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Finite-damping corrections to the conductivity of the sine-Gordon chain:
General formalism and asymptotic results
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%'e develop a systematic method for obtaining finite-damping corrections to the Smoluchowski equation
describing the Brownian motion of coupled nonlinear oscillators. The formalism is applied to the driven sine-
Gordon pendulum chain to obtain the lowest-order correction to the conductivity theory by Trullinger et al. ,
and asymptotic results are presented in the limits of (i) low-torque, low-temperature, strong coupling, (ii)
high-torque, all temperatures and coupling strengths, and (iii) vanishing coupling between pendula.

I. INTRODUCTION

In a recent Letter (hereafter referred to as I),
Trullinger et al.' studied the steady-state dynam-
ical behavior of a set of torsion-coupled pendula
(the sine-Gordon chain) in the presence of damp-
ing, fluctuating thermal torques, and constant
applied torque. It was found that for small applied
torques, the average angular velocity of the pen-
dula at low temperature is associated with the mo-
tion of thermalized' ' sine-Gordon (SG) solitons4
and as the torque is increased the velocity re--
sponse ("conductivity") becomes strongly nonlin-
ear. These results have importance for several
condensed-matter systems&" such as weakly pinned
one-dimensional charge-density-wave -conden-
sates, ~ Josephson transmission lines, v and one-
dimensional ionic conductors. '

In I the multiparticle Fokker-Planck' equation
for the sine-Gordon chain was solved in the steady-
state situation by reduction, '0 in the large-damping
limit, to the Smoluchowski equation and the appli-
cation of transfer-operator techniques ' ' familiar
from equilibrium statistical mechanics. ' ' ""
Although this represents the first known. solution
to the problem of Brownian motion of coupled,
nonlinear oscillators in an external field, the re-
striction to the large-damping limit is unsatisfy-
ing since the response is, of course, strictly zero
in this limit (the angular velocity is proportional
to the reciprocal of the damping constant). Thus
finite-damping corrections to the results obtained
in I are clearly desirable, particularly if one
wishes to make comparisons with actual experi-
ments" or molecular-dynamics simulations. ""

The influence of finite damping on the response
of a single pendulum has been studied previously
by many authors. The behavior at zero tempera-
ture has been treated by McCumber" and Stewart'
who have found two branches of solutions to the
deterministic equation of motion (no noise), lead-
ing to a damping-dependent threshold torque. "

Possible branch switching" at finite temperature
is believed to occur in molecular-dynamics cal-
culations carried out by Kurkijarvi and Ambegao-
kar' who studied finite-damping corrections to
the exact infinite-damping result ~ for the single
pendulum. Very recently Nozihres and Iche" have
developed a stochastic formulation for the single-
pendulum problem in the underdamped limit. The
influence of finite damping on a recently proposed
analogy t'0 between the single-pendulum threshold
behavior and a continuous phase transition has
been studied by Schneider et al. ," in a molecular-
dynamics simulation.

Much less attention has been paid, however, to
finite-damping effects on the coupl ed-pendulum
chain system, since it is more difficult to treat
the many-body problem, both analytically' and via
computer simulations. " Recently, Schneider
et a$, have proposed the use of ~jlemskj
method" to obtain an expansion of the steady-state
velocity response in inverse powers of the damping
constant. Vfe find that such an expansion is only
possible in the steady-state situation and this as-
sumes that the steady-state is unique and can be
reached.

It has been generally recognized that in the low-
est-order approximation, the Fokker-Planck (FP)
equation reduces to the Smoluchowski equation jn
either the large-damping or long-time limits. '
Although there have been numerous attempts" "
to reduce the Fokker-Planck equation to a diffusion
equation in coordinate space in the general case,
no successful reduction scheme has yet been found.
One approach which is often used in these attempts
is to integrate the FP equation over all velocity
variables (or momenta if one uses the phase-space
probability distribution function). This yields a
diffusion equation for the undetermined "current"
which is the first-moment function of velocity. In
order to determine the velocity moment function,
one may try to construct an equation for it by mul-
tiplying the FP equation by one velocity variable
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before integrating the entire equation over all
velocities. However, one finds that the resulting
equation for the first-velocity-moment function in-
volves the second-moment function of the velocity
and the equation for the second-moment function
obtained by a similar procedure involves the third-
moment function, etc. In other words, this pro-
cedure generates an infinite hierarchy of equations
for the velocity moment functions. Although the
Smoluchowski equation is obtainable by truncating
the hierarchy at the equation for the second veloc-
ity moment (i.e., dropping the third moment in this
equation} and collecting the terms of lowest order
in the reciprocal of the damping constant, a simi-
lar procedure involving truncation at higher-mo-
ment equations does not necessarily yield a sys-
tematic expansion in powers of the reciprocal
damping constant.

When the system is not in a steady state, it is
impossible to obtain a reciprocal-damping-con-
stant expansion of the velocity moments in which
the expansion coefficients are independent of the
damping constant but still necessarily dependent
on the time variable. Steady states are attained
by waiting an infinite time without altering the
external conditions and the relaxation procedure
depends on the damping mechanism in the system.
This is why it is impossible to separate the time
dependence of the velocity moments from their de-
pendence on the damping constant. However, when
the system is in the steady state, it is possible to
obtain a reciprocal-damping-constant expansion
for the time-independent velocity moment func-
tions.

In Sec. II below we construct a recursion relation
among the coefficients in such an expansion. In
particular, we focus on an expansion for the first-
velocity-moment function, i.e., the current whose
lowest-order value is known as the Smoluchowski
current. These results for the Brownian motion of
an interacting system of particles are then applied
in Sec. ID to the sine-Gordon chain of torsion-cou-
pled pendula treated in I (in the infinite-damping
limit) to obtain corrections to the "current" up to
third order in the reciprocal damping constant. In
Sec. IV we explicitly evaluate the current (with
corrections) in the asymptotic limits of high and
low applied torques, respectively. Sec. V contains
a summary of our results and remarks of a general
nature.

through a potential function U(x„... , xz} where
the (x,.}denote the configurational positions of the
particles. The Langevin equations are written

(2.l)

where I' is the damping constant and the random
thermal noise forces (f,.(t)j satisfy

(2.2a)

(f (t)f~(t'))=2I'ksT5;q5(t —i') . (2.2b)

in velocity-configuration space may be derived by
straightforward methods. '~" The result is

eP . - 8P 18UeP
Xg +

et . ' ex) M ex,.ex,.

k~T SP
+— .— i P+ (2.3)

We shall project this Fp equation onto the configu-
ration space (i.e., integrate over velocities) and
obtain a recurrence relation for the velocity mo-
ments in the steady state. This will lead to an ex-
pansion in inverse powers of the damping constant
I . The results will be specialized in Sec. III to
the case of the sine-Gordon pendulum chain.

We define a set of velocity moment functions by

+g ($$ $ ((2 9 ~ Ifg)'

where m=0, 1, 2, ... , . We note that whereas
n can range from zero to infinity, the number of
distinct i„values must be less than or equal to N
since these label the particles. We shall have
occasion to use special notations for Do and D, :

Do = (rlM,

where

(2.6)

From Eqs. (2.1) and (2.2), a Fokker-Planck equa-
tion for the probability distribution function,

P(Xg g j Xg /X' p ~ p XJf p i) P((X )I Q ()y t)

II. CONFIGURATION-SPACE PROJECTION OF THE
FOKKER-PLANCK EQUATION IN THE STEADY STATE

In this section we consider the Brownian motion
of a system of N particles of mass M interacting
with each other and with an external applied field

(2.6)

is the configuration probability distribution func-
tion, and

(2.'I)
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is the jth "component" of the "current, "

(2.8)
%e construct an equation for the nth-order veloc-

ity moment function by multiplying both sides of
Eq. (2.3}by M x,. x, , , x,. and integrating over
all N velocity variables. This yields

8
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In a steady-state situation (SD„/&t) = 0, and Eq. (2.9) can then be

. . . , z;t)

z, „z„„.. . , z„, t)5,.
yz s

rewritten (n& 0)

(2 9)
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Furthermore, steady-state moment functions may be expanded in inverse powers of the damping constant

as

a„=I.(() a„", (2.ii)

where the coefficients ILD„' ")are independent of I'.
For the sake of simplicity in the following discussion, we introduce three operators O„O„and 0„

which are defined by the relations

O,D 2
—O, (z, i. . . iz )D z(g, i. . . ,g„,)

x 5. 5. . . .5.
~1~ ~l c2z i2

' ir lt 5 1 i +1~

O,D„,z = ~z(i». . . , i„)D,z( jz, . .. ,j„+z}

p . . .5. ; ~; g &; g D„-2(jzi ~ ~ ~ i j„-z) i (2 ~ 12)r~' y+1' ' ' is-1 s"2 s+1 s-3 n' n-2

5( y 5((( z D„+z(lz, . . . , y„,z),n' n t m+1
(2.13)

z -z = z(zzi z.}D -z( ji ~ i jn-z)

i

N M n. 8U
y 1 y+lt

~l ~n-1 1 ir

Equation (2.10) may now be written in the compact form

(2.14)

n= ~)z .-z+(I~T)(O2 n 1+OBDn-1) (2.i5)

The recursion relation among the expansion co-
efficients, D„'", in Eq. (2.11}is obtained by sub-
stituting Eq. (2.11) into Eq. (2.15) to yield

(2.16)

This equation is recognized as a two-dimensional
difference equation in the variables n and l. It can

f

be solved in principle once we specify boundary
conditions. %e note first that D,"'=0 for odd l.
This follows from the defining equations, (2.5) and

(2.6), for Do and the fact that

(Lx;},9;))= & ((x,), (-x;))
for the steady-state situation, which can be easily
verified by reversing the sign of I' in Eq. (2.3)
after setting the left-hand side equal to zero. %e
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therefore define

D" '=-(1/M }&'o" ' (2.17a)

above. The first nonvanishing term occurs for
l = 1 and retention of only this term gives the
Smoluchowski current

so that

0 = o (0)+(J")+0"'+... , (2.17b)

with 0 (') being of order I' '. Another boundary
condition can be constructed by solving the differ-
ence equation (2.16) for l = 0. Since D„' "=0, Eq.—

(2.16) with f =0 becomes

D«0) 0 ( )D«0) (2.18)

Since D ',"=0 an-d Eq. (2.18) connects successive
odd-order moments, we have

D„"'=0 (odd n). (2.19)

For even n, a successive reduction of n may be
accomplished via Eq. (2.18) and repeated applica-
tion of the operator O„eventually leading to an
expression for D„"' in terms of D0' ', or

(&«i'''&«)

(Mk, T} i'o"
nt M

x 6. . 6 ...5.~ ~ ~ ~ ~ ~

6' 2 &' «4 n-1' n (even )«)

80 N

Z(m; o).
m-"1

This equation represents the projection of the
Fokker-Planck equation (2.3) onto the configura-
tion space alone in the steady state. The current
Jjm; oj may be expanded in inverse powers of the
damping constant using the general formalism

(2.21)

where the summation over 6' implies summation
over the n! permutations of (i„.. . , i„)

The recursion relation (2.16) together with the
boundary conditions (2.17), (2.19), and (2.20),
provides a systematic method for obtaining suc-
cessive coefficients in the expansion of velocity
moments of the FP equation in inverse powers of
the damping constant (in the steady state). We see
that all of these coefficients are expressible in
terms of the zeroth moment D, = o/M and its de-
rivatives with respect to the configuration coordi-
nates. Thus, in particular, D (j)=J(j) may be
regarded as a functional of o((x,.$), and Eq. (2.9)
with n= 0 becomes

D2«0)(i,j)=Mk~TDO

D,«"(z,j,k, f)

(2.22}

D(~)-D(i)-D(i)= 00 2 4

BD(0)

t

D,«')(f,j,k)

=Mk T [j,(i)8«+j,(j)5,„+j,(k)5, ])., (2.23)

l=2:
p2

D(2) — 0(2) D(2) D(2) p0 M

DP~(i,j )= Mk~T5, D"'.
Mk&T ej,(f) s~,(~)+ 8' + 7 j,(i)6««

Xf X~

M BU . . BU .-2 sx &'&)+ax j")ji ~ (2.24)

J (m) =-(1/&)Z"'(m)

where J«')(m) =D,"'(m), and Eq. (2.21) then be-
comes the Smoluchowski diffusion equation.

In the remainder of this section we focus on ob-
taining the first nonvanishing correction to the
Smoluchowski equation resulting from the expan-
sion of J(m) in inverse powers of &. The result-
ing modified diffusion equation is then used in Sec.
III to obtain the lowest-order finite-damping cor-
rection to the "conductivity" of the sine-Gordon
pendulum chain. '

By making use of the recurrence relation (2.16)
and the relations (2.17), (2.19), and (2.20), we
obtain the following results for D„'"for the values
of n and l necessary to obtain the first correction
to the Smoluchowski current:

l=o

~ (0)
D(0) L)(0) D 0) 0

D(3) D(3)
2

D (i)«= M — Dq" Mk~T-D02'+ Vj-(«)+2 [V'j («)j)(3) . BU 8 Mj'PgT . . 8

i

U . . BU
+ — V j,(f)+ V l,(z)+j,(z)V'U+W Vj,(f) .

2i Bxg Bxg
(2.25)
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N

V ~,= g, m,
m=l

Bf Bf Bf
BXl BX2 BXN

N B2vf=g
m=l

where f is a function of x„x„.. . , x„.

(2.27 a)

(2.27b)

(2.27c)

In these expressions we have used the definition of
a reduced Smoluchowski current

(2.26)

and also the following definitions of the differential
operators V' =div, V= grad, and V2:

The current defined by Eq. (2.7) can be written
according to Eqs. (2.11) and (2.26) as

(2.28}

where the neglected terms are of O(I' '). In the
steady state, Eq. (2.21) implies to this order that

]
V '

~ +—V ' D'" = 0s I 2 1 (2.29)

which in turn implies that the divergence of the re-
duced Smoluchowski current is of order 1" '.
Therefore, we can drop the term 28[% j,(i)]/Bx,
in Eq. (2.25) up to an accuracy of order I' '. Thus
we have

M BU () MgsT 8
(2&

M 8 Z~(i} BU BJ,(m)I" Bx ' I" Bx. ' 2l"' ' Bx' Bx Bx
a~2&+ u T +

i m=1 m l m

i m~1 m=1
(2.30)

We now define

(2.31)

and note that, to the order in which we are working, J, in large parentheses in Eq. (2.30) can be replaced
by J, so that

m=l ' m~1 m= 1 m=1 m=1
(2.32)

This result, together with Eq. (2.21), corrects
Eq. (27) of Ref. 18. Although the contribution of the

second term in large parentheses in Eq. (2.32) is
of order I' ', as are the terms we have dropped, we
retain this term for computational convenience be-
low. We also note for later reference that Z(i) can
be written from Eqs. (2.17),(2.23), and (2.31) as

(2.33)

where P = (ksT) '
Equation (2.32) provides a general expression for

the steady-state current associated with particle i
valid up through order I" '. In Sec. ID we make
use of this result to calculate the lowest-order fi-
nite-damping corrections to the "conductivity" of
the sine-Gordon chain in particular.

III. CONDUCTIVITY OF THE SINE-GORDON

PENDULUM CHAIN

I

m and length l whose points of support are equally
spaced on a large supporting ring. Each pendu-
lum is coupled to its nearest neighbors by a tor-
sion spring (torsion constant v) and is free to move
only in the vertical plane containing its point of
support and the center of the support ring. The
motion of each pendulum can thus be described by
an angular coordinate 8 (measured from the verti-
cal) and an angular velocity 8= d8/dt. —

Using the notation of Ref. 1 (referred to as I),
we write the Langevin equation of motion for the
ith pendulum in terms of its angular momentum

p,. =—Ie =ml'8:

P, =K(8,. „8„8„,)-17P, +E,.(t), (3.1)

where

X(8,. „8,, 8„,)
= v(8„,+ 8, ,—28, )—mal sin8,.+ v

We now specialize the general results obtained
above to the particular case of the sine-Gordon
pendulum chain considered in Ref. 1. This sys-
tem consists of N(N» 1) simple pendula of mass

g is the acceleration due to gravity and r is a con-
stant torque applied to each pendulum. As in I,
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we have 8~„= 8, for the ring (periodic} configura-
tion. The potential function U includes the exter-
nal torque w and is given explicitly by

1 ~~ 9
Z(f)= — e " oe",

PIg 9 8,.
(3.7)

U(8„. . . , 8„)
E

= g [mgl(1 —cos8,.)+~g(8,.„-8&)' 7'-8&] . (3.3)
i=&

The thermal noise torques E,(t) sa.tisfy (E,.(t)) = 0
and

and

oH&j)= f " f&((V (e,).)il«. (3.8)

We note for later convenience that PU may be ex-
pressed in dimensionless form as

(E,.(t)E,(t+ f ') ) = 2Iks Trle),.5(t'),

where q is the damping constant.
The FP equation of I can be written

N

PU = —g [(1-cos8,.)+2d'(8,.+, —8,.)'-X8,.],
i=1

(3.9)

eZ ~~' 8P 1 9U 9y
8t ~ ~88 I 88 98

t5= J,

I' 9 k, T9I
(3.4)

eo + ea(i) (3.5)9t 98i

is satisfied, in next to lowest order in g, by

1 ~ e2Z(f) eU ~~ eZ(m)
2I)l I3 ~ e8' e8( ~ e8

tft& 1 m=Z

where P((8,.],(8,];I) is the probability distribution
function and I'= Iq. Equa—tion (3.4) becomes identi-
cal to Eq. (2.3) with the identifications 8„x
and I M. Therefore, the results of Sec. II may
be carried over directly if we replace x by 8
a,nd M by I.

As discussed in I, we seek an expression for the
steady-state average angular velocity, ~=(8,), of
the pendula as a function of temperature and ap-
plied torque, since this is the relevant quantity in
several physical contexts' '" of interest. In I
the dimensionless average angular velocity

fl:—(dTj/(do ((do g/l)

was calculated in the infinite-damping limit. In
the remainder of this section we focus on ob-
taining an expression for 0 which includes finite-
damping corrections through order I' '. We shall
employ the notation of Ref. 1 as much as possible
in the following discussion.

In order to obtain &, we make use of the result
from Sec. II that the steady-state diffusion equa-
tion

~) ~g) f"' f=.~((~g)) ]Q «i . (3.10)

In the steady state, we have

eo(8) ) 0
ew

R
'

8,
(3.11)

where zv is a constant diffusion current given
[from Eqs. (3.5), (3.10), and (3.11)]by

ze= ''' J g d8r ~

t a

(3.12)

Since o(8~) is periodic [o(8&+ 2)))= o(8&)], we con-
sider the interval 0& 8&

& 27)' and normalize o(8&)
by the condition

r
e'

d8) o(8~)= 1.
0

(3.13)

With this condition, zo is the average time re-
quired for 8& to evolve by 271'. Hence

where we have used the definitions' y =—2Pmgl, d
=-(v/mgl)' ', v, —= mgl, and X=r/r, Th.e dimen-
sionless parameter y is the ratio of the gravita-
tional potential barrier height to thermal energy,
d is a characteristic length scale (the "width" of
the soliton excitation' ' measured in numbers of
pendula), and 7', is the critical torque required to
give a nonzero average angular velocity at T = 0.

To find 2 we single out one of the angles (say,
8&) and integrate Eq. (3.5) over all other angles to
obtain an expression involving the single-particle
distribution function,

where

~~ eU eZ(f)
~98 98 (3.6)

92U N 92U
+ g „„z(~)+i(f)g „,

my i m m~1 m

(3.14)

To perform the integrations in Eq. (3.12) we
employ the same techniques as used in I. Since
these are described in detail in Refs. 34 and 35,
we limit ourselves here to a brief sketch of the
approach. First, we substitute Eq. (3.6) into Eq.
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(3.12) to obtain

~ ~ ~ d8 J j + j- . J ~ + J j (3.15)

l&S

Since 8& is restricted to the range 0~ 8,.& 2m, the
current J(l) satisfies the boundary conditions'4

(3.16)

x J(j)+, —,+2 J(j)
1 1 822(j) BU - .

2Iq P 88~ 88~
(3.17)

In order to carry out the integrations in Eq.
(3.17), we employ the Ansatz introduced in I for
the form of the N-particle distribution function,
namely,

S
cr(8„.. . , 8~) = e 6 0

~ ™~

h(8, ), (3.18)

where U, =U(8„.. . , 8„)i, , is the equilibrium
(v = 0) potential and h(8) is a periodic single-par-
ticle function which is to be determined. Using
Eqs. (3.7), (3.9), and (3.18), the current Z( j}can
be written in the form

~(j)=—"((9,}) X- '( '},
q

' 88~

where

(3.19)

lim J(I}= lim. = 0, iW jeZ I)
l LI(} l -+ oo

i lg l~~ mi

for all l and m and for all i 4j T.hus Eq. (3.15)
may be simplified via integrations by parts to ob-
tain

I

where

$(8) —= X ————»(9)
88

X'= (u', /yq',

(3.24)

(3.25)

and we have dropped the subscript j since se is in-
dependent of which j we choose and hence the label
is no longer needed. In the process of obtaining
Eq. (3.23) using the transfer-operator technique,
we also obtain" an expression for the single-par-
ticle distribution function

&(8)= P e-"("'"fc„(e)i'

where, as in I, E, and 4~ are the eigenvalues and
associated eigenfunctions of the transfer -integral
operator:

(3.26)

f -(T /2 )v(g(+] .((()
C (g ),. e

(3.27}

where

v(8,,„9,.) =——,
' [(P(e,.„-8,)' —cose,. —cos9 ...

—y(9;) —y(9;.,) }. (3.26)

o(e) = ie,(e) i'. (3.29)

In the thermodynamic. limit (N -~), only the ground
state is important"4 in Eq. (3.26) and thus (nor-
malizing so that e, =0)

y(8~) = —lnh(8, ) .=2
y

By introducing the modified function,

h(8, ) =-e ~"~h(8,),
Eq. (3.18) may be written

o(&e,.})=.- ' Ij' h(e,.).

(3.20)

(3.21)

(3.22)

At first glance, it may appear that the problem
of finding (e is now solved, since by Eq. (3.29),
g(g) is obtainable from the ground-state solution
of Eq. (3.27}. However, as we shall see, the func-
tion y(9) itself depends on o(9), and therefore y(9)
and g(9) have to be determined in a self-consis-
tent fashion. ' To proceed, we note from Eq. (3.23)
that, to order X',

o(9)((9) = h(9)((9) -=-. ,
5(g ) (do

The integrations in Eq. (3.17) may now be per-
formed with the aid of a transfer operator tech-
nique'" with the result that

so that

h(g) ~(g) =—," + O(X') . (3.30)

(d o8 8'
= —'

(8)&(8) X'-, th(8)~(8)lh(8) 88'
By substituting Eq. (3.30) into the first term in
large square brackets in Eq. (3.23), carrying out
the differentiation, and then reusing (3.30}, we can
rewrite Eq. (3.23) up through order X' as

(3.23) w =—' o(8)$(8) 1 —2X', ln
o2 , 8' c(8)

n 89' h(e
(3.31)
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where

" de')-' ~ de"
f(8 )) f(9") ' (3.32)

f(9) =- a(8)[1—&'g(8)],

with

8' a(9)g(8}—= 2 2lnh( )
'

(3.33)

(3.34}

Using Eq. (3.24), we may formally solve equation
(3.31) for y(8) to obtain

sine-Gordon chain. In addition, we also obtain
the result that at high torques, A=X, and higher-
order damping corrections vanish as expected.
Finally, we examine the limit in which the pendula
become decoupled and hence single-pendulum re-
sults are obtained.

We first consider the low-torque limit (X c& 1)
where, to the lowest order in X, we may ignore
the X dependence of a(8) and g(8) in the integrands
of Eq. (3.40). In this case, we may use results
for a(9) and g(8) obtained by setting

To obtain a(9}, Eqs. (3.27) and (3.32}have to be
solved self-consistently. Once this is done, we
obtain u) as follows. Substituting Eqs. (3.24) and
(3.34) into Eq. (3.31), we obtain

h(9) =h(8) =1.

y(9) =-o.

(4.1)

(4.2)

ay sop 1
89 ~~, a(8)[1 —)'g(9)] (3.35)

In the strong coupling limit (d» 1), the Fredholm
integral equation (3.27) for the ground-state eigen-
function C,(8) can be approximated" "'4 by a dif-
ferential equation for a related function'

Q =—(d')}/(()o = 2 1TN)Yf/4&0 s'
which, from Eq. (3.36}, can be written

(3.37)

(3.38)

Clearly, for the expansion to be valid, we must
require

)(.'g(9) « 1.
%hen this is the case we may further write

(3.39)

(uo2, a(8)[1—X'g(8)] '

where we have used the fact that y(8) is periodic
[y(0) =y(2))')] as a consequence of the periodicity
of h(9). As in I, we define a dimensionless average
angular velocity (or "current") by

g, —=exp[-,'y [cos9 +y(8) ]]C,(8):

].
, —ooss —s(s)) ('(s)=so(s), (4.3)

where p, —= (~d)'. Equation (4.3) has the form of
Schrodinger's equation for a "particle" of "mass"
p(k=1) in a periodic potential. The solutions have
the Floquet form,

y,(8) =exp(ik9)u„(9),

with u,(9+2~) =u,(9), and the eigenvalues form
bands in k space. We need only the lowest state,
corresponding to the bottom (k=0) of the lowest
band. In the present limit (X«1), where y(8) may
be set to zero [Eq. (4.2)], Eq. (4.3) becomes the
Mathieu equation. " The ground-state function, is
then the Mathieu function, "

4' y ) 2

"d8g( )
a(9)

IV. ASYMPTOTIC RESULTS

(3.40)

q, (9) =A ce,(-,'8, —[q [), (4.4)

where
~
8

~

=-y'd' and A is a normalization constant.
The single-particle distribution function is then
given in this limit by

)

(4.5)
J d8' '"""ce'(-8' iqi)

In order to obtain the full dependence of 0 on

X for all applied torques, X, it is necessary to
solve Eqs. (3.27) and (3.32) numerically in self-
consistent fashion. Such calculations are currently
in progress and the results will be reported else-
where. " The procedure employed essentially in-
volves "bootstraping" of the numerical solution to
successively higher values of X, starting from the
low-X region where analytic approximations can be
made. In this section we explore this region to
obtain an analytic expression for the lowest-order
finite-damping correction to the conductivity of the

and g(8) is given by

a'
g(8) =2-—-lna(8) .ee' (4.6)

(4.7)

At low temperatures (
~
q

~

» 1), a(8) is strongly
peaked about 8 =0, and a '(9) is strongly peaked

t 8=' Th
approximate Eq. (3.40} by
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(4.6)

Using Eqs. (3.25) and (4.6), Eq. (4.7) becomes

(4.9)

where

From the asymptotic properties" of ce,(-,'8, —~(2) ~)

for large ~(I ~, we find that

g(2[) =2 (q ~

=2y'd'.

and the finite-damping corrections vanish, leaving

«x -1(x-"), (4.14)

which is the expected "ohm's-law" behavior.
We now consider the limit where the coupling be-

tween pendula vanishes, i.e., [[ -0 (or d -0). In
this limit, the transfer-operator eigenequation
(3.2) is solved by

is the infinite-damping result which was found in
Ref. 1 to have the low-temperature, low-torque,
strong- coupling form,

g, (g) e(y/4)t:eos8+y(8) 3
OW I

so that

e(r/2)E~»8+vf8) 3

a(8) =

e (~ /2 )C cos8'+ y(8') 3 dg i
0

(4.15)

(4.16)

with

exp

(4.10)

»om Eq. (322), we have

'(') ,(.i.)....l (8) (4.17)

E, = 8mgld. (4.11)

2y(P(d,'/q'«1 . (4.12)

Thus, Eq. (4.9) does not hold for arbitrarily low

T but only for temperatures such that

In Ref. 1, the "conductivity" A'o)/X was interpreted
as that due to the motion of thermalized sine-Qord-
on solitons. From Eq. (4.9), we see that the finite-
damping correction to the soliton conductivity con-
tains a temperature-dependent factor since y
=2Pmgf. The condition that Eq. (4.9) be valid is
that this correction be small, namely,

and hence

g(8) = —y cose .
Eq. (3.40) then becomes

a=4.q(t*' "', )
'

de } 1 22 cos8
n J. (8)& . .(8) . '

and Eq. (3.32) takes the form

(4.16)

(4.19)

1» as T/E, » —,'d((d, /q)', (4.13)
2(y de)

v(8')[I+ ((d'pe) cose'] iy(e) = x 8 - 2~

where Eo is the soliton creation energy given by
Eq. (4.11).

In the limit of high torques (X» 1), the gravita-
tional coso potential becomes negligible and

o(8) - 1/2w as X -~. In addition y(8) -—cose so
that g(8) -- y cose. Thus

'"g"'
de -0

J, o(8)

t8 d6I"
X

, c(e")[I+(~2O/q2) cose "] (4.20)

The average angular velocity Q may be obtained
from Eq. (4.19) once Eqs. (4.16) and (4.20) are
solved in self-consistent fashion. Substitution of
Eq. (4.16) into Eq. (4.20) yields the equation satis-
fied by y(8):

(
4, esp[—(yi2) [coss'+2 (4 ')}})

J, 1+ (~2o/q') cose'
ps„esp[ (yi2)[cess" +2(&")}})—

1+ (~', /7i') cos8" (4.21)

sp~ I y
y 0 y 2y (4.22)

where f„(~) is the modified Bessel function. In
the large-damping limit (co,/}7- 0), this result

Once y(8) is determined from this equation, v(8)
may be obtained from Eq. (4.16) and then 0 is given
by Eq. (4.19).

In the low-torque limit, y(8) can be set to zero
and the single pendulum conductivity becomes

I

reduces to the infinite-damping result given by
Ambegaokar and Halperin. '4

V. SUMMARY AND DISCUSSION

We have developed a systematic method for ob-
taining finite-damping corrections to the infinite-
damping, approximate description provided by
the Smoluchowski equation for the steady-state
Brownian motion of coupled particles in a nonlin-
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ear local potential with an external driving field.
Explicit expressions were obtained for the specific
example of the sine-Gordon pendulum chain and
the leading-order corrections to the configuration-
space projection of the Fokker-Planck equation
were displayed. The solution of the modified
Smoluchowski equation was reduced to the prob-
lem of solving a set of self-consistent equations
for the steady-state single-particle distribution
function o(6). The solution of these equations
yields the so-called conductivity of the sine-Gord-
on chain, correct up through order I' '. An ap-
proximate analytic expression was obtained in the
low-field, low-temperature limit in the case of
strong interpendulum torsion coupling. In addi-
tion, Ohm's law was recovered in the high-field
limit, where all correction terms vanish. Finally,
we presented the relevant equations leading to the
conductivity for the case of decoupled pendula (the
single-pendulum problem). The numerical solu-
tion of the self-consistent equations for v(6) to
obtain the full nonlinear response (all y) of the
sine-Gordon chain are currently underway and the
results will be reported elsewhere.

We wish to remark that it may appear to be pos-
sible (in principle) to obtain the full damping con-

stant (I') dependence of the conductivity for all
values of X' by carrying out the expansion in Sec.
II to all orders. However, as mentioned in the
Introduction, there appears to exist (in the single-
pendulum case) a critical value of I' below which
taco possible steady states exist, one or the other
being metastable (depending on y) resulting in hys-
teresis effects. The existence of such a value" of
I' (-l.2) implies a singular point in the space of I'
values and negates the validity of the expansion
technique in Sec. II for values of I' less than this
critical value. It may well be that there exists a
similar value of F in the case of the sine-Gordon
chain of coupled pendula as well, at least for fin-
ite-length chains. If such a critical (I',) value
exists, then clearly our expansion in inverse pow-

' ers of I' can only be valid for I'& I',.
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