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Time evolution of the electron-hole plasma nucleation: An analytical approach

Monique Combescot

(Received 18 January 1979)

An analytical solution of the time evolution of the electron-hole plasma nucleation is presented, There are
essentially two regimes of nucleation: a fast one and a slow one, depending on the excitation. The variation
with the excitation of the exciton density, the amount of electron-hole liquid, the density of drops, and their
size are compared with experiments.

I. INTRODUCTION

Since the first suggestion by Keldysh of the ex-
istence of the electron-hole (e-h) plasma, a large
amount of work has been devoted to the study of its
thermodynamical properties, ' and more recently
to the nucleation' ' of such a liquid. The electron-
hole condensation is very similar to a gas-liquid
transition, except that the particles have a finite
lifetime. The main consequence is that the elec-
tron-hole droplets cannot grow to form an ocean,
but rather stop at a finite size when the amount of
collected excitons on the surface compensates the
decay of electron-holes in the drop, which in-
creases as the volume. This stable size depends
on the exciton density which must be larger than
the thermodynamical density due to the electron-
hole decay. The consideration of a steady-state
situation implies that particles are continuously
crea, ted, and the characteristics of the steady
state depend on how it is reached; a given genera-
tion rate can a Priori compensate the particle
decay of a small number of large drops in a dense
exciton gas, or a larger amount of smaller drops
in a less dense gas.

In this paper we want to study the time evolution
of the electron-hole liquid formation as a function
of the exciton generation rate. Such a problem
has been considered in the case of germanium by
Staehli, ' who uses, as most of the theoretical
works on electron-hole droplet nucleation do, a
stochastic approach where all the stages of "drops"
size between the stable one to the exciton are con-
sidered. He then solves his rate equation numer-
ically. We address ourselves to the analytical
solution of this problem, which has been made
possible because of approximations consistent
with the extremely sharp dependence of the nuclea-
tion current J(N„) with respect to the exciton den-
sity N„.

In Sec. II we write a set of equations, similar
to the ones used by Keldysh, ' giving the time evo-
lution of the amount of excitons and electron-hole
liquid. In Sec. III, we analyze its solution when

J is linearized around a fixed value of the exciton
density. This crude approximation has the advan-
tage that we can solve our equations exactly over
the whole range of excitation. The solution ex-
hibits the fact that there are essentially two re-
gimes of nucleation, a slow and a fast one, de-
pending on the value of an important parameter,
the nucleation ratetime 7„, which depends on the
exciton density as 1/J(N„)

In Secs. IV and V, we study separately the re-
gimes of slow nucleation and fast nucleation. In
the light of the first analysis, we write two sim-
plified sets of time evolution equations, valid in
each regime. These simplifications are based on
the fact that when the nucleation is very slow, the
system is always very close to steady state and
the decay terms are preponderant, while when the
nucleation is very fast, the decay terms can be
neglected compared to the change with time of the
amount of excitons and liquid. We obtain in each
case the dependences, on the laser excitation, of
the number of drops, the radius of the drops, and
the exciton density at steady-state equilibrium.
The results are summarized in Sec. VI and com-
pared with the experiments. We would like to em-
phasize that this calculation, as the preceding
ones, applies to an ideal situation where excitons
are created homogeneously inside the sample.
Experimentally, this is not usually the case. One
consequence is that the excitons diffusion inside
the sample would make the quantity of excitons
increase, even if the density of excitons in the
droplet region decreases. So the exciton lumin-
escence from the whole sample is not a measure
of the exciton density. This tends to hide the ob-
servation of the overshoot. '

II. RATE EQUATIONS

We consider a laser excitation which creates a
density N, (t)/7„of electron holes per unit time.
The problem is to obtain the exciton density N„,
the amount D of electron holes in the drops, the
density of drops & and their size n=x' as a func-
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tion of N, (t). Four equations are needed; they will
be Eqs. (1), (2), (6), 'and (7).

(a) Tke conservation of electron boles reads

r = (1/3r, )(R„—e' t") —r/37 „
where the supersaturation R, is defined as

R„=N„/N, „.
Equation (2), shown in Fig. 1, has three im-

portant consequences:
(i) There exist two equilibrium sizes given by

i= 0, a stable one r„and an unstable one x~:

(2)

(b) Tke time evolution of tlze number of electron
holes inside a A'oP being ruled by the collection of
excitons, their evaporation, and the electron-hole
decay, reads'

ri = bN„rz2 ' —an' ' exp(- &f&„+ sn ' ') —n/r, ,

where Q„=Q„kT is the electron-hole liquid bind-
ing energy. The surface tension 8 appears in
the coefficient s as

s = 2S(—'., zr p)"'/p = sk T,
where p is the liquid density. The coefficient b

is given by

b = 4zz(3/4zzp}'t'(kT/2zzm )'t'

where m„ is the exciton center-of-gravity mass.
Let us introduce v, defined by

1/r, =- bN, „=—a exp(- P„),
where v, is the exciton collection time per unit
surface at thermodynamical density N,„;

No„= g(2zzmPT/h')3t e ~"=—Nooe ~,
where g is the exciton degeneracy. Using n=r',
one can then give to the equation for n a simpler
form:

R,„=1+ (4sr,/r, )'t', (4)

which corresponds to a minimum size r „=-—,z(r,/
r, )(R „—1) (that differs from r„by a factor of —', }.
To obtain these quantities, we have replaced e~ "

by 1+s/r which is valid if r,.„ is large enough.
(iii) For large drops (e't"-I) far from r*, r

increases at constant R„as'
r = r, [1 —exp(-t/3r, )] .

(c) In order to obtain the density of drop&, we
need to introduce the nucleation current J. Equa-
tion (2) would not allow an embryo to grow from
r=-1 to x*, because i is negative for 1&x&x*,
and no macroscopic drops should be formed from
an exciton gas. In fact, the sizes between 1 and
x* are populated by fluctuations and there indeed
exists a nucleation current Z(t) which is the den-
sity of embryos passing the critical size x* by
unit time. It is proportional" to the density N*
of critical embryos which. depends on the energy
barrier bG(n*) as exp[—bG(n*)/kT], if we assume
that all the embryos between 1 and x* are in ther-
modynamic equi Librium

J =N+/r' =j,exp(-s'/21n'R, ) .
Such a relation between the number of embryos
passing the neck point, and the density of excitons
measured at the same moment is valid for phenom-
ena changing on a time scale large compared with
the time necessary to excitons to form a critical
embryo. If one takes into account only exciton
collection r =R„/Sr„ then this leads to an estimate
of the minimum time to reach equilibrium between
excitons and critical embryos:

r„,= (Sr+/R„)r, .

is usually called the critical embryo size, and
is introduced as the size corresponding to the
maximum in the change in the enthalpy 6 between
a cluster of n electron-hole pairs and n excitons
in the gas at density N„, i.e. ,

AG(n) = ( n-Q„+ ~sn't') —nkT In(N, /N, )o.

(ii) In order to have stable drops (or find a solu-
tion to r =0), one needs R„ to be larger than a
minimum value

Rmm

"min

We will check this condition in Sec. V.
A reliable theory for the prefactor j, is not easy

to find. One can get to within an order of magni-
tude by dimensional arguments: j,. is in the order
of the density of excitons divided by the time 7'
necessary for an embryo with size n* to collect
one exciton, which from Eq. (2} is 7t'R„n*'t'.
This gives""

FIG. 1. Stable and critical size for e-h droplets. j, -N„/r'' = (N,„/r, )R'„r*' .
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We will call a drop any embryo larger than x*, so
that tbe density of drops & and the density D of e-h
in drops are related to J by

t
&(t) = J(t') dt',

0

t

D(t) = J(t)x',.(t) dt',
0

where x,, (t) is the size at time t of a drop made at
time t' [with x, (t) =x*].

(d) At that stage, it is important to figure out
what are the numerical values of the various quan-
tities. Table I give the bare parameters of Ge
and Si. In Table II, 'we calculate some elaborated
parameters at various temperatures. Note that
the ones for silicon at 2 K look crazy. We will
come back to this point in Sec. VI. Table III
gives the values of J, x*, and x„ for various R„at
some fixed temperature. Note how J is sensitive
to the supersaturation R„=N„/N, „

The reader, essentially interested in the results,
can skip Sec. III whose purpose is mainly to show
how one goes from the slow-nucleation regime to
the fast-nucleation regime, and to justify the ap-
proximations made for these two regimes in Secs.
IV and V

III, ANALYSIS OF THE POSSIBLE SOLUTIONS

Combining Eqs. (1), (2), and (6) we obtain an
integrodifferential equation for „N[the electron-

TABLE I. Values of the exciton lifetime &„, drop life-
time 7&, work function Q, surface tension 8, electron-
hole liquid density p, exciton mass ~„, and degeneracy
g for Ge and Si.

7„(psec)
&& (psec)

( K)
S (10 ' erg/cm')
p (10 part/cm3)
WS~/m e&et;t fon

o

10
4.0
23
3.5
0.23
0.33

16

2

0.2
80
80
3.7
0.6

24

bole drops (EHD) decay terms of (l) and (2) can-
cel exactly j:

N, (f)/r, =N„+ N„/r, +,J(i)n*

t
+ — dt' J(i')r', ,(t)(R„—e' ") .

C 0
(8)

The third term is the amount of particles passing
the neck size n*, and the last term is the exchange
of excitons at the surface of the drops made pre-
viously. Our problem is to solve Eq. (8). The
nasty term is the last one, because it requires
the story of N, But the form of J is extremely
sensitive to X, and this property will be of great
help.

The dependence of J on R„ is so fast that if the

TABLE II. Numerical values of some elaborate parameters defined in Sec. II for Ge and Si.

Ge Si

& ('K)

b (m sec 1)

Np„(part/cm )

7~ (sec)

& min

Rmin

jf0/Xp (sec )

«ip

3.5 x10 '2~T

7.3 x1015r3/2e "/'
2.6 x10 (at 4.2 K)

2.1 xl011 (at 2 K)

3 9 x 10-11e23/ T/g2

5.3 x1p (at 4.3 'K)

9 6x10 ' (at 2 'K)

630 (at 4.2 K)

21(25) (at 2 'K)

] .7 x 1p (at 4.2 'K)

1,0(1.1) (at 2 'K)

5.2 x 10 (R„/lnR„) (at 4.2 'K)

1.3x1p (R /].nR ) (at 2 'K)

e-"/'"' ~ (at 4.2 'K)

8-66'/'n'~~ (at 2 K)

4.0 x10 13VT

x 1piey3/2e 80/ T

2.9 x10' (at 10 "K)

3.2 x1p '(!) (at2 K)

p 91x]0-10 80/T/+2

2.7 x 10 (at 10 K)

5.3 x1p'(!) (at 2 K)

24 (at 10 K)

-10 '(!) (at 2 K)

0.65 (at 10 'K)

-10 for r=1 (.') (at 2 K)

2.2 x 10 (R„./lnR„) (at 10 'K)

2.9 x 10 (R„/lnR„) (at 2'K)
-237/ln ~~ (at 10 oK)

30 000/in A/ () ) (at 2 &K)
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TABLE III. Variations xvith the supersaturation R„of the stable size g„and unstable size ~", of the nucleation current
4 over the prefactor jp, and of the nucleation rate ti.me T„ for Ge at 7=-4.2 K and 7=2 'K.

T(K) 4.2

0.7Q x 10

420

1.5 x10' 2.2 x10 x10

110

100

4.2 x10'

J/jp

Tv (seel

8;3 x10 66

x 1036

1.2 x10 '6

2 x10

Q.4 x 10

3 x10

8.5 x10

1.3 x10

3.4 x10 2.4x10 «

2 x10 6.6 x10

3.3 x10

3.8x10 "

exciton density reaches a certain value N„ the
amount of drops created for X„&N„ is negligibly
small and if the nucleation current is "sizable"
for 8„, a further increase of N„., implying a very
large increase of J, is not possible because of
the conservation equation (1).

This remark leads to expanding J around a
given value N, (the choice of the appropriate N,
will be discussed later; for the moment, it is said
that N„will have to be close to the maximum value
of N, ):

8 s' N„—N„J=j, exp ——, 1+ ——,—-"- "-+
2ln'A „ ln'R „X„

the critical embryo grow faster than they really
do. This transforms Eq. (8), in the following
equation for the change in the supersaturation

m =a„-ft„=N,/N. „-N„/N.„
during the nucleation process (i.e. , for &8 & 0)

' ——' expI-(t+t„)/r~]

= J'„n+(N„- N„')/N„,

where N„'=N„(1 —n„* ') N, and J„-,n„*, and n„are
the nucleation current, the critical size, and the
stable size at N„.

Here a)e aPProximate J' by its tangent at N„(see
Fig. 2):

This expression includes the facts that if X„
reaches N„', the number of drops created previ-
ously is very small and if X„continues to increase,
J will increase extremely rapidly, because the
slope of the curve is very sharp,

(a) For N„&N„', and Z=O, Eq. (8) reduces to
the simple evolution of an exciton gas under the
laser excitation; we will take it in the form

N, (t) =N (1 —e 't'&),

with 7~ being the laser rise time. N„reaches X„'
at time f,„; then the nucleation starts.

(b) In order to put Eq. (8) in a solvable form
for J40, one needs to do a few simplifications.
Each time J is different from zero, the value of
N„will be close to N„(i.e., almost constant), so
that one can replace n* by nP, r,,(t) by [see Eq.
(5)] r „11—exp[(t' —t)/3r~]'I and (R, —e~~") by
(&„—1). These last two simplifications make

where ft, =Ã, /N, „.
We have rescaled the origin of time I, = I+ t„and

introduced a nucleation safe time r„which depends
on the nucleation current Z„(see Fig. 2) as

Four characteristic times appear in Eq. (11): the
lasel' 1'lse tlllle TI (wlllcll will play a 1 ole lft„ ls
not much larger than 7'~, i.e., the laser excitation
still increases during the nucleation), the exciton
lifetime 7'„, the drops rise time 3~~, and the nu-
cleation rate time v'„. One expects the behavior
of the solution to differ if v„«7'„, r~ or 7„»7„, v'~.

v', is very sensitive to A„as shown in Table III,
because the number of critical embryos N* ready

Ny Nq

FIG. 2. Linear approximation for the nucleation cur-
rent.
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4

dR(t)=SR, (a
e~I' +P be,.~ ).

f=l
(13)

to pass the neck size every 7' seconds increases
very fast with R„. The general form of the solu-
tion of Eq. (11) is

four solutions are imaginary. Close to the small
T„region, the T,. have the simple expression

1 1 . m
with Q =—+ n ,—and

T T e'~n 4 2'
~n

Feeding Eq. (11)with (13) and writing that the
equation is true for any t, one gets a fourth-order
equation for the T, ,

n„T T 3Td T 3rd 3Td'

(14)

and four more equations between a~ and the b,.
which will determine these five coefficients if one
adds the initial condition ~(t=0) =0. The left-
hand side of Eq. (14) is shown as a function of 1/T
in Fig. 3.

The intersections of that curve with 1/7„lead to
roughly three regimes for the solutions T,

If r„ is very large (compared to 7„,r,), i.e., the
nucleation current is very small, then 1/v', is
almost zero, so that Eq. (14) has four real solu-
tions:

Turning to the shape of R„we find that in the
slow nucle-ation regime (r„very large), the exci-
ton density rises to to X0 in the time z„as if there
were no drops because the amount of drops,
created during 7„, is negligible. But, if one waits
long enough, the amount of drops will become
sizable and R„will finally decrease down to R„',

(18)

where the nucleation stops (due to the approxima-
tion used for t which is zero for t)l„&N„'). This
produces an extremely slow rise time -T, -r„ver„
of the amount of e-h in drops and of the number of
drops [see Fig. 4(a)I.

In the extremely fast-nucleation regime (r„very
small), the imaginary values of T, produce a. maxi-
mum for X„very close to N„'. The time during
which the nucleation takes place (which corre-

1 v'„ 1 1
T 7.7 T 37

If 7„ is very small, Eq.
imaginary solutions:

1 1

~dve

with

1 2 1 1
(15)T 37d T 7

(14) has two real and two

(18)
2m 4m

&f& =0 ——and r = 3T
3 ' 3 "" d 6n„

R ii

0R

R~

I

'X 'L

Tu Td

TX

T T

When v„ is neither very large nor very small, the
(T T 5)1/4

1
1 1

x

p ~2
3Td

I

I

I

I

I

I

I

I

I

I

I

I

1
I

I

1/rq (P I

1

Tdy

I

I

I

I

I

R),
Ro-

(:)"
(c)

FlG. 3. Graphical solutions for the time T& of Eq. (14).

FIG. 4. Exciton supersaturation R =N„/No„as a func-
tion of time in the slow- (a), fast- (b) and very fast-
(c) nucleation regime, obtained for increasing excita-
tion Ro ——No+'».



sponds to ~ &0) is of tbe order r~„. It is much
shorter than the time 3v„necessary for a drop to
grow, so that the exciton density will present an
overshoot due to the further growth of the baby
drops.

A similar behavior is found in the fast nuc-lea
tion (or intermediate) xegi m e: 0 =—'+ —" J(t') dt'+ "J(N—,) .

Tg Lt g p Tg
(20)

all the drops having the same size n„. The laser
excitation just compensates the decay in the exci-
ton gas and in the drops. %e can then solve Eq.
(19) in a more appropriate way. By derivation of
Eq. (19}, one obtains

(if T, & 7 ).
The nucleation lasts Tp and the maximum of the
exclton density is also very close to Np [Flg 4(b. )].

Let us now turn. to the gPP'poPxigte choice og N, .
For that we follow the i.ncrease of N, . If N, is
chosen very low, the solution of the slow-nuclea-
tion regime implies that N„will continue to in-
crease up to Xp. If the slaw-nucleation regime
remains up to N„ then it will be the one observed
with the characteristics of the size and rise time
calculated for Ã„N, (as -N„must be chosen close
to tbe maximum).

If Np is high enough so that in the increase of N„

up to X„one reaches a regime corresponding to
the "intermediate" one, X„will have a maximum
close to N'„and then decrease so that no higher
value of N„will be reached, and as a consequence,
the "extremely fast" nucleation regime will never
exist. N„will in fact, stop at a value where an
imaginary solution for T, exists (i..e. , v; = &„3v,)'
which produces an oscillatory solution (i.e., a
maximum) for N„This con.dition is independent
of Ãp and so the maximum of N will not depend
on the excitation.

(c) After the nucLeation takes Place, in the case
of fast nucleation, the exciton density continues
to decrease due to the growth of a constant number
SL of the baby drops; this produces an overshoot
in the observed N„,with a characteristic time 37„
due to the growth of the drops. This growth will
be studied more precisely in Sec. V.

IV. SOLUTION FOR A SLOW-NUCLEATION REGLE

%e have found for long nucleation ratetime v,
defined by Eq. (12), the exciton density rises
first up to N„as if there were no drops, and then
decreases slowly due to the slow formation of
drops according to N, exp( tr„/r„r, )-. Thi-s can
be obtained simply, noting that in such a regime
the system is always very close to equilibrium.
In that case, one can neglect i.n the conser vati. on
equation (1) the change with time of Ã„and D, so
that Eq. (1) reduces to

The integral can be evaluated from Eq. (19), and

n, from the fact that

n„' '=(r„/r, )(N„/N, „—1) .
This transforms Eq. (20} into a first-order dif-
ferential equation for N, :

N —A~„7'„y~ N„

whose solution is readily

Xp -lV

-1 JN

One can evaluate this integral for N„close to Np

using the iact that J(N) is the quantity which most-
ly varies, so that one can replace N by Np except
in Z. Noting from Eqs. (6) and (3) that

d(1//) 1 n"
dN J N'

wi th np and np* being the stab le and un stab le drops
size at Xp. By integration we find

1 I npn, ~+ 7'„

J(N„) J(ND) No v'q

Tke &mgntber of Chops and the aynount of e-h in
AOPs are obtained from the above expression of
J

(22)

wbere g, =d(N ) and r, is" the nucleation ratetime
N, /n, n,*J, Ias introduced in Eq. (12)]. We find
that the amount of e-h liquid increases on a very
long time scale of the order r,r,/r„and that when
the amount of liquid is detectable, it varies with
the excitation and time as
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R-, ln'R, In(tr„/7', r~+ 1) .
The in) dependence for the increase of liquid
with time was already obtained by Westerwelt. '
One gets N„either directly from the conservation
equation (19), or from (21) using the dependence
of J'(N„) in N„where we would set

ln 1+
(

7'„t S
7'p1

y 2 ln Rp

consistent with the approximation made to obtain
(21). We find that

1 7„tN„=N, 1 ——ln 1+
'Plp+ Yp7

(23)

Nx)(

x

Note that for very small r„t/r, r„Eq. (23) gives
N„—No -J,no(&„/7'~)t which is nothing other than
the expansion of the solution (18) of Sec. 111 for
small t. The behavior of the exciton density and
the amount of e-h liquid is shown in Fig. 5 in the
case of a slow-nucleation regime. The rise time
of D is ruled by 7', . From Table III, we see that
at 4.2 K for R, = 2, the nucleation rate time rp is
10" times the age of the universe (!) but for R, =3,
it is only a msec and for R =4, it is already much
smaller than the lifetimes. So, close to the cross-
over region a very small change in R, produces a
very large change in the observed rise time of the
e-h liquid, in agreement with the Shah et al. '
results. In that region with a 10% change in R„
one goes from a slow-nucleation regime to a fast-
nucleation one. This may have some consequences
in the case of the usual experimental conditions,
where the excitation is far from being homogene-

ous. We also see from Table III that the amount
of electron hole in a drop produced in the slow-
nucleation regime should be huge (-10"), if the
processes controlling the drops size are the ones
considered in Eq. (2). There is no experimental
report on the existence of such large drops. Most
probably they explode before reaching such a size,
due to the interaction between the e-h liquid and
the phonons emitted from the e-h decay in the drop
as proposed by Keldysh. " To take this effect into
account, one can simply replace in Eq. (19) n„by
the limit size n„, which will change 7', by a fac-
tor n„/B()

Table III also shows that the supersaturation
needed to reach the fast-nucleation regime in-
creases significantly when the temperature de-
creases.

V. SOLUTION FOR A FAST-NUCLEATION REGIME

(a) In the slow-nucleation regime we kept only
the decay terms in the conservation equation (1).
Similarly, in the fast-nucleation regime, we only
keep, during the nucleation, the change in N, and
D, the evolution of the system being expected
much faster than v'„and 7„so that one can neglect
the decay of the e-h.

In that regime, during the nucleation, Eq. (1)
reduces to

N (f)/7'„= N„+ D. (24)

We know from Sec. III that the exciton density has
a maximum N„, and that the nucleation takes
place around this maximum. Except at the very
beginning, the drop radius increases [cf. Eq. (2)]
with a velocity

r'-r„- (I/3r, )(R„—1)=r„/3r,
(rs~=n„being the stable size at N„). During the
nucleation one can approximate r„(t) by r„(t—f'),
in agreement with the fact that t —f,' is small com-
pared to 37'„.

We also know from Sec. III that the amount of
e-h going into the critical embryos Jn* is only
important in the very fast-nucleation regime which
cannot be reached. Using Eq. (7), we finally re-
write Eq. (24) as

N, (t) =N„+ Z(f )3r', ,(f)r df
x p

t
-N„+ o, Z(t')(f —f') dt',

p
(25)

~0 ~x

7g
I

FEG. 5. Time dependence of the exciton density and
amount of e-h liquid in the slow-nucleation regime.

with n = 3r„'=n„/9r', . For N, (t) constant or lin-
ear in t, Eq. (25) is in fact a fourth-order differ-
ential equation for N:

0= N +2n Z(N),
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which can be integrated once, using Eq. (21), as

N N —~~ N + 2o, (N/n*) J —. 0, (26)

but no more. However, this equation gives an
exact relation between the curvature N at the max-
imum and the value of the maximum N„. One can
then think to expand J around this maximum
reached at time t„:

z)t)=J +(—tt) (t —t )IRx

dJ dJ+ —' 1P+—N—(t —t )'+ "' uP dN

With N= 0 and using Eq. (21), this gives

J(t) =J„(1—u'/5'),

with t =u+ t„and

u&5=2 g2 N

[N„/ n„*

Going back to Eq. (25) we have, for t & t„—6, no
drop and

N„= — ' dt'.
0 x

For t„—5 & t & tu+ 5, Eq. (25) gives

N (t) =N„+ ~J~,

x —,———— — —. (29)
(u + 5)' u' u'5 u5' 5'

3 305 3 2 5

From, these two equations, the derivative, and the
integration of (29), one can obtain the three rela-
tions which will determine the position of the max-
imum (N„, tu) and the time 5 of the nucleation.

Eq. (29) gives at the maximum, i.e., for u=O:

N, (t,)/r„=,;n J„5'. — (30)

'u N, (t) 54
N~ = — - dt —~J~—.

N + N36' (32)

The solution of Eqs. (30)-(32) will depend on

Its derivative, also taken for u=0, gives

No(tu)/&. =Nu+ & Ju)5'.
~ ~

Writing N„ in terms of 6' from Eq. (27), this
gives a second-order equation for 5' whose solu-
tion is

0

t*=— - ") ")+ 't ") + tttz —tt

I
(31)

Finally, if one integrates Eq. (29), one gets N, (u)
which, for u=-6, should coincide with the ex-
pression (28) of N„calculated at time t„—5. This
leads to the relation

whether N, (t„) is zero or not, i.e. , if the laser
rise time is very short or not. Before solving
this set of equation in both cases, one can calcu-
late the number of drops:

+4 u2)
Ju 1-—

2 I
du=-,' J„5.N g2) 3 Af (33)

~N ~x 3654

N~ t~
t)t r 1 + (I/9n4, ) + M t (35)

5-(36r'„r )"4

The first relation is an implicit equation for N„.
Its solution is given in Table IV. It is interesting
to note that the maximum N„varies very slowly
with NQ For that„one diff e renti ate s the logarith m
of this equation, noting that the change with N~
comes essentially from

7„-exp(+ s'/2 In'Ru) .

This gives

~u/Nu —(4/nu*) (~0/No), (36)

which is much smaller than ~,/No for the usual
values of n„*, so that the maximum of N„does not
change very much with the laser excitation Np.

The second relation tells that the exciton density
rises as if there were no drops up to N„where
the drops appear. The larger N, is, the sooner
the e-h liquid exists (see Fig. 6). The last equa-

/

tion gives the time 25 during which the nucleation
takes place. It agrees with the results in the fast-
nucleation regime of Sec. III. At that point, one

Some more drops are surely created after t~+6
but their amount is negligibly small and will not
affect &.

The baby drops, created between t„—5 and t~
+5, will grow with a characteristic time 3v„, and
a steady state is reached after a time larger than
v'~, v'„, 37„. It will correspond to an exciton den-
sity N„„and & drops with size x„„which verify
the conservation equation written in that limit:

N, /r„=N„„/r„+ (r'„„/7,) X,

r„„being the stable size at N, „. Using Eq. (3)
and noting that Np N is probably close to
Np Np we obtain ~,„and N„„as

t)tttt ,„)),
't'—

7.%

(b) Let us first consider a very short laser rise
time r~ so that for t-t„, N, (t)-N, . In that case,
the solution of Eq. (30)-(32), expressed in terms
of the nucleation ratetime r„=N„/J„n„*n„, is'
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TABLE IV. Variations with the excitation Rp of the maximum of the exciton supersatura-
tion and of the nucleation rate time ~„, for short and long laser rise time.

Rp ].f 7L (( T~ 7.5

4.8

15

5.2

7& (sec)

Rp «71.—
x

5.8xl0 &' 1.3xl0 &' 3.6 x10

(890)

has to check that the time 25 of the nucleation is
larger than the minimum time to reach thermaliza-
tion among the embryos, condition implicitly as-
sumed when one uses the nucleation current. The
collection time v, increases when T decreases,
but this effect is partly compensated by the fact
that the supersaturation necessary to reach the
fast-nucleation regime increases when 7.' de-
creases (for Ge R~-5 at 4.7'K, R„-500 at 2'K).

Table V shows that, for typical condition in the
fast nucleation, the thermalization assumption is
justified, but extremely large N, might change R„
enough to produce much smaller w~, so that 6 be-
comes of the order 7,„, and the theory loses its
meaning. Anyway, in the case of extremely large
N„we will see at the end of this section that the
number of drops is no longer controlled by the nu-

I

cleation process exposed above.
Turning to the steady-state quantities, we find

from Eq. (33) that the number of drops increases
like N,', in agreement with Keldysh's' result:

x .

5-10(r p„)' ', (40)

(c) If the laser is still rising during the nueiea
tion, the preceding dependenees on N, of the num-
ber of drops and their size at steady-state equi-
librium are no longer valid. In that ease, one can
take No(t) -Not/r~ One .shows that the existence
of a maximum for N„ implies that [see Eq. (31)j
the current J„is such that

4n J„N„/n„*» (No/r„rz)'

(which can be checked at the end).
From Eqs. (30)-(32), we extract that the nu-

cleation ratetime w„varies like N, ' instead of N, ',
that the density of the maximum still varies very
slowly with N„ that the nucleation lasts a little
more than in Eq. (35), but still about the same as
in Sec. III, and that the exciton density still rises
to N„as if there were no drops:

n~4 37
R' (R —'1)' v'„

(37) N0 ~P 1 N0 ~t

r„r~ 2 1+(2/36'+) v'r~ 2
'

(38)

and the exciton density is very close to the ther-
modynamical one:

The term in the bracket, depending on N~, varies
very slowly with N, as N„does. From Eq. (34),
we find that the radius of the drops decreases like
(Bo —I)'/'/R .

(ft 1)~/3 (7 7 ~)~/3 (g I)ft2/O]
XOO 3v n*'"

0 C N

The relation between N„and N, is given in Table
g7. One then deduces that the number of drops
increases like R,' ' in agreement with Keldysh'
i.e., more slowly than for a very short laser rise
time:

R3 /2 37~ 3
N 25 N0

( )I/2 (ft 1)3(~ )1/2 ox (

and that their size at equilibrium decreases with

Rp also more s lowly:

(39)

T ('K) Rp R~ &~ (sec) 2~ (sec) &;„f (sec)

4.2
2

11 5 1.3xl0 & 1.5xl0
2900 500 4 x10 i6 4 x10

10 '
10 8

TABLE V. Comparison be@veen the time of the nuclea-
tion 24 and the thermalization time 7j f.

nial/$54/3

the steady-state density being still very close to

(d) In conclusion, in the fast-nucleation regime
the exciton density increases up to a value N„almost
as if there were nodrops (see Fig. 6). The maximum
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Nox

(No}

a dispersion due in particular to the fact that they
are created during a small but finite time 25.
During the decrease of the exciton density, the
smaller drops will shrink before the larger ones,
producing an extra amount of excitons, which
allow the larger ones to continue their growth.
This leads to a final situation with drops at size
n, „, their number being

m= N, r,/n. ,„'„. (43)

FIG. 6. Time dependence of the exciton density for two
excitations in the fast-nucleation reg™.

of the supersaturation A~ is almost independent of
the excitation, but it is very sensitive to the tem-
perature. (Note that the exact numerical value of
R„ is affected by the choice of the prefactor j„.}
At N„baby drops are formed and their formation
lasts a very short time, of the order (r'„v'„)'~'.
Then the exciton density starts to decrease. At
steady state, after a time larger than 7„, 37'~, v»
the supersaturation is very close to unity. Final-
ly, one finds that the number of drops and their
size depend on whether N„was reached during the
laser rise or when its maximum was already
reached.

One remarks that the larger the excitation, the
smaller the drops (because the amount of baby
drops formed during the nucleation is larger). So
in order to get large drops, one should not use
large excitation, 'but instead stay close to thresh-
old. Similarly if one wants a large supersatura-
tion at steady state, one should not use a very
powerful laser, but instead stay very close to
threshold.

(e) There remains one limit case that we have
not considered in detail: what happens if too many
drops are created during the nucleation, the ex-
citation not being large enough to allow them to
grow to a size larger than r-„'? From Eqs. (4)
and (38) this corresponds, in the case of Ge at
4.2'K, to an excitation R, larger than 20 (with our
choice of j, hidden in R"). There is obviously no
possible steady state with that amount of drops.

From the conservation equation

N,/'„=N„+ Xn+ Xn/'„
(where we have neglected the exciton decay}, we
see that the size of X drops when N„=n=0 should
be n„=N, r„/Kr„If n„& n „., such a size is not
an equilibrium one. The drops can continue to
grow beyond n„, as long as N„can be negative.
But this cannot last too long because N„will finally
reach N, „where, due to. Eq. (2) for the evolution
on one drop, n becomes negative; then all the
drops should shrink and disappear leading to an
oscillatory situation. In fact, the drops size has

Rx~

Roc
I i

7

"min

D

Nox

Roc Ro

Q

I' I(
R,

Roc R

FIG. 7. Dependence over the whole range of excitation
Ro —-No/No„of the exciton density N~, drops radius x„„,
amount of e-h D and density of drops X at steady, state
for short laser rise time. For long laser rise time, the
drops radius would decrease as -Ro ~ and the density
of drops would increase as Ro

But one can imagine an extreme situation when
the nucleation time is so small that the drop-size
dispersion is very narrow and the drops will be-
come unstable almost altogether, leading to an
oscillatory situation. This will happen very fast
anyway and the system will finally relax to the
preceding equilibrium state (43}.

VI. CONCLUSION

From the results on the slow- and fast-nuclea-
tion regimes, we deduce (Fig. 7) the dependences
over the whole range of excitation R, =N, /N, „at a
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given temperature of the exciton density 8„„, the
amount of e-h liquid D„, the density of drops 9t,
and the radius t„„'at steady state (i.e., after a
reasonable amount of time).

As we have seen, the characteristics of the
steady state are controlled by the nucleation pro-
cess and have nothing to do with the minimum of
the pseudofree energy, ' which would lead to a
pseudoequilibrium state eventually reached after
an infinite time.

The "reasonable" amount of time after which a
steady state is obtained is of the order sup
(v~, 7„, 3v ~) in the fast-nucleation regime, but
depends very much on the excitation in the slow-
nucleation regime. More precisely, one needs to
wait a time in the order of r, 7,/r„which decreases
close to threshold as the inverse of the nucleation
current (calculated at R, ) in agreement with the
Shah et al. results. '

The exciton supersaturation should increase in
the case of homogeneous excitation, linearly with
the excitation up to a maximum, where the nuclea-
tion starts to be fast (for R, &R„). Then, for
higher excitation, the exciton density at steady
state decreases to stay close to its minimum value.

The amount of e-h in the drops increases sud-
denly around R„. At higher excitation, the laser
essentially compensates the e-h decay in drops
(N, /7„D„/7~) so-that D„ increases linearly with Ro.

Vfe have seen that in the slow-nucleation regime
the drop size, controlled only by evaporation,
collection, and decay, should be enormous. In-
cluding the phonons interaction, Keldysh" finds
an upper limit for the drop size„which will be
the size of the drops in that regime. Above A„,
the drop radius deer'eases down to its minimum
value; the way x„„decreases depends on whether
or not the laser is @till rising during the nuclea-
tion (because this affects the number of created
drops). For a short rise time, x„„decreases as
(Ro —1) ls/R~ Ro /3 [from Eq. (39)], while for a
long rise time the change is not as fast [Eq. (42)j
givmg (R, —I)'~'/Ro~' R,'~'I and th-e drops are
larger. The comparison with the Bagaev et al. '
experiments is not very easy because they mea-
sure x„„atconstant excitation Np and various
temperatures, while the analytical behavior of
r„„in 7 is not easy to extract from our theory.
However, we note that an increase of T corre-
sponds to a decrease of Bp if Xp stays constant,
because the thermodynamical density Np would
increase. We can then check (from their Fig. 10)
that r (T}has qualitatively the inverse behavior
of x„„(R,) We can also s.ee (in their Fig. 10}
that an increase of Xp produces a decrease of t'„„
as expected. Finally, we can check (in their
Fig. 3) that, at a given T or R„ the drops radius

is larger if the rise time is longer as predicted,
but if T increases (i.e., R, decreases) the radius
tends to a unique value which does not depend on
the laser rise time as expected.

Finally, we show on Fig. 7 the dependence of
the density & of drops with the excitation Bp at a
fixed temperature. The amount of drops increases
first slowly as R, »'R, [see Eq. (22) of the slow-
nucleation regime j. Above Ro„ it increases
faster, but this increase depends on whether the
laser excitation still increases during the nuclea-
tion or not. For a short rise time, R increases
as R'„while for a long rise time Ot changes only
as R,'~' [see Eqs. (37) and (41)], so that more
drops are created if the rise time is short. At
higher excitation, the size of the drops being
fixed at its minimum value, the density of drops
will finally tend to increase only linearly with Ap.

In Fig. 4 of Bagaev et al."we check that more
drops are created for a given excitation and tem-
perature if the rise time is short. The depend-
ences X(1/T) (of their Figs. 6 and 9) look like
our curve X(R,) with a clear change of curvature
as expected (R, at constant T changes as 1/T at
constant N, ). In their Fig. 7,' we finally check
that for T = 3.6'K R increases approximately as
8p for short rise time and as 8p' ' for a long one,
while the higher temperatures the increase is not
as fast, although faster for short than for long
rise time, probably because for the same Np Rp
is larger and we are closest to the linear region
of the curve &(R,).

So the theory presented in this paper is in good
agreement with the experiments, but we want to
say that it does not cover the low-temperature
region as outlined about silicon at O'K. For low
temperature, we have already pointed out' that
there is no more real phase separation between
an exciton gas and e-h liquid in macroscopical
drops but instead the number of embryos with n
e-h inside increases with n from n = 1 to a maxi-
mum for n rather small. This is due to the fact
that the temperature is so small that the evapora-
tion is negligible and the decreasing part of the
curve of Fig. 1 is all in the unphysical region
n& 1. The concept of critical embryo disappears
and, by the way, all the nucleation theory based
on the current of critical embryos passing the
neck point. From Eq. (2) and Table II, we see
that in order to have small embryos of e-h, one
would need anyway an enormous supersaturation in

agreement with recent experimentsby Voisin et al."
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