dH, ) iH, is

already too large, our approximation artificially im-

proves the agreement between Gor'kov theory and
experiment.

The boson-theory result for KI/~ agrees much
more closely with the experimental result over the
whole temperature range, but that agreement is due
to the fact that two parameters, 6 = H, 2(0)/H, (0)
and K~ could be adjusted instead of just one as in
Gor'kov theory. The boson-theory curve shows more
structure than the experimental results; for example,
the theoretical curve drops more sharply near T,.
The reason for this discrepancy is unclear at the
present time.

Since the anisotropy in bulk superconducting prop-
erties of a cubic crystal is a nonlocal phenomenon,
the anisotropy must vanish near T,. No anisotropy
of H, 2 was observable above 9 K. We found
T, (dH, 2/dT) i r =4326 Oe by fitting a straight line to

the data above 9 K. The best-fit line intersected the
H =0 axis with 0.001 K of T, =9.297 K, which was
determined by observing the temperature at which
the last trace of superconductivity disappeared,
Ginzburg-Landau theory may be used to calculate the
limiting temperature dependence of the supercon-
ducting penetration depth by using the relation

measurement by Varmazis and Strongin'4 of ) =223
A(1 —T/T, ) ' '.

Our measurements of the relative anisotropy of H, 2

can be compared directly with previous mea."~ire-

ments. We derived the parameters H, 2, a4, «.d a6 in
the formula

aa, 2=0,2
—H„

= Hcp(a4'IC4+ aPC6) (27)

no
O
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FIG. 10. Temperature dependences of the cubic-harmonic
coefficients for H, 2. Our data are compared with the data of
%illiamson (Ref. 16) and Seidl et al. (Ref. 18), and with
the theoretical curve of Teichler, which was fit to the data of
Seidl et ul. (Ref. 18).

from individual measurements of H, 2 at the same
temperature for the three high-symmetry crystal
orientations. Our results for a4 and a6 are compared
with the values obtained from two previous stud-
ies' ' in Fig. 10. Although our method of deter-
mining a4 and a6 is much cruder than was used in
the previous studies, the results compare well. It fol-
lows that the values of microscopic anisotropy param-
eters, which were derived from the data of Seidl
et al. "are consistent with our measurements.

We have plotted in Fig. 11 the parameters describ-
ing the relative anisotropy of ~2. It appears that not
only K2 but also AKq/K2 diverges at low temperature.
(Actually the theoretical divergence of ~2 is removed
by a finite electron mean free path. Presumably, we
would see Kq and AK2/K2 level off at sufficiently low
temperature. ) Comparing Figs. 10 and 11, it is clear
that AK2/~2 ) b ~I/KI over the whole temperature
range and that the ratio of the two relative anisotro-
pies varies with temperature. Although our values of
K2 are larger than those reported by Williams and
Court and Gough' for single crystals of niobium, the
relative anisotropy agrees well with both previous
measurements. Holzhauser found different results
for the relative anisotropy of K2 by deriving it from
his torque measurements. " However, the power-
series expansion of the torque in Ref. 23 is incom-
plete. It includes the terms of order (1 H/H, 2)'—
that depend on the anisotropy of K2 but not the other
terms of the same order, that depend on the aniso-
tropy of H,2.

I

4 + 66+6+
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results by an amount proportional to (v4)/(v2) 2 —1.
Near T„

H„= ', (T, T—)
d0, 2

2 2

r r

T 4
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FIG. 11. Temperature dependences of the cubic-harmonic

coefficients for K2.

The theoretical relative anisotropy of ~2 near T, is
r 2 2

1 ——X,(H)
(v2) 2 T,

(28)

for K =0.773. Here ~2 is the parameter defined by
Eq. (24) for H in one of the high-symmetry crystal
directions. Equation (28) includes anisotropy in both
K2 and q of Ref. 42. From our data we find
((v4) —0.2(v4) )/(v2)2= —0.040. This value is rea-
sonably consistent with the value —0.044 given in
Ref. 42, with the result ((v4)/(v4) —0.2) = —0.037
deduced from our H, ~ measurements and the com-
parable results

r

(2+2—,20~( ))=—0.029

deduced by Seidl et al„"and —0.025 calculated by
Butler by using band-theory results for v. These
three quantities differ by terms of order
(v4)/(v2) 2 —1, which is small in the limit of small
anisotropy in the sense of Teichler. '9

The variation in Fermi velocity over the Fermi sur-
face enhances H, 2 and ~2 over the Gor'kov-theory

/M ~1-I/ = Hc2 sin 6

49rp(2K2' —1) H, 2

= 7830 1 — erg/cm'
H, 2

These results appear to be larger than those reported

by Holzhiuser and by Schneider et al. The sam-

ples that have been studied appear to be less reversi-

ble than our sample, making the measurement of the
equilibrium torque difficult and possible producing

the observed discrepancy. The discrepancy may also

be due to the fact that the torque depends nonlinear-

ly on field even close to H, 2. A similar comparison

can be made between the anisotropy of H, ~ and the

torque in the intermediate mixed state. Those results

will be discussed in II.

for K=0.773." Again, K2 is defined by Eq. (24).
From our data for H, 2, we find (v ) l(v ) =1.30,
and frOm Our data fOr K2 We find (v")/(v2) 2 = 1.46.
Butler" calculates (v ) l (v')' = 1.58. The agreement
among these results is less than satisfactory; the
difference may arise from neglecting terms of higher
order in (1 —T/T, ) in our data analysis, or it may ar-

ise from neglecting other real-metal effects in the
theory. At T =0, the enhancement of H, 2 has been
calculated by Mattheiss 6 and recently by Butler by

using band-theory results for v and the formula
derived by Hohenberg and %erthamer. 3 The two
theoretical results are indicated in Fig. 9. They are
both identical to our extrapolation of the data to
T =0.

The limiting misalignment angle between the mag-

netization and the field and the limiting field depen-

dence of the torque on a sample at H, 2 are related to
the anisotropy of H, 2 by Eq. (17). We can make a

direct comparison between the measurements of H, 2

and the torque measurements. Using the 4.2-K
values, a4= —0.133 and a6=0.0024 from Fig. 10, we

find that the maximum misalignment angle ~ =5.1'
occurs for A at an angle of 30' from the [001] direc-

tion in the (110) plane (and equivalent directions).
The torque per unit volume is
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IV. SUMMARY AND CONCLUSIONS

The equilibrium magnetic properties of supercon-
ducting niobium are now demonstrably well known.
With only a few exceptions, the bulk-magnetization
measurements reported here are consistent with ear-
lier measurements where they overlap. Moreover,
the bulk-magnetization measurements are consistent
with the microscopic measurements reported in II. In
contrast, the theoretical understanding of these mag-
netic properties is incomplete. The only exceptions
are the understanding of H, and H, 2. We defer dis-
cussion of realistic microscopic theories of H, and
H, 2 to a forthcoming publication. Near T, the aniso-
tropy of the Fermi surface has been taken into ac-
count in calculations of H, i and K2 as well as in the
more nearly complete calculations of H, 2. The single
parameter (u4)/(v4) —0.2 = —0.04 describes the rela-
tive anisotropy of H, i, H, 2, and ~2 near T, to within
the limits of precision of the data. Two qualifications
to this conclusion are in order. First, Teichler's fitted
temperature dependence of AH, 2/H, 2 is nonlinear in

(1 —T/T, ) even close to T,; therefore, the limiting
theoretical temperature dependence of the relative
anisotropy of H, 2 and perhaps of other quantities
may not be closely related to the experimental mea-
surements. Second, the Fermi-surface averages
entering the theoretical anisotropy of H, i and of H, 2

and ~2 differ by the factor (v )/(v')', which we esti-
mate to be about 1.5.

Near H, i only isotropic, weak-coupling theory is
available to compare with our data over the entire
temperature range. Calculations based on Gor'kov
theory give almost the observed value of H, i, but
they give values of 80 that are too large by nearly a
factor of 2. Although the boson-theory results for
H, i are worse than Gor'kov theory, at least at low

temperatures, the boson-theory results for 80 are
better. In making these comparisons, we have used
the numerical results of Mancini et al. 44 Those
results are obtained after adjusting the boson-theory
parameters to obtain the begt agreement with experi-
ment.

Niobium appears to obey the Ginzburg-Landau-
Abrikosov theory at T,. The extrapolation to T, of
+@2/H and (dM/dH) ~~ extrapolates to the values

associated with K =0.773 to within 0.5%. The extra-
polated value of H, t/H, differs by about 2% from the
theoretical value for K =0.773. This small discrepan-
cy could be removed, for example, by assuming that
the highest-temperature measurements of 8, are sys-
tematically about 0.5% too low. Although we could
not observe a finite 80 near T„previous measure-
ments' have indicated that Bo/H, 2 does not go to
zero at T, as required by Ginzburg-Landau theory.
Brandt has suggested that Bp/H 2 in fact goes to zero
but only very close to T,.' We could see no evi-
dence for type-I superconductivity near T, as report-
ed by Alekseyevskiy et al."

iVote added in proof. We have recently become
aware that K. Takanaka and T. Nagashima indepen-
dently derived Eq. (17). Their work will appear in

the J. Phys. Soc. Jpn.
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APPENDIX: NUMERICAL-INTEGRATION METHOD

After measuring and storing values of dM/dH, and
determining the fields H2 and H, 2, the data were in-

tegrated twice between H2 and H, 2 to obtain M(H, )
AH 2

and M(H,') dH,'. Each datum was first correct-s 8
ed for the small component of measured voltage that
was due to an imbalance in the pickup coils by sub-
tracting the average voltage measured above H, 2.

The first integration was performed by using an adap-
tation of the program AUINT. ' This program incor-
porates a simple data-averaging procedure into the in-

tegration. The magnetization is given by

M(H, ) =
l M'(H, ') dH,

'

2 W

= g (y+I) ' g —,(a, , +a, , t)(H;,+' Hg, +'t )+2a, (Hgt+—' H;+') +2~a(Hq+—' Hg~'), (Al)—
where H, i & H, and H, ~ & H, 2, and the polynomial

P,(H, ) = +aoHa, t+a2;H, (A2)

passes through the three data, M'(H, ;~t), M'(H, ;), and M'(H, ,; t). The second integration was performed by
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using a Hermitian formula of first order,

pH 2
N

J „M(H.) dH. = —, X (H.,; —H., ;-&) [M(H, ,;) +~(H, , ; &)+ —,(0„—0„,) [M'(H. ,; &)
—M'(H. ,;))I . (A3)
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