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Line shapes for electron-hole plasmas in semiconductors. I. The heavy-hole to spin-orbit
split-band transitions in electron-hole droplets in Ge

C. H. AMrieh 3.nd R. N. Silver
Testing and Theoretica/ Diuisr'ons, Los Alamos Scientific Laboratory, Los A/amos, ¹taMexico 87545

(Received 30 April 1979)
%'e report details of a new theory for the luminescence and absorption line shapes of electron-hole

plasmas in semiconductors. The theory includes the physical processes which lead to the creation of single-
plasmon or particle-hole pairs. It is the extension to line-shape problems of the random-phase
approximation which has been successful for the thermodynamic properties of electron-hole liquids.
Extensive calculations are presented and compared to experiments on the cross section for absorption due to
heavy-hole to spin-orbit split-band transitions in electron-hole droplets in Ge. Good agreement with the
observed broad line shape is obtained when details of the valence-band structure of Ge are included. In an
appendix, we present an analysis of the dielectric function in the spherical model for the it/ valence-band
Hamiltonian of diamond and zinc-blende semiconductors for finite spin-orbit splitting.

INTRODUCTION

Our understanding of electron-hole condensates
in highly excited semiconductors has been largely
acquired by the study of their optical transitions. '
The simplest theory for the line shapes assumes
thatelectro» and holes act as free particles in-
side conduction and valence bands renormaI. ized
by the many-body interactions. This "free-
particle theory" has successfully explained the
line shape for electron-hole-droplet (EHD) lumin-
escence in indirect semiconductors apart from a
weak low-energy tail. ' In indirect transitions,
phonons take up the momentum difference between
initial and final states. However, in direct tran-
sitions, where momentum must be conserved,
the free-particle theory is l.ess successful. The
gain spectra of highly excited direct semicon-
ductors are better fit by an assumption of no
momentum conservation. ' Large-broadening
parameters are required to fit transitions between
heavy-hole and light-hol. e bands responsible for
the plasmon width in EHD in Ge.' The most
striking example of the failure of the free-particle
theory has been the absorption due to transitions
between heavy-hole and spin-orbit-split bands in
EHD in Ge. ' The observed absorption is much
broader than the free-particle prediction as
shown in Fig. 1.

Theories for the deviations from free-particle
theory have in common that they take into account
physical. processes which leave the electron-hol. e
plasma in an excited state." Scattering of elec-
trons and holes with the creation of elementary
excitations in the plasma will cause apparent de-
viations from the momentum conservation re-
quired for dir ect trans itions. However, the
theories differ in the methods of calculating these
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FIG. 1. Comparison between the free-particle theory
and experiment (Pokrovsky and Svistunova, Ref. 5) for
intervalence band transitions in electron-hole droplets
in Ge. The dashed curve uses the spherical model for
the valence-band structure. The solid curve keeps
the spherical-model matrix elements but uses the full
anisotropy of the effective masses. The lower-energy
peak is due to light-hole to spin-orbit-split band tran-
sitions. The higher-energy peak is due to heavy-hole to
spin-orbit split-band transitions.

effects and in their agreement with experiment.
In this paper, we discuss details of a new theory

for the line shapes of electron-hole plasmas.
We take the heavy-hole to spin-orbit-split band
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transitions in el.ectron-hole droplets as a quan-
titative test of the theory. We show that the line
shape may be understood within the random-phase
approximation which has previously been success-
ful for thermodynamic properties. ' Agreement

.with experiment requires taking into account both
the creation of elementary excitations and details
of the valence-band structure of Ge.

This paper is a detailed account of work which
has previously appeared in preliminary form
elsewhere. '" The arguments presented herein
are largely intuitive. A later paper mill discuss
the derivation of our results from the standpoint
of formal kinetic and transport theory. "

The organization of this paper is as follows.
Section II reviews previous theories for the line
shapes of electron-hole plasmas. Section III
discusses the qualitative physics of our approach
to line shapes taking the case of heavy-hole to
spin-orbit-split band transitions as both motiva-
tion and illustration. Section IV contains our de-
tailed calculations for these transitions. Section
V contains concluding remarks and a discussion
of the implications of our theory for other tran-
sitions. Appendix A contains detail. s of the di-
electric function for zinc-blende semiconductors
for finite spin-orbit splitting in the spherical
approximation. Appendix B contains details of
the multiple-scattering arguments in Sec. III.

II. REVIEW OF PREVIOUS THEORIES FOR LINE SHAPES

A. Comparison of the free-particle theory and experiment

The spherical approximation to the valence-
band structure of diamond and zinc-blende semi-
conductors is illustrated schematically in Fig. 2
and developed in detail in Appendix A. In elec-
tron hole droplets, the hole bands are filled up to
a Fermi level. marked &&. In this paper, we are
concerned with transitions between the two de-
generate hole bands and the spin-orbit split
band. Since photons carry negligible momentum,
these transitions must be direct in the absence
of scattering processes, i.e., they must be verti-
cal in Fig. 2. For an initial hole in the heavy-
hole band, the highest momentum a final hole in
the spin-orbit split band can attain is the Fermi
momentum. Thus, the free-hole theory predicts
a sharp cutoff in the absorption at a frequency
marked v, . There is also a sharp threshold at
the spin-orbit splitting marked vth. The light-
hole band which contains only 5/p of holes con-
tributes a very narrow absorption below vth which
also has a sharp cutoff. The existence of a cutoff
frequency v, and a threshold frequency vth is re-
tained when the spherical approximation is re-
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FIG. 2. Schematic valence-band structure of Ge in the
spherical model. The spin-orbit splitting 4' is renor-
malized by the many-body interactions in electron-hole
droplets. The hole states in these bands are occupied up
to a Fermi level e&. Three is a sharp threshold vt& for
hole to spin-orbit-split band transitions. In the free-
particle theory transitions between bands must be verti-
cal (conserve A). There is a sharp cutoff at v~ corres-
ponding to the momentum of a final particle in the spin-
orbit-split band equal to the Fermi momentum in the
heavy-hole band. The existence of a v th and v~ in the
free-particle theory is not altered by the extension to
anisotropic bands.

placed with the fully anisotropic band structure.
Calculations in the free hole theory using the

matrix elements derived in Appendix A are
shown in Fig. 1. The dashed curve is the result
for the spherical approximation. The solid curve
retains the spherical model matrix elements but
uses the fully anisotropic effective masses. The
dots are the measurements of Pokrovsky and
Svistunova' normalized close to the cross section
of 3 x 10 "cm' at 3.3 p.m measured by Worlock
et al,." It is clear that the free-hole theory is
inadequate.

We believe that the physical phenomena re-
sponsible for the deviation from the free particle
theory are the same in our example and in several
other transitions. For the purpose of later dis-
cussion, we therefore rewrite the free-particle
theory in the general terms of a transition rate
between two bands labeled 1 and 2. The free-
particle formula is then for direct transitions

I,'(kv) = f d~k [i —f(e~)]f(e~) [ Mz [
'

&& 5(SP —Eg —6ip+ ci)

where the f are Fermi functions, E,' is a re-
normalized gap energy, Mp is a matrix element
which may be k dependent, and the c& are the
energies in band i. In our example, band 1 is



602 C. H. ALDRICH AND R. N. SILVER

the spin-orbit-split band, 2 is the heavy-hole
band, E~ the renormal. ized spin-orbit splitting,
and Mg is O(~ k( ').

B. Landsberg theory

Landsberg' observes that an electron above the
Fermi surface or a hole below it can decay by

the creation of an e1.ementary excitation in the
electron hole plasma. The initial and final states
in a transition should therefore be broadened by
their widths such as can be calcu1.ated within the
random-phase approximation (RPA). Formuia
(1) is modified to

(2)

where I"'(e)-, } is the HPA width in band l. Several
authors have c1aimed success for this approach
for the gain spectra of direct-gap semiconduc-
tors" and of analogous formulas for EHD lumin-
escence in indirect semiconductors. '~

However, for heavy-hole to spin-oribt band
transitions, Eq. (2) is inadequate. It predicts
that at energies both below the free-particle
threshold v,h and above the free-particle cutoff-
v, the absorption should vary as -(v —E,'} ' in
qualitative disagreement with experiment. %e
have calculated the prediction of Landsberg theory
using the RPA widths discussed later in this
paper. The comparison with experiment is shown.

in Fig. 3.
C. Brinkman and Lee theory

A perturbation theoretic approach to line shapes
has been explored by Brinkman and Lee.' They

evaluate the correction to free particle theory to
first order in the dynamicall. y screened Coulomb
potential. The free-particle theory for interband
lineshapes can be represented in terms of a polar-
ization graph as shown in Fig. 4. The dots rep-
resent coupling to photons, the double line repre-
sents the Green's function for band 1, the single
line, the Green's function for band 2. Cutting
the diagrams as shown by the dashed l.ine repre-
sents taking the imaginary part of this polarization
part with partic1. es in bands 1 and 2 in initial or
final states.

The corrections calculated by Brinkman and Lee'
are shown in Fig. 5. Here the wiggly line repre-
sents the dynamically screened Coulomb inter-
action. Diagrams of type (a} to (c) admit of the
simplest physical interpretation. They represent
processes with a plasmon or single particle hole
excitation in the final state. They can be inter-
preted as the square of the amplitudes shown in
Fig. 6. The contribution to be added to the free-
hole theory, Eq. (l}, has the form

al', (hv) =f chad%, d'k, [1 f'(a'„))f'(a'-)-"
K0
E"
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FIG. 3. Comparison between Landsberg theory and
experiment for intervalence band transitions.

FIG. 4. Diagram for interband transitions in the
free-particle theory for line shapes. The dot () de-
notes the coupling to photons. The dashed line cutting
the diagram represents taking the imaginary part of
this proper polarization graph to obtain the absorption.
Particles in bands 1 and 2 are in the final state.
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(a) (b)

Here e(q, e) is the dielectric function for the
electron-hole plasma and V(q) is the Coulomb
potential.

The difficulty with Eg. (3) is that the denomina-
tors can be zero, yielding a divergent correction
to the free-particle theory. Brinkman and Lee
make a plasmon-pole approximation in which the
true excitation spectrum of the electron hole
plasma is replaced by a single high-frequency
plasmon mode. This is often a good approxima-
tion because it is designed to satisfy the sum
rules. For the problem which they treat, the
gain spectrum of GaAs at moderate electron-
hole densities, it is not possible in the plasmon
pole approximation to satisfy simultaneous ly
both the energy-conserving delta function and zero
denominators. This is because the plasmon fre-
quency is much greater than the sum of Fermi
levels for electrons and holes. Therefore, they

(e) (~)

FIG. 5. Corrections to the free-particle theory con-
sidered by Brinkman and Lee. The wiggly line repre-
sents the dynamically screened Coulomb interaction.
(a)—(c) Correspond to processes with plasmon or par-
ticle-hole excitations in the final state. as well as par-
ticles in bands j. and 2. (d)—(f) Processes where there
are no plasmon or particle-hole excitations in the final
state.

obtain a nondivergent correction to the free-
particle theory. However, this approximation be-
comes divergent as the density increases (or x,
decreases) in contrast to one's expectation of
improved agreement with perturbation theory as
the density increases. This is because the plasma
frequency increases as n'' while the Fermi levels
increase as n' 3, where n is the electron-hole
pair density. Further, in the problem of heavy-
hole to spin-orbit band absorption in el.ectron-
hole droplets in Ge, the parameters are such that
(3) is divergent even in the plasmon-pole approx-
imation. In all problems, Eq. (3) is divergent
when the true excitation spectrum is used in-
stead of the plasmon-pole approximation. The
true excitation spectrum for electron-hole plas-
mas in zinc-blende semiconductors is discussed
in Appendix A.

The other diagrams are also somewhat patho-
logical. Diagrams 2(d) and 2(e) correspond to
first-order terms in a self-energy insertion in
the propagators. They diverge as the photon fre-
quency approaches the threshold for the transi-
tion. Brinkman and I ee simply interpolate through
the threshold region. Figure 2(f) corresponds
to the first vertex correction. It is the term re-
sponsible for the enhancement factor. It is also
divergent when the plasmon-pol. e approximation
is replaced with the true spectrum.

III. QUALITATIVE PHYSICS OF HEAVY-HOLE TO
SPIN-ORBIT BAND TRANSITIONS

The previous discussion has shown that the free
hole theory and I.andsberg theory' poorly describe
the line shape for heavy-hole to spin-orbit band
transitions. The Brinkman and I ee' perturba-
tion approach is divergent for these transitions.
Nevertheless, these theories are relevant to this
problem since they can be shown to be limits of
the more general theory which we n0w present.
However, to motivate our approach we take the
different starting point of mult'iple-scattering
theory. The derivation presented below is not
unique. The result can alternatively be obtained
using ideas in formal transport and kinetic theory,
as we intend to show in a future pubs. ication. "

'lg

kl kt hv

FIG. 6. Feynman diagrams for the amplitudes for in-
terband transitions which when added and squared yield
Figs. 5(a) to 5(c). The co and q are the energy and mo-
mentum given to plasmon or particle-hole excitation.
The k& is the initial momentum of a particle in band 1,
the k& is the final momentum of a particle in band 2. The
5 v is the incident-photon energy.

A. Multiple-scattering approach

In their original work Pokrovsky and Svistunova'
observed that the intervalence band absorption
due to excitons and acceptor levels is similar to
the measurements for electron-hole droplets.
Smith, Chen, and McGill" have shown that the
exciton intervalence band absorption measures
the momentum spreading of the exciton wave
function. In electron-hole droplets, as well as
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X 5(RV - t(2 + Ek") .
Here the l g;& are the wave functions for hoies in

the heavy-hole band, l k& is plane wave state, M(",

is an interband matrix element, and the f is a
statistical factor. For the free-hole theory the

l P;) are plane wave states and the sum over i
runs over the momenta of holes in the heavy-hole
band For.the exciton case, the l g; &

are exciton
wave functions and i runs over the CM momenta
of the excitons. For acceptor levels, 'the

l P;&
are acceptor wave functions and i runs over the
impurities. The problem, then, is the choice of

l (I(;& when only scattering states are present.
First we consider the problem of the interband
absorption in the presence of uncorrelated impur-
ities which interact with holes via a highly
screened but static potential V.

For the interaction of holes with a single im-
purity, the scattering wave' function l gk& would

satisfy

(kl ((", &
= (2x)'5(k —k')

Pkl V l P & exp[-i (k —k') ~ r]
hh—E~i -26

where r is the impurity position. When (5) is
substituted into (4), one finds apart from forward
scattering terms k = k', a correction to be added
to the free-hole theory

(5)

M„;&k,l vl q'-„,.
&

ka(ku) =2 f d'k, . d'kqf(e" ,)-—6p +Sv —'Lc
ky y

x 5(kv —e( + f(, ) .
In the Born approximation (kl Vlg-'& =(kl Vl k'&,
Eq. (6) is the lowest-order correction to the free-
hole theory. It is also the impurity scattering
analog of the square of the diagram in Fig. 6(b)
of the Brinkman and Lee theory. ' Note that at
vugh & v & v, . where v th and v, are identif ied in Fig.
1, Eq. (6} is divergent because the denominator
Ej-, —&"„'&+Sv can be zero as in the Brinkman and
Lee theory. However, for high frequencies

(6}

in degenerately P-doped semiconductors, the
screening is sufficiently large that bound states
such as excitons or acceptor levels are absent.
Our approach is to find an ansatz wave function
appropriate to the limit where only scattering
states are present.

Specifieal. ly, consider an idealized model. of
spherical heavy hole and spin-orbit split bands
where the Coulomb potential acts only on particles
in the heavy-hole band. Then, the absorption can
be written schematieal. ly

(2')= Z f d'22'~"")IM. I',l. (kid-;&I'

The extinction theorem states that in an infinite
system the free-particle part [the (2w)'5(k —k')
in Eq. (5)] must be completely cancelled by the
scattered waves. The following ansatz wave func-
tion satisfies the extinction theorem

( kl g(,.&
=—(2w)'5(k - k')

exp[i(k-k') rs](kl VI ge )
~

~

e(, + &(k) —~(-,. (8)

The proof of this and other arguments in this
section may be obtained in Appendix B.

We now substitute the wave function (8) into (4)
and impurity average. As shown in Appendix B,
the parts which are singular as k- k' exactly
cancel with the result

dR
u(kv) = 2n, (,-', f(e )

2m)'

d 'u, liVf~l'l&k, lVIES;,. &I 5(@v-e„-",+e";",)
[e"-„"+&""

(k~) —e-,
"

+ e(d]'

(9)

Now we note several remarkable properties of
Eq. (9). First in the limit Z(kq)- 0, Eq. (9) is
the lowest-order perturbation correction, Eq. (6),
to be added to the free-hole theory. Second, at
high frequencies v» v, it reproduces the pertur-
bation result. Third, at low frequencies v& v„
(9) is convergent. Fourth, in the limit of weak
scattering or low densities of impurities (9) re-
duces to the free hole theory. This last state-
ment is easily proved with the aid of the optical
theorem, Eq. (7). Moreover, explicit calculation
of (9) with, for example, a screened Yukawa po-

v » v„where the denominator is nonz ero because
of the Fermi function f, (6) should be the valid
perturbation correction.

For our system of uncorrelated impurities, we
must find a wave function which preserves the
high-frequency result, is finite at v& v„and re-
covers the free-particle result in the weak scat-
tering limit V- 0. Our choice is motivated by
the idea of a coherent wave in multiple-scattering
theory and by the extinction theorem. " The co-
herent wave idea is that a plane wave propagating
through a system of uncorrelated scatterers is
attenuated and the effective wave vector shifted.
The result is the addition to the energy &p of a
self-energy Z(k) related to the forward scattering
amplitude by n, (kl V l P(-,&, where n, is the impurity
density. That this produces the correct attenua-
tion can be obtained from the optical theorem

im(kIvl y'„-& =-
& &I

"'
&klvl y'-„,&l';
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tential shows that it reproduces the character-
istics of the data. This includes a peak at low

frequencies close to the free-hole theory and a
slowly decreasing tail at high frequencies. This
calculation is shown in Ref. 10 for various values
of screening. We take Mj-, -kM which is the low-A

dependence of the matrix element for interband
transitions as shown in the Appendix A. Thus, the
multiple-scattering ansatz wave function, Eq. (8),
already contains the principal effects associated
with the line shape for heavy hole to spin-orbit
band transitions. It aI.so shows clearly the re-
lation of the line shapes of excitons and acceptor
levels to the r'esults for electron-hole droplets.

B. Extension to electron-hole droplets and the
random- phase approximation

In going from impurity systems to electron-
hole droplets the principal effect is to change from
scattering off impurities to scattering off the
elementary excitations of the electron-hole plas-
ma. We shall turn Eq. (9) into the electron-hole
droplet result by pointing out how the various
quantities in (9) are transformed in going from
impurities to excitations. The formulas below
apply only at T =O'K. The finite temperature gen-
eralization will be discussed elsewhere.

Unlike impurities, elementary excitations can
also take up energy h~. Thus, the statically
screened potential should go to the dynamically
screened potential:

(10)

where e(q, &o) is the dielectric function of the
electron-hole plasma and V(q) is the coulomb
potential. The impurity density n& should go to
the density of elementary excitations

n -2 Pf d»v f f'(0)

x[1-f'(k+q))5(k(o+e„' —e~ )

where i denotes each component of the plasma.
This in turn is related to the imaginary part of
the dielectric function

1 e (q, (u)
nI dS+ (12)

The coherent-wave self-energy must go to the
self-energy due to scattering off elementary ex-
citations. This is given by the random-phase-
approximation self-energy. The imaginary part
of the RPA self-energy may be written-

& (k) =
@

—
» lm 5(e» —e». +km)r 2m d'q dk(u V(q)

27l 7T f q, (O

(14)5(wv —t» +e». ) 5(Iv e» + e» -k(d) .Af A~

Here we assume that the real part of the self-
energy produces a rigid-band shift. Finally, one
should relax the assumption made in deriving (9)
that scattering only occurs in the heavy-hole
band. Thus, allowing for scattering in the spin-
orbit-split band, one has

x 8(a(»~ —e».)); q =k —k',

(13)

where + signs refer to particles below or above
the Fermi surface, respectively. The energy-
conserving 5 function in (9) must allow for the
fact that energy can be given to the elementary
excitations:

Mgf kfM kgM
eh»~ ghh(k ) eso+@p eh»+ Eh»+ ffv iso E &0 eh»+ Ehh ~kp e~ g so

Af f f f f
Here, the two terms in Eq. (15) correspond to the two diagrams in Fig. 6, and we again take M»z-k~M
appropriate to interband transitions.

Putting all. this together, the final schematic expression for the intervalence band absorption has the
form

& k)& ky dA(d AM k)M(2s)', w e~»" + Z~~ —eg - (ZP) ++Iv e,»»+ ZP+kv - eP - (ZP) +

xf(e~) fm ~5(tv+ ep —ep —a'(u),
&(q ~))

where the asterisk denotes complex conjugate.
Note that this form is quite similar to the Brink-
man-Lee expression for the correction to the
free-hole theory. However, Eq. (16) is con-

I

vergent at all frequencies. It includes the free-
hole theory which becomes the dominant contribu-
tion in the limit of small r, (or high density).
This can be proved with the aid of (13). Further,
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Eq. (16) may be reduced to the I andsberg theory.
For example, in the first term in (1}simply as-
sume the self-energies are sufficiently small in
the denominators that -e& +Av in the 5 function
should be replaced by eq". Then, using (13), the
I andsberg theory follows.

IV. COMPARISON TO EXPERIMENT

A. Spherical-model calculations

In order to compare our theory with experiment,
it is necessary to take into account detailed ef-

fects of the band structure in germanium. Prop-
erties of the spherical model for k p valence
band Hamiltonian relevant to the present study
are worked out in Appendix A. Of significance
are the electromagnetic (em) coupling matrix
elements, and the nonparabol. icity of the spin-
orbit band. Combining the theory of the preceding
section with the results in Appendix A, and after
summing over the photon polarizations, one ob-
tains the cross s ection for heavy-hole to spin-
orbit band transitions

ohh
—— 2-- ~ 5 j d'k;d kzdkc f(e;)Im — 5(hv+&~ —ep —hw)

n„cmov y6032m' 6 g, CO

(17)

Here p. and y, are spherical model parameters
of Ba,Mereschi and Lipari, n„ is the electron. -hole
pair density in el.ectron-hole droplets, and x' are
k-dependent matrix elements given in Eq. (A10}.
The parameters of electron-hole droplets used in

our calculations are the same as given for Ge in

Ref. 1.
In carrying out calculations the following addi-

tional assumptions are made: (i) it is assumed
that the real part of the self-energy produces only
a rigid band shift;"' (ii) the dielectric function is
taken in the spherical model for holes and in a
spherical approximation with density-of-states
mass for electrons. However, we retain the full
effects of the damping of plasmons by heavy-hol. e
to light-hole transitions in the imaginary part of
the dielectric function. A more complete dis-
cussion of the dielectric function is give@ in Ap-
pendix A; (iii) we ignore contributions from the
light-hole band since only -5% of holes are in

this band. In addition, Eq. (17) explicitly assumes
that vertex corrections can be ignored or are
constant in energy, and it assumes that only
single-plasmon or particle-hole excitations are
important. These approximations will be dis-
cussed in more detail in Sec. VC.

In these spherical approximations our results
for the imaginary parts of the RPA self-energies
calculated from Eq. (13) are shown in Fig. 7 for
the heavy-hole band and in Fig. 8 for the spin-
orbit-split band. The imaginary part of the
heavy-hole self-energy goes to zero at the Fermi
surface. These self-energies were used in the
comparison of experiment and Landsberg theory
shown in Fig. 3.

A comparison between our results for the cross
section for heavy-hol. e to spin-orbit -band transi-

0.0 5.0 V.5 10.0
ENERGY(meV )

12.5 15.0

HEAVY-HOLE SELF-ENERGY

FIG. 7. Imaginary part of the heavy-hole self-energy
calculated in the HPA and the spherical approximation
to the valence-band structure.

tions and experiment is shown as the solid l.ine in

Fig. 9. Ne note that the high-frequency tail. is in

excellent agreement with experiment both with

regard to slope and normalization (however, the
normalization of experiment is somewhat un-
certain). The very high frequency results are also
independent of the choice of dielectric function
such as the Hubbard or Singwi modifications. "
This is because the high-frequency cross section
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is the result of scattering at large momentum
transfers where screening is unimportant. At
low frequencies our results exceed experiment and
are close to the free hole theory for the spherical
model shown as the dashed line in Fig. 1. It is
clear from Fig. 1 that much of the discrepancy
between the spherical-model RPA and experiment
can be removed by taking into account the mass
anisotropy of the heavy-hole band. This is dis-
cussed in Sec. IVB. At intermediate frequencies
calculations show that the results are somewhat
sensitive to the choice of dielectric function as
might be expected to be important at moderate
momentum transfers. This is discussed further
in Sec. IVC.

Our results are also quite sensitive to band
coupling effects due to the finite spin-orbit
splitting as discussed in Appendix A. The long-
dashed curve in Fig. 10 shows the result of
keeping the matrix element x, and the spin orbit
mass at their k =0 values. The short-dashed line
keeps the k = 0 value of x, but allows the spin-

. SPIN-ORBIT SELF-ENERGY

FIG. 8. Same as Fig. 7 for the imaginary part of the
spin-orbit-split band self-energy.

4D
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275.0 300.0 325.0 350.0 375.0
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SPHER ICAL-MODEL RPA THEORY

FIG. 9. Comparison between our multiple-scatter-
ing HPA theory and experiment for heavy-hole to spin-
orbit-split band transitions. The spherical model for
the valence-band structure was assumed.

FIG. 10. Band-coupling effects on the heavy-hole to
spin-orbit split-band transitions calculated in the spheri-
cal model. The long-dashed line shows the effect of
assuming a parabolic spin-orbit-split band and assum-
ing that the em coupling matrix elements are momen-
tum independent. The short-dashed line includes the non-
parabolicity but retains the constant matrix elements.
The solid line is the complete calculation including the
full band-coupling effects. The circles are the experi-
ment of Pokrovsky and Svistunova.
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orbit band to be nonparabolic. Finally, the solid
line is again the full calculation. We note that
i x, [' increases by a factor of 3 between k =0 and
large k. In their calculation on the exciton line
shape, Smith et al." ignore the k dependence of
this matrix element and obtained a cross section
which was low by a factor of about 2 at v —vth
= 100 meV.

p p

B. Nonspherical-model calculations

In order to study the effects of mass anisotropy,
we have carried out Monte Carlo evaluations of
the six-dimensional integrals in Eq. (1 l) with e;
evaluated with a fully anisotropic effective mass.
The hole contribution to the dielectric function and
the matrix el.ements were still in the spherical
model. Ne found that the anisotropy of the elec-
tron effective mass while large had little effect
on our calculated cross sections. In order to
evaluate (17) we first had to determine the anisot-
ropy of the heavy-hole self-energies. The results
for the [100] and [111]directions are shown in

Fig. 11. We note that below the Fermi level the
effects of mass anisotropy were small. These
calculations of self-energy were then fit with
zeroth and first cubic harmonics in evaluating
Eg. (1I).

The results of this calculation are shown in
Fig. 12. The theoretical points have error

K 80 Q

K
CQ
CQ
O
Ã

C)--
X

275.0 300.0 325.0 350.0 375.0
v(mev )

I

I

400.0 425.0

NONSPHER ICAL-MODEL RPA THEORY

FIG. 12. Comparison between Monte Carlo integra-
tions of our multiple-scattering BPA theory using the
full band-structure anisotropy (X) and experiment (0)
for heavy-hole to spin-orbit-split band transitions. The
errors on the theoretical points represent the variance
of the Monte Carlo calculations.

bars indicating the variance of the Monte Carlo
calculations. As expected, the effect of mass
anisotropy is to considerably improve the agree-
ment between experiment and theory at low fre-
quencies. However, the theory is still somewhat
above the experiment. Possible reasons for this
discrepancy are discussed qualitatively in Sec.
IVC. At high frequencies the mass anisotropy
has little effect on the calculated cross section,
and the good agreement with experiment is
retained.

0.0 8.0
ENERGY( rneV)

I

12.0 18.0

HEAVY-HOLE SELF-ENERGY

FIG. 11. Imaginary part of the heavy-hole self-energy
calculated using the full mass anisotropy of the true
band structure.

C. Qualitative discussion of additional effects

Our best calculation, Fig. 12, is somewhat more
strongly peaked at low frequencies than the ex-
periment. There are several effects which are
not included w'ithin the present theory which might
qualitatively explain the discrepancy. These are
the dispersion of the self-energy, local field and
exchange corrections to the dielectric function,
and vertex corrections.

Our calculation assumes that the effect of the
real part of the self energy is to rigidly shift the
bands. This is known to be accurate to within
10% for electrons and holes below their Fermi
levels. " However, for the spin-orbit-split band
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the experiment varies between energies near
threshold where the real part of the self-energy
is minus several meV to high energies where the
real part of the self-energy should be negligible.
This is because the electron-hole plasma can
respond fast enough to screen a low-energy parti-
cle but cannot respond fast enough to screen a
high-energy particle. The biggest change should
occur around a plasmon energy (-13 meV) above
the bottom of the spin-orbit-split band. Qualita-
tively, inclusion of this effect will act to broaden
the low-frequency peak and, thereby, improve
agreement with experiment.

Our calculation also took the simplest possible
form of the RPA dielectric function which in effect
amounted to ignoring local field and exchange cor-
rections. A number of authors have proposed
modified RPA dielectric functions which are
claimed to give more accurate results at larger
r, (lower densities). Let Q(q, &o) =V(q)II'(q, ur),
where II (q, &u) is the zeroth-order proper polari-
zation. Then in our proMem, introduction of local
field and exchange corrections would amount to
the replacement"

(18)

where G(q) is positive definite and is zero at
q =0. It is obvious that these corrections increase
the amount of scattering. Therefore, they act to
broaden the calculated cross section at low fre-
quencies improving the agreement with experi-
ment. At high frequencies where screening is
unimportant the good agreement with experiment
will be retained.

Finally, our calculation assumed that the vertex
correction was either negligibl. e or constant in

energy. Qualitatively, there is an attractive inter-
action between a hole in the spin-orbit-split band
and an electron in the heavy-hole band. Because
of the difference in effective masses, this inter-
action is weaker than the interaction between an
electron in the conduction band and a hole in the
valence band which leads to an enhancement factor
of 2 to 3 for EHD luminescence. More important-
ly, the matrix element coupling the valence bands
is proportional to momentum. In a spherical ap-
proximation, the heavy-hole to spin-orbit band
transitions are in a relative L =1 angular-momen-
tum state. The effect of the attractive interaction
is reduced by the angular-momentum barrier.
Thus, vertex corrections are expected to be less
important than in EHD luminescence.

Thus, we believe that the remaining discrepan-

cies between our calculations and experiment on

the line shape for heavy-hole to spin-orbit-split
band transitions can be explained within the RPA
which has been successful for thermodynamic
properties.

V. CONCLUSIONS AND DISCUSSION

We have presented a new approach for calculat-
ing the effects of scattering processes on the
line shapes for electron-hole plasmas in semi-
conductors. It provides the first explanation of
the broad line shape for absorption due to heavy-
hole to spin-orbit-split band transitions observed
in electron-hole droplets in Ge. The line shape
may be understood within the random phase ap-
proximation which has previously been successful
for thermodynamic properties. The line shape
is also sensitive to details of the valence-band
structure of Ge, which we have derived for the
spherical approximation in Appendix A.

The theory of this paper should also be appl. ic-
able to a variety of other transitions where devia-
tions from free-particle theories are observed.
We have carried out detailed calculations" for
EHD luminescence in the indirect semiconductor
Si. The cal.culations are close to the free-particl. e
theory at energies above the free-partic1. e thresh-
old. This is expected since additional momentum
nonconservation due to scattering from the ele-
mentary excitations of the- plasma should not
strongly affect 1.ine shapes where momentum is
already not conserved because of phonon scat-
tering. The calculations have a weak, slowly de-
creasing tail at energies below the free-particle
threshold in agreement with experiment. Calcu-
lations are currently in progress" on the gain
spectra of direct-gap semiconductors where
strong departures from the free-particle theories
have been observed. In both these problems there
is a large gap between bands. It is somewhat more
complex to deal with degenerate bands as in the
heavy-hole to light-hold absorption responsible
fop the plasmon width in EHD. We expect to re-
port results on these problems in future publica-
tions.

The arguments of this paper have been largely
intuitive. It is also possible to provide a formal.
derivation of our results using ideas in transport
and kinetic theory. This derivation should lead
to a more complete theory in which assumptions
made in the present calculations can be relaxed.
These include the assumption that the bands are
rigidly shifted by the many body interactions, and
the assumption that enhancement factors (vertex
corrections) are either constant in energy or
negligible. This will be addressed in a separate
publication. "
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APPENDIX A: SPHERICAL MODEL FOR FINITE SPIN-

ORBIT SPLITTING

In this Appendix, we present details of the
analysis of the spherical. model. for the k ~ p
valence band Hamiltonian of diamond and zinc-
blende semiconductors. The quantities discussed
include the band-structure nonparabolicity, the
em coupling matrix elements, the free-particle
dielectric function, and the matrix elements of
the potential. As discussed in the main text, al.l

of these quantities enter in essential ways into
the calculation of the absorption due to transitions
between heavy-hole and spin-orbit bands. It is
also useful to collect these results for reference
in further papers by the authors to follow on line
shape problems in diamond and zine-blende semi-
conductors.

The spherical model has been discussed pre-
viously by Combescot and Nozibres' and by Bose
and Shore ' in the limit of infinite spin-orbit
splitting. Our discussion of the band coupling
effects due to the finite spin-orbit splitting is
motivated by the large size of these effects on
the absorption due to heavy-hole to spin-orbit
transitions.

The spherical model. is obtained from the gener-
al kp Hamiltonian by setting to zero the cubic
anisotropy parameter 5 of Baldereschi and
Lipari. ' This is equivalent to approximating the
L, M, and N of the original paper by Kane22 by

@'y,(1+2m). k y (1 V)-.

(A1)

where y, and p, are defined and tabulated for
various semiconductors by Balderesehi and
I ipari. Thus, including the spin-orbit splitting
&, the k ~ p Hamiltonian in the
I ~» I s» I «& I »& I x» I «)»~1»s

Ix»

Ix»

(1+2 p, )k',

+(1- p, )(k', +k', )
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zing
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lzg
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2m II=

0
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+ (1- g)(k'„+k', )

1
3
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(1+2 g)k'„

+ (1- p, )(k', +k', )
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(1+2 p, )k',

+ (1- p, )(k'„+k',)
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3 --z41'™
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|
+ (1 —p. )(k'„+k', )

(A2)

Z = 2m,~/a'y, k'.
Define

a, =-,'(2+p+rK)+ —,'(9y, '-2hp+Z')". (A4)

k'k'y, (1- p, )

0
I'k'y, ~,

2m 0

Iz k2y, x
2m 0 (A5)

Then the Hamiltonian may be diagonalized with
eigenvalues

Thus, the heavy-hole band is parabolic in the
spherical model while both l.ight-hole and spin-
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k'k3y, (1+ p. )2'
0

The large-k limit is

2pl 0
(A6)

orbit bands have nonparabolic dispersion rela-
tions. The small-k limit is

I hh& =
I 3, 3&; I 3, -3&,

I so& =(3)'"(x,+y, )I —.', ~ 3&+

I lh& =(-')'"(x +y )I —,', ~ -,'&

(A11)

k k3y, (1 —I).) k'k3(1+ 2P, )
20 0

The nonparabolicity of the spin-orbit band is
quite important to the calculation of the main text
as shown in Fig. 10.

The eigenvectors may be written in terms of
8 l.och functions

Then, to rotate these to a new k direction, use
the d& ~ (8} representations of the rotation group.

The dielectric function is obtained from the
response function

II(q &o}= —. „fd'(x —x')d(f —f') e "(' ")
ik

x e'"" ' '(0I T(n(x, t))3(x', f'))I 0),

il7 x pic -i+3t
j

(A8)
(A12)

where the density n(x, t) =Pt(x, t)p~(x, t) is given
in terms of

where X labels the eigenstates, Av~ denotes the
eigenenergies (A5), and the k& may be written for
k in the z direction as

(('(x f) = ~ 3&3ikaie
d'k ik x -ice t
2 7(

(A13)

lhhf& =

i/&2

I hhk& =

where az„ is an annihilation operator. Thus, one
obtains

Q jp
Il(q, )=

2 ),-(1- .'), 'IM..., I'
). 2

1

k()) k((A)3~(( ())3 ) +3e

0

-i/&2

0

1

3td+K(Ql, —al ) —EE)
(A14)

I lh, sot& =
I lh, sob& =

0

(A9)

where the M» are the matrix elements of the
1 2

rotated Bloch functions (AB) depending on the
angle 6 between k and k+q. For example,

~k, 3+() (2 P/2(x(3+()) ~ y(3+(() ) d3/P (())

Working this out one finds that for transitions
between bands 1 and 2 the contribution to the
response function is

II„(q, (u) =2 J)-( ), T,"~,(l -n,'„)n3
where

lg
[(1—P, -), + -,'A)'+ 2(3'~)']'" '

1 —p, —A. y~A

[(1—)) —).+ 3~)'+2(3~)']" '

(A10}

where

1
h(() - k(())3'„- (A)33) + 3 e

1
K++K(e'.,—w')-ie)' (A15)

where (+) and (-) refer to the spin-orbit and light-
hole bands, respectively, as defined in (A4). The
eigenvectors for k in arbitrary directions may be
obtained by the application of the appropriate ro-
tation matrices to (A9). This is done most read-
ily be expressing these states in a J, J, repre-
sentation as fol.lows:

hh, hh
T~ ~+a = g + & cos 6~ ~+q ~

Z», & (~) 2i &~+~) (, ~+~& i2-'sin26)

T,'" ~ =-', (x" +y" )(x" y""')[-,'(3 cos() —1)]'
(A16)1

[(2y 3 3
)(2y 3+() x 3+q)]

T~,3.
"= X3(x -+y -)(x."+y,"')[3(3cos () —1)]'

1[(2y 3 xi' )(2y k+() x4+())]
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From these expressions the optical cross section
per hole may be obtained by taking the q- 0
limit with

Sy~ekg
cm 2~0

'2(1 —] )A.

2(l —t], )A,

3gA, 2(1+2g)A,

(A18)

(o e~ (0, (u)

cng

where &~ and &I are real and imaginary parts of
the dielectric function, and nl, is the hole density.

The same answer for the optical cross section
can be alternatively obtained by using the (A9) to
calculate the matrix element of the electromag-
netic Hamiltonian between bands. In the
I x), I y), I z) basis for k in the z direction the
terms linear in the vector potential, A are

increases by a factor of 3 between small and
large k, whil. e the rate for lh to so transitions
decreases by a factor 81/209 between small and
large k.

The cross section is now obtained from (A19) by
using Fermi's rule for the transition rate for
photons. The rate for band 1 to band 2 is

=
~

~'2 )" 2„,f', (1-f',)I&ilff. I2)l'
~ph

x 5(h]d+h&u„' —h(o'„) . (A20)

Take the matrix elements of the vector potential
between states of Nph and N»- 1 photons, using

27te '"-
A= „, Pe (

' ]C exp[e'(k r-kee]]L3/

+ C t„~exp[ i-(k ~ r —Act)]f .
(A21)

Here C» and G,„are creation and annihilation op-
erators, respectively, and k = v/c Mes, Then use

The results for the interband matrix elements are on„N,„c= 1/r», (A22)

&hh&lff. ml », sot& =o,

&hh~I a..I lh, so~& =
2m, c &2

(lhkl FI, I sot) =-
C

&lh&Ia..I so» =- ~" " '( *
0C

x (y+x- y-& ) ~

(A19)

and take the angular average (A'„) = —', A'. This
produces the same result as (A17). This may
be shown by using the rel.ations

lim- d cos(9I, .Q
sin 8I", I, +Q 2

a~0 -1
(A23)

2 2S'22 43koh'~ so oYl 'f k yg8I PI2n„cm'~(e„) ' (2w)'

Thus, the cross section for heavy-hole to
spin-orbit transitions in the spherical. model. is

We note that because of the dependence of x, and

y, on k the interband transitions have a more
compl. ex dependence on k than obtained in the
limit of infinite spin-orbit splitting. For ex-
ample, the transition rate for hh to so transitions

x Q(8(d + 6~ f], ) .
(A24)

The cross section for light-hole to spin-orbit
transitions in the spherical model is

+ 2 2@By2+2 d3k 128 Ihf u' — — -(~ ~.)'+12(y, ~ —y.~,)' ~(@~+&~ —e. ).
n cm'&u(e )'" (2m)' (A25)

The imaginary part of the dielectric function for
nonzero q enters into the expressions for line
shapes obtained in the main text. The important
new feature of diamond and zinc-blende semi-
conductors compared to single component plas-
mas is that the heavy-hole to light-hole transitions
damp the plasmon. In Fig. 13 we exhibit regions
of the ~, q plane where contributions to the imagi-
nary part of dielectric function are nonzero in the
spherical approximation. The contribution of
electron-electron transitions are shown with left

slanted hatching, the heavy-hole to heavy hole
are shown with right slanted hatching, and the
heavy-hole to light-hole contribution is shown with
vertical hatching. The heavy solid line shows the
plasmon dispersion in the absence of heavy-hole
to light-hole transitions. A popular approxima-
tion is to replace this compl. ex excitation spec-
trum for the electron-hole plasma by a single-
plasmon pole. ' In the main text, it is argued that
this approximation is the reason that nondivergent
answers were obtained in a previous theory of
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APPENDIX 8: DETAILS OF THE MULTIPLE-SCATTERING
WAVE FUNCTION

In order to carry out manipulations with the
ansatz multipl. e-scattering wave function, Eq. (8},
it is useful to convert to box normalization.
Thus, in a volume V one has

(2m)'5(k —k')- (1/V)5~, .
and

3

20.0—

10.0—

(2v)' V ~
Then, using the definition of Z(k), the Eq. (8}
may be written

1 exp[i(k —k') ~ r, l(kl Vl g~ )
V, e;+ Z(k) —e;.

x (&RAN, —1) .

(B2)
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line shapes for direct-gap gain spectra. ' It is
clear from Fig. 13 that this is a poor approxima-
tion to the true excitation spectrum of an e1.ec-
tron-hole plasma in semiconductors with degen-
erate valence bands.

FIG. 13. Excitation spectrum of the electron-hole
droplets in Ge in the spherical model for the valence-

band structure. The hatched regions show where con-
tributions to the imaginary part of the dielectric func-

tion are nonzero. The right-slanted hatching is for
electron to electron transitions, the left-slanted is for

heavy-hole to heavy-hole transitions, and the vertical
hatching is for heavy-hole to light-hole transitions. The

thick solid line denotes the plasmon position in the ab-

sence of damping by heavy-hole to light-hole transitions.

Thus, it is clear that (BS) satisfies the extinction
theorem because the forward scattering compo-
nent k=k' is zero. Here N is the number of im-
purities in the volume V.

To derive Eq. (9), Eq. (B3) must be squared
and impurity averaged:

V ep+ Z(k) —eg.

x Q Qexv(%-&')(r, -r, )+x).
ltd

(B4)

The impurity average of the first term in the
brackets in (B4}is nonzero only for k =k', and
is ther@fore killed by the 6pj-, .—1 term. Thus,
Eq. (9) follows.
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