PHYSICAL REVIEW B

VOLUME 21, NUMBER 2

15 JANUARY 1980

Radiative recombination of donor-acceptor pairs in polar semiconductors

E. Kartheuser and R. Evrard
Institut de Physique, Université de Liége, Belgium

F. Williams
Physics Department, University of Delaware, Newark, Delaware 19711
(Received 20 August 1979)

A variational treatment of effective-mass electronic states is made for donor-acceptor (D-A) pairs,
including the effects of electron-phonon interaction within the static approximation. The effective
Hamiltonian is based on the Frohlich continuum model. Expressions for the energy levels are obtained
analytically and in terms of integrals involving trigonometric functions. The variational parameters for the
orbital radii and for the p-state admixtures are determined, all as a function of D-A distance R. Both pairs
with equal-and those with unequal radii are investigated. The electron-phonon interaction is found to
decrease at small R, and the departure from spherical symmetry increases at small R. The theory is applied
to the zero-phonon spectra of D-A pairs in GaP and in ZnSe, using a procedure for obtaining the static
dielectric constant €, from distant-pair spectra and then focusing attention on the deviations from the ideal
1/R law for nearer-pair spectra. Comparisons are made with previous theoretical work.

I. INTRODUCTION

The radiative recombination of electrons and
holes bound to donor-acceptor (D-A) pairs in
semiconductors has been extensively investigated
for more than 20 years.'”® However, it is only
recently that the effects of the interaction with
phonons on the binding energy of the electron-
hole pairs have been considered*® in some detail.

The semiconductors of practical interest in this
field, such as GaP and ZnSe, are polar materials.
Therefore, the interaction with the longitudinal-
optical (L-O) phonons through the ionic polariza-
tion of the lattice is probably dominant in these
materials.

As pointed out by Mehrkam and Williams,® the
charge distribution and therefore the state of po-
larization are different before and after recom-
bination. This results in a modification of the
lattice-deformation energy and of the polarization
self-energy of the electron and hole during the
transition. Thus the transition energy is affected
by the interaction of the electronic particles with
the lattice distortion (virtual phonons). As the
charge distribution for the excited-pair state
(electron and hole bound to the donor and acceptor
centers) depends on the donor-acceptor distance
R, the contribution to the transition energy due to
the lattice polarization depends also on R, Thus
the electron- (or hole-) phonon interaction con-
tributes to the deviation from the ideal 1/R depen-
dence of the zero-phonon transition energy.

The effect of the electron-phonon interaction on
the energy of the excited pair has been studied by
several authors.*"!° Inglis and Williams*® started
from an effective Hamiltonian developed for iso-
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lated impurities'"!* and added the Coulomb inter -
actions between the donor and the acceptor. They
neglect departure from spherical symmetry in the
electronic charge distributions in determining the
self-consistent potential and they take as the zero-
phonon transition energy the average between
Condon-type emission and absorption energies.
Stébé and Munschy® have used Haken’s potential to
describe all the Coulomb interactions modified by
the lattice polarization. Their method is a varia-
tional method with s -like hydrogen wave functions
as trial wave functions, which do not properly ac-
count for departure from sphericity at small pair
distances. Kiefer and Schréder®” have also used
Haken’s potential, but in the electron-hole inter-
action term only. These authors used trial wave
functions with mixed s and p characters as intro-
duced for the first time by Mehrkam and Wil -
liams.'®

The use of Haken’s potential for pairs in GaP or
ZnSe is questionable, since the orbital time is
shorter than the period of the phonon and, there-
fore, the effective Bohr radius is smaller than
the polaron radius. In fact the opposite condition
is required for Haken’s potential to be valid.

Moreover, in all these studies, the electron-
phonon and hole-phonon interactions were ex-
plicitly introduced only in the screening of the
Coulomb potentials, changing them into effective
potentials. The deformation energy due to the
lattice distortion was not included except in the
ionization energies of the isolated impurities.
When the distance R is small enough for electron
and hole orbitals to overlap, the charge compensa-
tion leads to a decrease of the lattice distortion.
Therefore, the lattice-deformation energy depends
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on the acceptor-donor distance R, and it is essen-
tial to include it in the calculations. In a previous
paper® (hereafter referred to as I), we have shown
how to take this effect into account and to what ef-
fective Hamiltonian one is then led.

The goal of the present work is to determine the
importance of the effects of the electron-phonon
interaction on the recombination energy in the dif-
ferent cases usually found in the literature, i.e.,
the cases of symmetrical (same orbital radius for
the acceptor and the donor) or unsymmetrical
pairs, with or without s-p mixing in the wave
function. The method developed in I is used for
this purpose. It is based upon the description of
the electron-phonon interaction by means of a
static approximation.®® This approximation is
usually called “adiabatic approximation” in the
theory of Frohlich’s polarons. In this approach
the source of the ionic polarization is the static
charge distribution of the electron and hole, i.e.,
the square of their wave function multiplied by
their charge. This approximation is valid for
orbits with a radius large compared to the lattice
parameters and an orbital time far smaller than
the period of the lattice vibrations, i.e., binding
energies far larger than the L-O phonon energy.

For the semiconductors studied in practice, this
latter condition is not completely fulfilled,’ so
that the static model is valid only as a first ap-
proximation.

The static approximation used here leads to a
self-consistent effective potential, the particles
interacting with the ionic polarization produced
by the static charge distribution due to the par-
ticles themselves. Moreover, the total energy
includes the lattice -distortion energy, as it
should.

Sections II and III of the present paper are de-
voted to the calculation and the discussion of the
importance of the effects of the electron-phonon
interaction on the recombination energy. The de-
parture from sphericity is also obtained as a
function of the pair distance. In Sec. IV we com-
pare our results with experiment in the case of
GaP and ZnSe.

II. EFFECTIVE HAMILTONIAN AND TRIAL WAVE
FUNCTION IN ADIABATIC APPROXIMATION

Using the effective-mass approximation, the
Hamiltonian of the donor-acceptor complex is
written as (see I)

‘ N
2 2 2
P T S N A M S
2m, 2m,, €. \IT,-RI 7, », IF,-RI If,-F,| R
+2 Rwalag+ ). [Viaee'™® — 1+ ™% _oifin) 1H c.], (1)
E I3

where R, F,, and T, denote the positions of the ac-
ceptor center, the electron, and the hole, re-
spectively. The position of the donor impurity is
taken as origin or the coordinate axes (see Fig.
1). The Laplacian VZ and V; involve derivatives
with respect to the coordinates of the electron and
the hole, respectively. The electron charge is
dencted by e, and €, is the high-frequency dielec-
tric constant due to the electronic polarizability
of the ions of the crystal. The masses m, and m,
are the band masses of the electron and hole.

The interaction between the charged particles
(the donor D", the acceptor A", the electron e,
and the hole %) and the phonons is described by
the usual Frohlich model of polarons.'” This as-
sumes that, as pointed out in the Introduction, the
dominant contribution to the electron-phonon or
hole -phonon interaction (from now on called e-ph
interaction) is the polar interaction with the long-
wavelength L-O phonons. These phonons are al-
most dispersionless, so that their frequency w
can be taken as independent of their wave vector
K. The operators a; and a;% are annihilation and
creation operators for phonons with wave vector

I
K. Following Frohlich,'” the interaction coeffi-
cient V, is taken as

Vk:_g_e_<27rhw>1/2(l_l>”2. @)

k v € €

o

This shows that the interaction strength depends
on the difference between the static dielectric con-
stant €, and that measured at high frequency (€,).
In a sense, the difference € - €;' is a measure of
the ionicity of the crystal. In Eq. (2), v denotes
the volume of the crystal.

FIG. 1. Effective-mass model of the donor-acceptor
pair: the coordinates of the electron e, the positive hole
h, and the acceptor A” are chosen with reference to the
donor D*.
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As mentioned in the Introduction, the present

work is devoted to centers which exhibit electronic

orbital times small as compared to the lattice
period 1/w, so that the static approximation can
be used. In this approximation, the source of the
lattice polarization is the charge distribution in
the D-A complex and the only effect of the e-ph
interaction is to displace the equilibrium position
of the ions. This effect is taken into account in
the theory by means of the following canonical
transformation:

Je=S1HS (3)
with

S= exp(z %/-"— (pg -1 +e”"ﬁ)a,;—c.c.> . 4)
£ w

This transformation performs the two successive
displacements of the operators a; and a; described
in I. The effect of these displacements on the lat-
tice polarization is twofold. First, they eliminate
the contribution arising from the D* and A" cores'®
and then they treat the part arising from the elec-
tron and the hole in the static approximation. In
the expression (4) of the unitary transformation,
pg denotes the Fourier transform of the charge
distribution (except for a factor e, the charge of
the electron), so that

op=J a%, [ a%,| FalE, 52 F 5 - ), (o)
or, as written in I,
pe=(Fg(F,,F,)|e®Tec e f|Fr(F,,7,)), (5b)

where Fy(F,,T,) is the electronic part of the wave
function for a pair with D-A distance equal to R.
This transformation being performed and the
static approximation being now used, the wave
function |q/> of the ground state is given by the
following “Produktansatz”

[W) = Fg(F,,7,)|0), (6)

where Fg(T,,T,) is the two-particle effective-
mass function introduced above for the electron
and the hole and [0) is the vacuum state for the
phonon field in the occupation number representa-
tion.

As shown in detail in I, minimizing the expecta-
tion value of the total Hamiltonian (3) with respect
to the electron-hole wave function leads to the fol-
lowing, Schrddinger-type equation

H"Fg(¥,,T,)=tFp(T,,T,), (7
where the effective Hamiltonian H” is given by

H"=H,+H,, (8)

with

n? n?

Hy=—5— V°

e? 1 1 1 1 1
=== -= )
€& \T,-RI 7, 7, IF,-RI| R

1
Hy=-¢ IT, -7,
B Z: A/ [ p(e'®Fe — ') + H.c.] (10)
el U .c.].

The total energy of the ground state E, has two
contributions —the expectation value of this ef-
fective Hamiltonian and the lattice-distortion ener-
gy, so that

. | - - [V, 121,12
B = (Fy (5 17 (P, B) + 20

(11)

Notice that, through relation (5), the Schrédinger
equation (7) is in fact an integro-differential equa-
tion. This expresses that the value of the func-
tions p; appearing as parameters in the effective
Hamiltonian H” should be consistent with their
definition [Eq. (7)]. Therefore, it seems hopeless
to solve Eq. (7) exactly and approximations on the
wave function Fg(T,,T,) are needed.

Neglecting electron-hole correlation effects, a
product of one-particle functions is used. This
leads to

Fe(%,,T,)=0,(F,)0,(T,). (12a)

Owing to the Coulomb interactions, the wave func-
tions are not perfectly spherical, especially for
close D-A pairs, To take this into account we use
the following forms®®:2%:

> a3/? y./ 7,
we(re):me% “<1+s;ecos92>, (].Zb)

a-3/2

> - I - Rl
Wh(rn):n1/2(1+02)1/z e T RI/e
x(l +0 15 =R coseh> R (12¢)

where 6, and 6, are the angles defined in Fig. 1,

a and @ are parameters giving the size of the or-
bitals, whereas s and o determine the admixture

of p orbitals to the ground state. These parame-
ters a, @, s, and o are to be determined variation-
ally. Using the trial functions (12) in expression
(5) for the electron-hole charge distribution leads
to

Pe= PE =P (132)
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with

1

2is ak cos®,
% 27,2 |2 1+
1 +s3)11+(a/2)?2k2]

11+ (a/2)%R%]

2

S
T @R

x(l 3 a%F cosb.
T2 T+ (/27

(13b)
and
B L [1+ 2icak cos b,
P F 001+ (a/2)%2 12 11+(@/2)%2
0.2

P T (a2PR

X(l 3 0k%cos?, )
T2 11+ (a/22r21 )] -
(13¢)

III. VARIATIONAL DETERMINATION OF ENERGY

For the sake of completeness, detailed expres-
sions for the different contributions to the total
J

b 7 2(1+s2/2) 2 2
E(a’s’R)*Zmeaz+2mha2_ 1+s2 €;+1+s2
e? 1 1 e? e’
TR T z(e,,, Te, )Y(S)Z T (1+5%2¢R
with
&ola, R)Z( +§)e-2}”a’ (162)

a R\*> 2R al .

gl(a’R):]Ef -[(a—> +—+2+§]e 2R/a - (16b)
a R\? R\? 11R

g5(a, R)_1+3<I—2> [(;) +3<a—> o T

a a\ -2R/a
+6 E+3(R)_]e 5
(16¢)
__ 1 (5,7 ., 501 4>
)= 37 (16 *135" * 3560 © (16d)

Here it is convenient to express the G functions in
terms of the following integrals:

2 (* dkPk"sin(kR)
St,p)= ?fo 1+ @/2P%P (17a)
2 (™ dkk"cos(kR)

C(",P)—— | 0+ @RrEp (1)

This yields

2
[1-g,(a, R)+2sg,(a, R) +s%g,(a, R)] S

energy E(R) as functions of the variational parame-
ters a, @, s, and o are given in the Appendix.

Different approximations can now be made. One
can use wave functions with equal radii (e= @); the
pair will then be called symmetrical. On the con-
trary one can keep different radii for the acceptor
and the donor (unsymmetrical pair). On the other
hand, the p admixture to the individual wave func-
tions can be neglected or retained. This leads to
the following four cases.

A. Symmetrical pairs

Without p admixture the total energy is given by

n? 7 11 5 \e?
E(a’R):ZWLeaZ +Zm,,az —<§g +E>_
e? 5R 3 1/R\*] -2x/e
Te,R [1+8a —4<a> _G(a)]e ’
(14)

while in the presence of p-orbital admixture we
obtain (note that 0= -s, since the pair is assumed
to be symmetrical)

R
(Go+Gis +Gys® + G5B + G sY), (15)
r
G,=S(-1,4), (18a)
G,=-4a (c(o, 5) _S——————(';’ 5)> , (18b)
2
G,=25(-1,5) - az(S(l, 6)+% 0(0,6)
-2 s(-1, s)) (18¢)
G,=C(0,6) - s( 1,6)
_3 (c(z 7 s(1,7)
c(0 7)+ s( 1,7, (184).

G,=5(-1,6) - 3d® <S(1 7)+ c(o, 7)—-—-8( 1 7)>

+9‘Z’—(S(3 8)+—-C(2 a)_—su 8)

c(o 8)+ s( 1 8)) (18e)
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TABLE 1. Variational results for the orbital radius a
and the energy E in the case of symmetrical D-A pairs
and spherical orbits for different pair separations R.
The values of me, mp €, and €; are those of GaP given
in Sec. III; the columns 2 and 3 show the results for €,
#€, and AE,p is the contribution due to the e-ph interac-
tion; columns 4 and 5 show similar results for €, = €.

€™ € €0 =€

RA) a) E(V) AEpEeV) a(d)  E(eV)
5 28.935 —0.2779 -0.0060 35.694 —0.2724
10 19.830 -0.1525 -0.0087 25.491 —0.1447
15 13.210 -0.1238 -0.0131 15.159 -=0.1115
20- 11.748 —0.1194 —0.0148 12,777 -0.1052
25 11.410 -0.1195 =0.0152 12.229 -0.1048
30 11.350 -0.1202 -0.0153 12.103 -0.1054
35. 11.365 -0.1207 -—=0.0153 . 12,100 -0.1059

All the integrals appearing in relations (18a)-
(18e) can be performed analytically. The results
are given in the Appendix [Eqs. (A21)-(A25)]. The
integrals have also been evaluated numerically for
different values of R, a, and s. The results are
in complete agreement with the values given by
their analytic expressions. This is very useful
in order to control the numerical analysis in-
volved in the case of unsymmetrical pairs. These
analytical expressions verify most of the results
from Roothaan’s paper,? except for small differ-
ences in the coefficients of the R* and R® terms in
G,.
. To compare with the previous theoretical calcu-
lations by Mehrkam and Williams," we take m,
=m, and €,=¢,. Then, the analytical form ob-
tained in using Eqgs. (16) and the results of the
Appendix in the expression (15) for the D-A pair
energy, coincides with that of Mehrkam and Wil -
liams, except for minor differences in a few co-
efficients.

The expectation values (14) and (15) of the energy

are now minimized with respect to the variational
parameters. The values of the parameters and
of the energy at the minimum are given in Table I
for the case of spherical wave functions and in
Table II when s-p mixing is allowed. The values
chosen for the different physical parameters m,
=0.365 (Ref. 22), m,=0.67 (Ref. 23), ,=9.09
(Ref. 24), and €,=11.02 (Ref. 25) are those of a
typical III-V compound, GaP, and the range for
the D-A separation is that where experimental
results are available. :

To determine the contribution AE_ to the pair
energy due to the interaction with the phonons,
we have separately evaluated the terms coming
from the ionic polarization of the lattice, i.e., the
terms containing €l --e[,1 as a factor. In this latter
calculation, the values of the parameters obtained
previously by minimizing the total energy were
used. This correction AE  is given in Tables I
and II, depending whether the s -p mixing is in-
cluded or not. It amounts to about 10% except for
very close impurity centers.

To compare with results of previous theoretical
work®® in which the effects of e-ph interaction were
neglected, we have also minimized the expectation
value of the Hamiltonian in which we put €, =¢€,.
The results are also given in Tables I and II.

B. Unsymmetrical pairs

Without p-orbital admixture the total energy be-
comes

Blay @)=y + s (1 8) (2.2
G = oma® " 2m, 02 " 16\, e )\a «
2
- o7 L80la) + 0(@) + gla, @) ~gla,a)],

(19a)

where g, has been defined in Eq. (16b) and

TABLE II. Variational results for the orbital radius a, the admixture parameter s, and the
energy E in the case of symmetrical D-A pairs with s-p mixing as a function of the pair sep-
aration R. The values of mg, mps €o, and €y are those of GaP (see Sec. III); the columns 2—5
show the results for €,*€, and AEep is the contribution of the e-ph interaction; columns 6-8

show similar results for €, =€,.

€, =€ €0 =€

RA  al s E(eV)  AEgev)  a () s E (eV)

5 22.152 -0.0634 —0.2906 —0.0078 25.527 -0.0560 -0.2833
10 21.180 -0.1068 —0.1561 —0.0096 17.960 -0.1137 —-0.1650
12.5 15.468 —-0.1197 -0.1435 —0.0112 18.149 -0.1190 -0.1331
15 13.754 —0.1147 —0.1323 —0.0126 15.661 -0.1182 -0.1204
20 12.226 —0.0938 —0.1235 —0.0142 13.398 —0.1005 -0.1099
25 11.699 ~0.0765 -0.1213 —0.0148 12.624 -0.0784 -0.1070
30 11.509 —0.0500 —0.1209 -0.0151 12.333 -0.0578 —0.1064
35 11.444 —0.0335 —0.1210 —-0.0152 12.224 —0.0405 -0.1063
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R a)?
a a 1

AT T TET

e2R/e (19p)

Finally the general case of unsymmetrical pairs with p -orbital

2 2
E(a,a,s,0)= ﬁ 7

(1+sz/2)_e;z (1+02/2)_ei

2 2 = 2 -
2m,a®  2m, 1+s% €

€&

+ 21— gy(a) + 25,(a) + 5%, @) - go(@) —20g,(@) + 0%g,(a)]

ER

—(i —%;) ()’(S)%z-'f'}’(o)%;)*(ﬁ'sz)—

where the g and y functions are defined in Eqgs.
(16), and G is given in the Appendix.

The variational results are given in Tables II
and IV, for the cases without and with s -p mixing,

respectively. Again the example of GaP has been

selected. The results confirm that the contribu-
tion of the e-ph interaction to the energy of the D-
A pair is about 10%.

. Table V gives the same results in the unsymme-
trical case without and with s-p mixing for ZnSe.
Here the physical parameters used are: m,=0.16
(Ref. 26), m,=0.52 (Ref. 27), ¢,=6.10 (Ref.
28), and the value €,=9.42 is determined in a way
described in Sec. IV,

IV. COMPARISON WITH EXPERIMENT

The application of the theory to experiment is
based on computed eigenvalues, such as reported
in Tables I-IV for GaP and Table V for ZnSe. As
explained in Sec. III, the known experimental val-
ues of m,, m,, and €, were used and a, @, s, and
o were variational parameters.

As for ¢,, the electron-hole recombination spec-

ez
(1+07) R’

(20)

r
tra of the D-A pairs seem to give the most precise
experimental values. Indeed, the recombination
energy can be obtained in the following way. The
energy of the excited D-A pair (i.e., before reeom-
bination) with respect to an empty conduction band
and a filled valence band is E, + E(R), where E,

is the energy of the band gap and E(R) is the pair
energy calculated in Sec. III. The ground-state
energy (i.e., after recombination) is simply the en-
ergy —e*/e,R due to the Coulomb interaction be-
tween the ionized donor and acceptor impurity
centers. The self-energies of the cores of the im-
purity centers remaining unchanged during the
transition, cancel in the evaluation of the transi-
tion energy and thus are not introduced explicitly

in the calculation of the transition energy. There-
fore, the energy of the emitted photon for a zero-
phonon transition is

Kl

hv=E,+E(R)+ R

(21)
As both centers are neutral in the excited state,
their interaction vanishes faster than 1/R at large
D-A separation. Therefore, the asymptotic be-

TABLE III. Variational results for the orbital radii @, @, and the energy E in the case of
unsymmetrical D- A pairs and spherical orbits as a function of the pair separation R. The
values of m,, mp, €o, and €, correspond to GaP, given in Sec. III; the columns 2—5 show the
results for €, *€; and AE,p is the contribution due to e-ph interaction; columns 6—8 show sim-

ilar results for €, =€,.

€ €,

R Q) a (&) a (&) E (eV)

5 30.487 24.074 —0.2784
10 21.000 13.364 —0.1554
15 16.293 8.777 —0.1330
20 15.177 8.176 —0.1305
25 14.807 8.080 —0.1309
30 14.697 8.087 —0.1315
35 14.683 8.110 -0.1319

€p =€
AEep (V) a (A a ) E (eV)
-0.0064 36.253  29.706 ~0.2725
-0.0106 26.254 18.365 - —0.1460
-0.0152 18.022 9.793 ~0.1186
-0.0163 16.417 8.800 —0.1148
—-0.0166 15.877 8.624 -0.1149
-0.0166 15.694 8.610 -0.1154
—0.0166 15.650 8.633 ~-0.1158
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TABLE IV. Variational results for the electron and hole orbital radii (¢ and @), the electron and hole s-p mixing pa-
rameters (s and 0), and energy E in the case of unsymmetrical D-A pairs as a function of the pair separation R: The
parameters used for m,, my, €5, and €. correspond to GaP (see Sec. III); columns 2—7 show the results for €, #€; and
AE.p is the contribution of the e-ph interaction; columns 8-12 give similar results for €, =¢€,.

€0 # € € =€

RA ald) od s o E(eV) AEgeV) ad)  a ) s o E (eV)

5 24.707 19.427 —0.0605 0.0563 —0.2907 —0.0078  28.172 22.872 —0.0548 0.0501 —0.2833
10 20.223 12.558 —0.1053 0.0451 —0.1655 —0.0112  23.754 16.060 —0.1007 0.0435 —0.1553
12.5 18178  9.900 —0.1099 0.0400 —0.1473 -0.0135  20.431 11.679 —0.1156 0.0334 —0.1346
15 17.089  8.881 —0.1064 0.0351 —0.1390 -0.0148  18.864  9.905 —0.1134 0.0310 —0.1250
20 15.856  8.267 —0.0914 0.0253 —0.1334 —0.0159  17.277  8.914 —0.0999 0.0232 —0.1181
25 15.238  8.138 —0.0709 0.0198 —0.1322 —0.0163  16.458  8.699 —0.0794 0.0188 —0.1164
30 14.944 8119 —0.0522 0.0157 —0.1321 —0.0165  16.044  8.655 —0.0598 0.0158 ~—0.1161
35 14.815  8.127 —0.0372 0.0120 —0.1321 —0.0165  15.848  8.658 ~—0.0437 0.0129 —0.1161

havior of the-quantum of emitted radiation for
large R is, as first given by Hopfield et al.?® for
zero-phonon pair spectra:

62

&R’ 22)

hv=E, —(E,+Ep)+
where E, and Ej are the absolute values of the ion-
ization energies of, respectively, the acceptor
and the donor centers. This shows that the rela-
tion between kv and 1/R should asymptotically be -
come a linear function with a slope equal to €%/¢,.
For this reason, we have plotted the experimentsl
values for v vs 1/R. The results are shown in
Fig. 2 for GaP (doped with Sn and Zn) and Fig. 3
for ZnSe (doped with In and Li), respectively.
These figures clearly show that the asymptotic
behavior for 1/R going to zero is actually linear.
In the case of GaP, the straight line corresponding
to the value ¢,=11.02 proposed by Vink et al.?®
seems to have the right slope. Due to the uncer-
tainty of the experimental values, it does not seem
possible to improve on this result. In the case of
ZnSe, however, very precise measurements are

available.®® This allows the determination of the
slope by means of a linear-regression technique.
The application of this method to the measurements
carried out at pair distances R larger than 30 1°§,
leads to €,=9.42 and E, ~ (E4 + Ep)=2,6823 eV,
The value obtained in this way for ¢, is different
from that determined by other means,?7:31»3

Comparison between our theoretical predictions
and the experimental results® are shown in Fig.

2 for GaP. The improvement obtained in allowing
p admixture is evident from- this figure. The un-
certainty in the experimental D-A pair spectra of
GaP does not justify more detailed application of
the theory in this case.

The situation is different for ZnSe: In, Li*® as
shown in Figs, 3 and 4. A more detailed applica-
tion of the theory to the experimental spectra of
ZnSe: In, Li is thus justified. An interesting as-
pect is the study of the deviation at short distance
from the asymptotic law given sbove. This leads
to consider the transition energy from which the
Coulombic term ¢®/e,R has been subtracted. This
quantity denoted AE is plotted versus R-in Fig. 4,

TABLE V. Variational results for unsymmetrical D-A pairs. The values used for m,, my, €, and €, are those of
ZnSe (Secs. III and IV); columns 2—4 show the results for the electron and hole orbital radii (a, @), the energy E, and
the e-ph interaction energy AE,, in the case of spherical orbits; columns 5-10 give the results for the electron and hole
orbital radii (a, @), the electron and hole p admixture (s,0), the pair energy E and the e-ph contribution to the pair en-

ergy ir the case of p-orbital admixture.

without p admixture

with p admixture

RA ad <« E@V) AEyev a@)  a@ s o E(eV) AE (eV)
5 42.127 24,991 —0.3264 —0.0166 34.884 21.045 —0.0485 0.0512 -0.3383 —0.0198
10 34.987 15.328 -0.1798 -0.0244 32.184 13.767 -0.0826 0.0597 -0.1904 —0.0269
15 29.538 9.251 —0.1483 —0.0369 29.918 9.192 -0.1010 0.0471 —0.1567 -0.0369
20 28.151 8.390 -0.1426 —0.0402 29.404 8.423 —0.1140 0.0269 -0.1482 —0.0397
25 27.446 8.193 -0.1417 ~0.0412 28.969 8.227 -0.1157 0.0147 ~0.1453 —0.0406
30 27.034 8.148 —0.1418 —0.0415 28.484 8.175 -0.1089 0.0082 —0.1440 ~0.0409
35 26.795 8.146 —0.1420 -0.0416 28.004 8.165 —0.0972 0.0050 —0.1434 —0.0411
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FIG. 2. Pair-transition energies [Eq. (21)] for GaP:
Zn, Sn plotted against the reciprocal of the pair separa-

asymptotic law [Eq. (22)]; , present theory
without s-p mixing; ----- , present theory with s-p mix-
ing.

where it is compared to its experimental counter-
part. The value used for E, - (E, + Ep) is that ob-
tained by linear regression, as explained above.
This focuses attention on the R dependence of the
non-Coulombic terms. Again the importance of

p -state admixture is evident from comparison of
the theoretical curves obtained with and without

- this admixture,

V. DISCUSSION

The present analysis and its application to ex-
perimental spectra are distinguished from previous
work on D-A pairs as follows: (1) the variation of
the parameters of the electronic wave function is
accomplished including electron-phonon interac-
tion; (2) the variational analysis involves four pa-
rameters allowing independent variations in the
radii and p -state admixtures for the electron and
positive hole effective mass functions; (3) the
comparison of experimental and theoretical spec-
tra is made by a systematic procedure, proceeding
from distant pairs to nearer pairs; (4) the princi-
pal applicatien is to shallow dopants in ZnSe, for
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FIG. 3. Pair-transition energies av for ZnSe: In, Li
plotted against the reciprocal of the pair separation 1/R;
the points are the experimental values (Ref. 30); the
full line shows the asymptotic behavior of hv [Eq. (22)]
obtained by linear regression, with € (=9.42 and E,
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FIG. 4. Deviation AE of the pair energy from the
asymptotic law (AE=hv —e?/e oR) at the case of ZnSe:
In, Li; the points correspond to the experimental data
(Ref. 30) with € j=9.42; the dotted and full curve show
the theoretical results without and with p-orbital admix-
ture, respectively.
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which more accurate tabulated experimental spec-
tra have been published and which constitute a
better test of effective mass theories of D-A pairs
than appears to be the case for the extensively
studied GaP,

Although the essential features of the zero-pho-
non D-A pair spectra from shallow dopants in GaP
and in ZnSe are accounted for by the theory, there
are several small quantitative discrepancies which
may arise from effects not included in the present
theory. The main discrepancy between theory and
experiment is that the theoretical curve with s-p
mixing on Fig. 4 lies slightly (~107 eV) below the
experimental points for pairs with R between 15
and 25 A. At first sight, this is unexpected for a
variational treatment. Correlation in the electron
and hole wave functions, which is not included in
the present theory, cannot explain this discrepancy
because it would yield an even lower theoretical
curve at small R. A possible contribution to this
discrepancy is that the adiabatic approximation is
of limited validity for these dopants. If the pre-
cision of our theoretical results is weaker at large
pair distance, choosing the zero of energy to ob-
tain the correct asymptotic value (large R) for AE
would bring the theoretical curve below the exper-
imental points for shorter pair distances.

Another possible contribution to the discrepancy
between the present theory and experiment is the
central-cell effect, particularly R-dependent ef-
fects of the central cell. The central-cell effect
is small for ZnSe: In, Li; larger for GaP: Sn, Zn.
As is evident from the tables the effective Bohr
radii for electron and hole increase markedly at
small R. Continuity of the wave function into the
central cell will thus reduce amplitude within the
central cell, thus decreasing the £, and E, for
those pairs with small R. Therefore, the inclusion
of the R-dependent central-cell effect will raise
the theoretical curve at small R. This should be
more important for pairs in GaP than for those in
ZnSe.

VI. CONCLUSIONS

In the present paper we have studied the impor-
tance of several effects on the electron-hole re-
combination energy as a function of the D-A separ-
ation for GaP and ZnSe,

The contribution due to the e-ph interaction var-
ies from about 9 to 15 meV for GaP and from
25 to 42 meV for ZnSe. These contributions are
far from being negligible since the total energy
E(R) is on the order of 130 to 150 meV and 140
to 190 meV for GaP and ZnSe, respectively.

Allowing different radii for the donor and accep-
tor orbitals introduces a correction of about 10%

for GaP (compare Tables I and III and Tables II
and IV). In ZnSe, the difference in hole and elec-
tron mass is much more pronounced than for GaP.
Therefore treating the donor and acceptor in a
symmetrical way (equal radii) would be meaning-
less.

Mixing a p contribution to the s-like individual
wave functions of the donor and acceptor leads to
a correction of almost 109% for close pairs (com- .
pare Tables I and II and Tables III and IV for
GaP; see columns 4 and 10 of Table V for ZnSe).

Therefore all the effects considered in the pres-
ent paper are of the same order of magnitude.
However, their behavior versus the D-A separa-
tion is different. The orbital radii that measure
the delocalization of the electron and the hole as
well as the p-state admixture increase, whereas
electron-photon interaction decreases, for the
nearer pairs characterized by small R. The de-
crease of the e-ph interaction energy is due to
an increase in the overlap of the electron and hole
wave functions that is responsible for a partial
compensation in the total static charge.

The published experimental spectra for shal-
low dopants is found to be more precise, and to
provide a more critical test of effective-mass
theories of D-A pairs, for ZnSe than for GaP.
The application of the present theory to the spectra
of ZnSe: In, Li reveals that ¢, for ZnSe is larger
than previous values,?””3232 most probably 9.42.
The €, for GaP of 11.02 is confirmed.

The small remaining discrepancies between
theory and experiment are tentatively attributed
to R dependence in the departure from adiabat-
icity and R dependence in the central-cell per-
turbation. Effects of correlation may be apprec-
iable; however, their inclusion will not improve
the agreement with experiment.
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APPENDIX

In this Appendix we give explicit expressions for
the different contributions in the expectation value
of the total energy (11) in the general cases (un-
symmetrical and symmetrical pairs with s-p mix-
ing).

By straightforward integrations, one obtains
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In the symmetrical case (a= ®; 0= -s) the expressions (A14)-(A19) reduce to Eqs. (18a)-(18e)
and finally after performing the integration over 2, we obtain
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