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The electronic structures of a-Si and a-Ge have been investigated by introducing the molecular-liquid
model (MLM). The theoretical structure factors have been expressed in terms of three simple
parameters—nearest-neighbor distance, packing density, and coordination number. For the electronic density
of states (EDS), nonlocal energy-dependent pseudopotentials have been considered to second order in
perturbation theory. When compared with the experimental structure factors, the MLM structure factors
agree well for the momentum transfer in the region of 0 <k <4 A, but there is some departure for higher
values of k. The calculated energy values exhibit a number of new features in the E, vs k curves that were
not noticed previously with local-pseudopotential and on-Fermi-surface approximation. The EDS, however,
show remarkably good agreement with recent theoretical and experimental results.

I. INTRODUCTION

In this paper we will report our investigation on
the electronic density of states (EDS) of amorphous
silicon (2-Si) and amorphous germanium (a-Ge) by
introducing two new concepts: (i) a molecular-
liquid model!”® (MLM) to derive the structure of
a-Si and a-Ge; and (ii) a nonlocal energy-dependent
pseudopotential’™® to calculate the EDS. Previous-
ly we have published’ the results of EDS for a-Si
and a-Ge, where experimentally obtained spheric-
ally symmetric interference functions (structure
factors) were used, along with the local pseudo-
potential under on-Fermi-surface (OFS) approxi-
mation. The results of that study7 were semiquan-
titative and, as a consequence, there was a notice-
able difference between our results and other
available theoretical results. The present investi-
gation is an attempt, as will be shown later in this
paper, to treat the problem more comprehensively
and appropriately with an aim to find a greater
quantitative agreement with other theories and ex-
periments which have recently appeared in the
literature.

II. BRIEF REVIEW OF PROGRESS IN THE FIELD

We shall briefly review the highlights of the pro-
gress already made in this direction. There have
been a large number of publications® on amorphous
semiconductors, but we shall restrict ourselves
only to those which are specifically relevant to the
present work.

A. Electronic density-of-states techniques

For the discussion of EDS we may conveniently
select four major techniques which seemingly have
received the greatest popularity and, in most part,
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have enjoyed relative success. These are the line-
ar-combination-of-atomic-orbitals (LCAQ) ap-
proach, tight-binding approach, Green’s.-function
approach, and the perturbation approach.

The LCAO method, also known as the extended
Huckel theory, was started by Bloch, but a thor-
ough discussion of this method is given by Slater
and Koster.® This method has been adopted by
many workers!® 12 to obtain EDS in amorphous
semiconductors, and some reasonably good results
have been obtained. Very recently another version
of this technique, known as the linear combination
of bond orbitals, has been suggested' for amor-
phous semiconductors.

Weaire and his co-workers!? developed a simple
tight-binding approach for calculating the EDS of
a-Si and a-Ge. They assumed that a topologically
disordered Hamiltonian could be used in this type
of calculation. An array of identical potentials
which are not periodically positioned is said to he
positionally disordered. Weaire and Thorpe14
found that the electronic properties of solids are
dominated by the short-range order (SRO). It is
only the theory that is dominated by long-range
order (LRO) because of the convenience of the
Bloch theorem. This theory is not compatible with
the existence of localized states throughout the
gap.

Vanderbauwhede and Phariseau!® have used the
tight-binding approach to calculate EDS in another
fashion. They introduced the concept of the para-
crystal and the complex paracrystal. The well-
known radial distribution function (RDF¥) may then
be replaced by a more appropriate distance statis-
tic. This allows the details of the SRO and angular
correlations to be introduced into the calculation.

Henderson and Ortenburger!® have used a tight-
binding model for the electronic structure of amor-
phous solids. Although they considered polytypes
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of Si and Ge with only 8 and 12 atoms in a unit cell
(the Si-III and Ge-III structures, respectively),

the results were in fair agreement with the experi-
mental values.!”!® The Ge-III structure was found
to be a plausible approximation to the structure of
a-Ge. It accounts for the main features of the
RDF, EDS, and the optical properties of a-Ge,
aithough not much can be said for the quantitative
results of these calculations.

The Green’s-function approach has been worked
out for amorphous solids by Kramer.'? Subsequent-
ly he!? has calculated the EDS in a-Si and a-Ge
using a generalized pseudopotential formalism
based on the Green’s-function technique. This
technique also gives results which are qualitative-
ly, or at best semiquantitatively, in agreement
with the experiment, but detailed fitting of the ex~
perimental data was not attempted. Gubanov? also
used the Green’s-function approach to calculate the
electron density in the band tail of amorphous
semiconductors. His calculations have been cri-
ticized. For instance, Spicer, Donovan, and
Fisher'® have considered the evidence for band
tails and have determined that the thin films pre~
pared in the manner described in their work, i.e.,
the sample density being 98% of the crystalline
value, do not have states in the gap; no evidence
of band tailing was found. The existence of band
tails has now been associated with voids and im-
purities in the sample rather than with the posi-
tional disorder. In general, the Green’s-function
technique leads to a smaller secular equation than
other calculational methods. However, the matrix
elements which must be evaluated are generally
more complicated, each structure factor involving
a long summation over exponential functions,
spherical harmonics, and integrals which must be
evaluated numerically. Calculations done by the
Green’s-function method generally require as much
computer time as those done by the tight-binding
method.

One of the modifications of the Green’s-function
method is the cluster approach suggested by
Keller.?! Keller® has shown that one could include
the cluster of different size, shape, and geometry
to calculate EDS of amorphous semiconductors,
especially a-Si and a-Ge. Ziman?® has worked out
the Green’s-function perturbation theory for poly-
crystalline and amorphous solids with SRO neces-
sary to explain the observed band gaps. He?
shows that by adjusting the orientations of SRO and
assuming a cluster of as large as five atoms, but
without any LRO, one could alternatively interpret
the results of EDS. Cohen and Bergstresser??
have studied the band properties of Si and Ge using
pseudopotentials. This has been extended by
Joannopoulos and Cohen?® to investigate EDS. Many

OPW treatment of the properties of Si with pseudo-
potential theory has met with reasonable success.?

B. Modeling of structure of amorphous semiconductors

Many attempts® ™% have been made at modeling
the structure of amorphous semiconductors. All
these models have one thing in common—they all
make use of the information in the coordinate
space, such as bond lengths, bond angles, coordin-
ation numbers, ring statistics, dihedral angle
distributions, and deviations from the regular
tetrahedral network. However, our model, as will
be explained in Sec. I, will involve information
from the reciprocal space. Let us first briefly
describe some of the important developments in
model building.

1 Ekpanded-ct:vstal model

Herman and Van Dyke33 calculated EDS under the
assumption that the amorphous material would
be nearly 30% less dense than the crystalline
phase. This assumption was based on the experi-
mental results of Clark,® who used samples pre-
pared by ordinary evaporation techniques not under
the stringent conditions mentioned previously.
Herman and Van Dyke®? calculated the crystalline
density of states with a larger atomic spacing to
allow for the lower density. This calculation led
to semimetal conduction and was obviously not
satisfactory. The expanded-crystal model, as
mentioned above, was abandoned; it is now almost
universally accepted8 that the structure of a-Si
and a-Ge is a random tetrahedral network,

2. Microcrystal model

In this model?* %6 one approaches the amorphous
structure by taking a collection of atoms of about
10-20 A in size with random orientations of these
microcrystals. This consideration, however,
would imply many more “dangling bonds” than
would be necessary to describe the actual amor-
phous state. Furthermore, a particular type of
random crystal model of a-Si has also been ruled
out owing to substantial experimental disagree-
ments.

3. Perturbed-crystal model

One of the ways this model*’ can be tested is to
try a set of calculations on the computer, In this
approach the atoms are arranged alternately on
three crystalline polymorphs sites of Si with posi-
tions varied by a Monte Carlo procedure; the final
arrangement, which gives the closest agreement
with the expected RDF and the structure factor, is
retained. In a similar spirit some calculations of
the states of a-Si and a-Ge have been done by
Joannopoulos and Cohen?® and others?®® by introduc-



21 ELECTRONIC DENSITY OF STATES OF AMORPHOUS Si AND... 785

ing larger and larger atomic cells with various
relative positions of the tetrahedrally bonded
atoms attached to each atomic site. In this ap-
proach the unchanged features of the EDS are in-
terpreted as arising from the tetrahedral coordin-
ation, i.e., SRO rather than LRO. Kramer!® and
Unger"’o have considered crystalline lattices with
randomly disordered atoms positioned according
to Gaussian distributions about their mean crystal-
line sites.

4. Continuous-random-network model

The structure of amorphous solids in the contin-
uous-random-network model (CRM)%':3%:35 jg con-
structed from an infinite nonperiodic three-di-
mensional array of atoms. The SRO is then incor-
porated by chemical bonding requirements, i.e.,
the atoms must be tetrahedrally bonded, appropri-
ate bond angles and bond lengths must be retained,
etc. In this type of network each atom is linked to
its four nearest neighbors. The central atom and
its four nearest neighbors form a distorted tetra-
hedron. The tetrahedral bonds are randomly ori-
ented with respect to each other. The orientations
range from the extreme eclipsed to the staggered
configuration. Under these conditions the first
two peaks of the RDF of the amorphous solid are
retained, while the third peak is missing. This is
in agreement with experimental results. This mod-
el is by far the best model, since it produces
most of the essential features of the actual amor-
phous structure. However, this model does not
yield an analytical expression for the structure in
a closed or iterative form, which should be use-
ful, sometimes even required, for many other cal-
culations, '

III. MOLECULAR-LIQUID-MODEL STRUCTURE FACTORS

One of the aims of our present approach is to
suggest another form for the structure, one that
does not depend on a finite-size system or on any
underlying LRO existing directly or in the zero
disorder limit. The model should incorporate,
however, most or all of the insights provided by
the CRM. The structure factor I(q) obtained from
experimental measurements®® 38 unquestionably
indicates that I(g) is intermediate between the
crystalline form (sharp d-function-like peaks at
reciprocal lattice points) and the liquid form (si-
milar to the Percus-Yevick®® expression) of the
same density. This evidence suggests a paramet-
rization of the structure in terms of the MLM of
the same density with the molecules of the system
consisting of clusters of tetrahedrally bonded
atoms. Interpreted in coordinate space, the pro-
posed model will have the characteristics shown
in Fig. 1. The parameters of the distorted tetra-

hedral unit are to be selected in concurrence with
the chemical bonding requirement of the solid.
The size of the SRO sphere will indicate the
amount of amorphicity in the otherwise totally dis-
ordered solid.

We consider the atomic structure factor of a
system consisting of N atoms,’

Ig) =1 3 (¢"FF4, (3.1)
N3

where ;,-j represents the atomic positions and

( ) denotes a statistical averaging over all such
positions for the given interaction between the
atoms. We treat the atoms as being bound in clus-
ters of Z +1 atoms, one reference atom being
surrounded by Z atoms. We now denote the molec-
ular positions by 1=1,2,...,N/(Z +1) and atomic
ones by a =0,1,2,...,Z. Thus we may write

;Ia:Rl+Eta ’ (3.2)
where ﬁ, is the position of the /th molecule, and
Do is that of the ath atom, with respect to the
reference atom which is positioned at « =0. From
Eq. (3.1) we obtain, therefore,

1 N/(Z+1) . zZ
I(q):E Z <€iq.R122ia'E°">. (3,3)
a=0

1=1

e(r

2,35
\
&

AMORPHOUS UNIT
(b)

r

/ MOLECULAR-LIQUID MODEL

LIQUID~LIKE SOLID

Z s SRO-SPHERE

FIG. 1. Proposed model for amorphous semiconduc-
tors. (a) Distorted tetrahedral unit, (b) molecular unit,
(c) amorphous solid.
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One has to give the random variables R, and p,,
the weighting effect appropriate to the CRM that is
presently computed32 numerically. Since the exact
weighting functions are not known analytically,
some physically relevant correlations must be in-
troduced to achieve our goal. These points have
been discussed elsewhere.!’

We have purposely split the correlations in the
amorphous structure into two parts: (i) a strong
SRO correlation within a cluster or molecule with
the positions or orientations of atoms specified
within a narrow range as in a solid; and (ii) a weak
LRO analogous to a liquidlike correlation between
the molecules themselves. The essential advantage
is that the two correlations are being separately
treated.

With a set of realistic approximations it is now
possible to obtain an expression for the structure
factor as a product of two terms:

Iq)=5.(9)S+(q) ,

where I(«)~1, true for amorphous solid, liquid,
and gas. The respective structure factors may be

(3.4)
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Si(q) =1 +(—13——,;u1 +2m)4(Cy +31C,)

-6n(L+3m)° Cy], (3.6)
where
x=2qR,,
c0=<§g-§)/x, (3.7)
Cy =[Zs —%+<%-— )c]/x3 ) (3.8)
and
C,=(4s —xc)/x® -12C/x*.. (3.9)

In the above equations 0, is the variable radial
disorder parameter so that c,,/a is usually very
small, j, is the spherical Bessel function, s =sinx,
and ¢ =cosx. The packing density functmn 7 is

obtained from
n=1py(2R)3/6(Z + 1), (3.10)

where p, is the atomic density appropriate to the

completely written??® 4 temperature and semiconductor. In the present
investigation, 0<7<0.63 and.the radius of the
Sr(q)=1+Zjy(qa) molecular (cluster) sphere R, are treated as a
(qa) 2 free parameter. Inthe CRM the requirement that
+Z <] (qa) ]—L—-> (qa> (3.5) the network be continuous really cuts down the
9a » 4 available space for relative rotation and displace-
and ment of the clusters. We expect, therefore, that
3.00 : : . : . . . 3.00 . . T ’
240 () J 2w .
1.80[ J 1l -
] - ]
1.20 [ J 1a20f .
g 00| J o0 3
@ 1 ]
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(7)) (c) ] (d) p
= 2m0[ J 2w .
g 1 ]
™ Lo ] ]
1.20 ] ]
0.60 i
0 2.0 4.0 6.0 8.0 0 2.0 4.0 6.0 8.0
-1
a(A )
FIG. 2, The plots of S;(g), Sp(g), and I(g) for a~Si are shown in (a), (b), and (c) for packing densities 7=0.23, 0.50,

and 0. 63, respectively. : Sp(g), A: S;(g), and 0: I(g).
relation, is shown along with experimental (Ref. 36) I(g) for a-Si. x:

(d) The plot of MLM I(g), after correction for angular cor-
MLM I(g) and O:- experimental I(g).
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FIG. 3. The plots of S;(g), Srlg), and I(g) for a~Ge are shown in (a), (b), and (c) for packing densities n=0.23, 0.50,
and 0.63, respectively. [J: Splg), A: S;(g), and O: I(g). (d) The plot of MLM I{g), after correction for angular cor-
relation, is shown along with experimental (Ref. 37) I(g) for a-Ge. x: MLM I(g) and ]: experimental I(g).

the effect of this reduction of available space will
be seen in the MLM approach by a molecular radi-
us larger than that of a sphere enclosing all the
atoms.,

In Figs. 2 and 3 we show the plots of S;(q), Sz(q),
and I(q) for n=0.23, 0.50, and 0.63, with ¢ =2.35
A. These are obtained with a set of physical pa-
rameters shown in Table I. The plots correspond-
ing to =0.50 seem to be more realistic when
compared with direct experimental data. In Figs.
2(d) and 3(d) are shown the MLM I(¢), along with
the corresponding experimental I(g). It should be
noted, however, that these MLM I(q) have been
corrected for angular correlations as mentioned
for free molecular rotations. We have done so
somewhat semiquantitatively by introducing a “shift
parameter.” This means that the computed plots
of Figs. 2(c) and 3(c) are shifted to the right by Agq
=1.0 A™! to match with the first peak maximum of
the experimental I(q). The net effect of the shift
parameter is to incorporate empirically the nu-
merical difference that is introduced in considera-
tion of the free rotation of the clusters with respect
to one another. At present no exact calculation is
available to remedy this situation any more quan-
titatively than we have suggested here.

The plots with packing density 7=0.50 show the
best agreement with experiments. The intermo-
lecular structure factor S;(g) varies rather rapidly
with the increase of g. In the region of small ¢,

Sz(q) strongly dominates over Sy (¢). The first
minimum in I(g) is due primarily to the effect of
the valley of S;(g) which overcomes the first peak
in S;(¢). The small deviations observed between
the MLM I(q) and experimental*®®? J(¢) beyond the
second peak maximum could arise from the two
different viewpoints with regard to normalization
procedure used in the experimental I(q). It is
generally assumed in the experimental work that
the diffracted intensity of x-ray or electron ex-
periment from a-Si and a-Ge at large values of

g (>5 A™!) is due primarily to the total independent
scattering, i.e., equal to the square of the atomic
structure factor {)%. This is what is done for

TABLE I. Physical parameters for Si and Ge.

Parameters Si Ge
Density 2.33 g/ecm®  5.36 g/cm®
Melting temperature 1420°C 958.5°C
Atomic weight 28.09 72.59
Atomic number 14 32

Coordination number 4 4

Atomic configuration 3s%3p? 4s24p?
Lattice parameter 5.430 .& 5.658 A
Nearest-neighbor distance 2.35 A 2.45 A
Radius of atom 1,17 A 1.22 A
Band energy gap at 23°C 1.11 ev 0.78 eV
Fermi energy 12.51 eV 11.56 eV
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atomic solids; but for molecular solids, as we

are suggesting for a-Si and a-Ge, this factor
should be 5(f)*. Probably in the reported experi-
mental works®®3" this difference was not realized.
It is quite likely that more experimental measure-
ments with appropriate normalization constants
will be the source of the final answer. Neverthe-
less, what is demonstrated here is that I(g) in the
physically relevant region is caused by a coupling
between the intermolecular and intramolecular
correlations. The first-order approximations con-
sidered here give results of I{g) that are physical-
ly meaningful and acceptable. One could, however,
improve the agreement by using the recent devel-
opments in the theory of molecular liquids.

IV. BAND ENERGIES OF AMORPHOUS SOLIDS

In the spirit of the Animalu-Heine! model poten-
tial we may consider the ionic potential as a sum
of local and nonlocal parts,

w(r) =wr(r) +wx(r) , (4.1)

where the matrix elements of the potential may be
correspondingly expressed6 as

wE ,q,K,K)=w,(E,q,K,K") +wy(E,q,K,K).
(4.2)

In previous works*! the nonlocal part was not con-
sidered significant and has been neglected for the

0'16 T I T l T [ T —[ T
_WN 4
0.08 - _
3 i 7
T;ﬁ 0 ¥ \ ———
-0.08 _
Wy |
-0.16 I | L | 1 | L | 1
0. 1.0 2.0 3.0 4.0 5.0
k/2kF

FIG. 4. The plots of the model potential matrix ele-
ments for Si at the Fermi energy.

sake of mathematical simplicity. We shall, of
course, have to replace the bare ion matrix ele-
ment w;(E ,q,K,K’) by the screened matrix element
wi(E ,q,K,K'). We show in Figs. 4 and 5 the indi-
vidual components wy(E,q,K,K"), wi(E,q,k,k),
and nonlocal correction term wi(E ,q,K,k’) at the
Fermi energy. The contrasting sign of the function
wi{E ,q,K,K’) for a-Si and a-Ge should be noted,
however, especially in the region of low momen-
tum. This occurs because of the different weight-
ing effect caused by the spectroscopic parameters
A,, which are not identical for the two solids.

In accordance with second-order perturbation
theory, we may write the electron energy as

E(R)=E (k) +E (k) +E (k) , (4.3)
where

Eq(k)=(1"/2m)k? (4.4)

Ey(k)=E{(k) +E{(R) , (4.5)
and

E (k) =E%(R)+EL¥(R) +EY(F). (4.6)

In these equations the superscripts L and N de-
note, respectively, the contributions from the lo-
cal and nonlocal terms of the models. The vari-
ous energy terms can be written in terms of the
appropriate matrix elements w$ of the screened
model potentials. While the details of these cal-

0.16 —,

HONLOCAL CORRECTIONS (RYDEERZ)

~0.08 [ -

-0.16 1 ] L | L ] ] ] L
0. 1.0 2.0 3.0 4.0 5.0

k/2kF

FIG. 5. The plots of the model potential matrix ele-
ments for Ge at the Fermi energy.
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culations can be found elsewhere,42 we summarize

the essential points for the sake of self-consisten-
cy and completeness. Thus,

-

Ef(k)=w3(E,0,K,K),
E{(k)=w3(E,0,k,k),

(4.7)
(4.8)

and
ij Q
E3' (k) =‘(‘2—779;§Cu

’I(q)w;?(E 24 LE} K’ Jwi(E yq,Ey l2,)
x f dq q%+2kq cosbip » (4.9)

where c¢;; =1 for i=j, but ¢;; =2 for ¢#j. The ex~
panded forms of these equations have been ob-
tained*? by utilizing the model potential parame-
ters, where provision has been made for the en-
ergy dependence.

The computed plots of all the energy terms for

a-Si are displayed in Fig. 6 and for a-Ge in Fig. 7.
Except for the first-order energy terms Ef(k) and
E{(k), all other terms show a number of important
features. These features strongly reflect the mod-
ulations.in the MLM I(g). The first-order terms,
Ef(k) and E{(k), do not contain the I(g) term and,
therefore, are devoid of these features. The en-
ergy values adequately satisfy the requirement of
convergence of the perturbation series in that they
show E (k) >E (k) >E (k).

V. ELECTRON DENSITY OF STATES

The EDS expression, in terms of the free-elec-
tron density of states gy(E), may now be written

g(E) 2k%(  oE{(k) 3E}(R)
go(E)'}T< T ok

L 2B (k) . 9EY (k))" .

ok ok (5.1)
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FIG. 7. The plots of the
various energy values for
Ge. (a) Hard-sphere lig-

uid (Ref. 40) Ge, (b) ex-
perimental (Ref. 37) a~Ge,
(c) Henderson-Herman
(Ref. 17) a~Ge, and (d)
present MLM a-Ge.
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Equation (5.1) is more detailed than what we proposed
in our earlier work’ for local pseudopotential with
OFS approximation. Since there is no k-dependent
parameter in E¥(k), it does not contribute any-
thing to the EDS. Furthermore, except for
OEY(k)/0k, there does not seem to appear any
other analytic form. All these calculations are,
therefore, performed numerically. The EDS plots
for a-Si and a-Ge are shown in Figs. 8 and 9.

The zero of the energy scale was chosen at the
Fermi level. As expected, on the positive side of
the energy scale only the conduction band should
be positioned, and hence not much feature is ob-
served. However, on the negative side of energy
we notice splitting of the valence band owing to

3s and 3p electrons of a-Si, and 4s and 4p elec-
trons of a-Ge. Furthermore, some additional fea-
tures, owing to the effect of all the core bands,

are also observable.

Our results of EDS may be directly compared
with some recent theoretical'®?®43:4 and experi-
mental! " 18455 regylts, The important point is
that the present results for both ¢-Si and a-Ge
[see Figs. 8(d) and 9(d)] may be examined with
(i) the Green’s-function calculation of Kramer,*
(ii) the LCAO calculation of Choo and Tong,*® and
(iii) the dynamical-matrix (DM) calculation of
Meek.** All the essential features of EDS plots
are retained, even better than LCAO and DM cal-
culations to some extent. This is perhaps a sig-
nificant achievement.

9

VI. SUMMARY AND CONCLUSIONS -

For the energy values the dominating term in all
cases is the first-order local term E{‘(k). The
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variation of the E{(k) term is relatively smooth.
The pronounced oscillatory behavior of EZ(k),
E}(k), and the cross term E4¥(k) gives very sharp
derivatives, which enter automatically into the
calculation of the EDS. It is the effect of this
sharpness that determines the shapes of EDS plots.
As pointed out before, through the discussion of
nonlocal matrix elements in Figs. 4 and 5, the non-
local part w(E,q,K,K’) is positive for Si and
negative for Ge in the region of low momentum.
This effect is felt in the cross term EZ¥(%), mean-
ing thereby that its sign is always positive for
a-Si, but negative for a-Ge. The other terms,
however, are not changed in sign owing to the
presence of quadratic form in the energy integrand
of Eq. (4.9). The energy values of the second-or-
der terms are relatively higher for a-Si than those
for a-Ge. This picture is consistent with our ex-
pectations from the model potential parameters
themselves. The features of liquid Si and liquid
Ge, as observed in Figs. 6(a) and 7(a), have the
least number of kinks, which serves as an indica-
tion of a uniformly disordered system. As we
gradually put more order in the system, more
kinks (or better, kinky behavior) begin to grow
both in number and in intensity. These effects,

in turn, influence the EDS plots.

The plots in Figs. 8 and 9 show systematically
how the structural effects change the characteris-
tics of EDS. For liquid* Si and Ge, as seen from
the plots in Figs. 8(a) and 9(a), the EDS are al-
most featureless. On the other hand, EDS ob-
tained with experimental3®3" I(¢) and MLM I(q) are
quite close to one another. This is self evident
from Figs. 8(b), 8(d), 9(b), and 9(d) for both a-Si
and a-Ge. The Henderson-Herman!® model is al-
so used for calculation of EDS. The general fea-
tures of EDS, as demonstrated by Figs. 8(d) and
9(d), are qualitatively correct when compared
with other theoretical results.’*** These plots
bring out for the first time a consistent picture of
the relationship between the structure and the EDS
of amorphous solids and liquidlike solids.

MeGill and Klima®? have also developed a method
of calculating EDS, assuming that the atoms of
a-Si and a-Ge are clustered in groups of eight in
tetrahedral bonding in the staggered or eclipsed
configuration. This results in two RDF’s. The
curves are very similar, suggesting that the ener-

gy gap for the amorphous solid should be very
nearly equal to that of the corresponding crystal.
Cohen et al.’® have suggested that in certain am-
orphous semiconductors, EDS’s have an overlap;
the conduction and valence bands have tails of lo-
calized states sufficiently extensive to overlap
near the center of the mobility gap. An alternate
model, suggested by Mott and Davis,® has a fairly
narrow band of localized states (less than 0.1 eV)
near the center of the gap. However, recent evi-
dence indicates that, if the Polk density conditions
are met, there are no states in the center of the
gap. It is suspected that previously observed states
could be due to unsatisfied bonds, interstitials,
etc., which vary with preparation methods and
other experimental conditions.

We now concentrate on the band positions in
Figs. 8(d) and 9(d) in comparison with Green’s-
function calculations. For a-Si the peaks at —-2.85,
-3.64, —4.56, and ~7.25 eV and for a-Ge the peaks
at -2.18, -3.11, -4.07, and —6.93 eV agree re-
markably well with the sp-hybridized peaks re-
ported by Kramer,!® However, these peaks seem
to lose most of their identity in their corresponding
liquid states. The presence of the dips around
-5.86 eV for a-Si and around -5.45 eV for a-Ge
are also in good agreement with the LCAO and
Green’s-function calculations. The cluster of these
peaks in the valence band is due primarily to the
hybridization of s- and p-like bands. It has already
been recognized®® that the positions of the dip and,
we might add, the resolution of the peaks in the
valence-band cluster would strongly depend on the
strain in the bond and bond angles of the distorted
tetrahedral unit, In our case it would include all
the physical parameters of the molecular unit of
Fig. 1.

Finally, in summarizing, we may point out that
the MLM structure factors, together with the non-
local energy-dependent pseudopotentials, can ex-
plain the atomic and electronic structure of a-Si
and a-Ge. These results do predict the correct
band gaps and band positions as they have been ob-
served by LCAO and Green’s-function methods.
The local pseudopotentials with OFS approximation
are somewhat less quantitative for EDS calcula-
tions. It would probably be worthwhile to study
more complicated systems with the present ap-
proach with some modifications.
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