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Transverse electron effective mass in a semiconductor superlattice
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An analytical expression involving the electron effective mass in the transverse direction has been obtained

for a semiconductor superlattice. Numerical results presented indicate that the transverse mass depends on

electron energy, and in most cases has a value close to the energy-dependent electron effective mass in the

layer having the smaller band gap.

I. INTRODUCTION

The energy-wave-vector relationship for semi-
conductor superlattices has been worked out
elsewhere by the authors, ' taking into considera-
tion all the complexities of the band structures of
the constituent materials. The electron effective
mass in the longitudinal direction may be readily
worked out' from these expressions. The electron
effective mass in the transverse direction has not,
however, been worked out explicitly, and discus-
sion on this is not available in the literature. It
has so far been tacitly assumed that in these di-
rections, the electron is always characterized by
the isotropic mass corresponding to the material
with the smaller band gap, ' usually GaAs. The
underlying idea has been that the electron occu-
pies real states only in the GaAs layers, being
characterized by imaginary wave vectors in the
so-called barrier layers. This concept needs to
be examined critically, to determine whether the
presence of the alternate barrier layers affects
the transverse mass at all. We derive in this note
an analytical expression for the electron effective
mass in the transverse direction. Numerical re-
sults are also given to indicate how far the values
differ from the values corresponding to the layers
with the lower energy band gap.
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where f,(E) = 1+ n, (E„+E —E„) is the factor due
to nonparabolicity, "with a, = 1/Ea „where Ea,
is the direct band gap in the second material. '

Rearranging (1) and (2), we get

k, = [(2m~~/S')E(1+ n, E) —k,']'~-,

and

K, = ik, = ((2m,*/S') [1 —n, ( V —E) ](V —E) + k,']'~ ',

(4)

where V= (E„—E„) is the potential barrier en-
countered by the electron.

The electron wave functions in layers 1 and. 2

may be expressed as

g, (z) =A exp[ik, (z —a)]

energy and the wave vector; a, = '/Ea„where
E~, is the direct band gap for the material. ' Let
the conduction band edge and band-edge effective
mass in the second layer (the so-called barrier
layer) be E„and m,*, and let k, be the electron
wave vector in the longitudinal direction in this
layer. Since the total energy F. and the transverse
wave vector k, are conserved when an electron
moves across the layers, we have

II. TRANSVERSE EFFECTIVE MASS IN A

SUPER LATTICE
and

+ B exp[- ik, (z —a)],

A superlattice is composed of alternate layers
of two different materials. Let the material with
the smaller band gap be characterized by a con-
duction-band edge E„, a band-edge effective mass
yn,*, and electron wave vectors k, and k, in the
longitudinal and transverse directions. Then the
total electron energy E, measured from E„ is
given by

2m~~f~(E) 2m,*f~(E) '

where the factor f,(E) = (1+ n, E) is introduced to
account for the nonparabolic relation between the

g, (z) = C exp[K, (z —d)]

+ D exp [-K,(z —d) ], (6)

where a and Q denote the widths of layers 1 and 2

and d= (a+ k) is the superlattice periodicity. The
superlattice wave vector k is introduced through
the relation

g, (z) = g, (z —d)exp(ikd),

where P, is the electron wave function in the third
layer (identical to the first layer, but separated
from it by d).
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The disperation relation for the superlattice is
obtained by matching the wave functions and their
derivatives at the layer boundaries, and takes the
form

+2 Q2
'sinh(K, b)sin(k, a)+ cosh(, b)cos(k, a)

1 2

= cos(kd) . (8)

it becomes the complete dispersion relation for
the superlattice, since (3) and (4) involve the total
energy E including that arising from the trans-
verse wave vector.

The electron effective mass in the transverse
direction is, by definition, given as

gE
g2y

It should be pointed out that (8) is identical in

form to the expression obtained earlier, ' but here
I

Equation (8) may, therefore, be differentiated to
yield

+ ' ' ' ~' 1 k, b cosh(K, b)sin(k, a) — ' ~' —1 K,a sinh(K, b)cos(k, a)
mI

+ '-1 k, bsinh(K, b)cos(k, a)+ ' ~' —1 K,a cosh(K, b)sin(k, a) =0, (10)
m J J

where 5, = (1+2n, E) and (), = [I —2a, (V —E)]. It is
clear that (10}can only be solved numerically,
and this has been done for a typical superlattice
structure in the next section.

III. ESTIMATION OF TRANSVERSE MASS

A direct consequence of Eq. (8) is that the con-
duction band above E„ is split up into a number
of minibands. It can also be shown that in all
cases of practical importance (with regard to elec-
tron concentration and temperature) only the low-
ermost miniband is likely to be occupied. %e
therefore present results for the first miniband
only in a superlattice structure consisting of 50-

I

A-wide GaAs layers alternating with 10-A-wide
AIAs layers. The effective masses and bandgaps
for these layers are 0.06'lm„0. 15mp 1500 meV,
and 2860 meV, respectively. The transverse mass
is worked out as a function of electron energy in
two cases, viz. , V= 500 (Fig. 1}and 1100 meV
(Fig. 2).' The curves (a) in the two figures denote
m,* when the effective masses in the individual
layers are considered to be independent of energy,
i.e. , o, = n2= 0. It is seen that (i) m,* is different
from m,* and the maximum difference of about
7% occurs for the lower barrier at the lower mini-
band edge. The difference between m,* and m,*
also decreases with increasing barrier height.
(ii) m,* decreases with increasing electron energy.
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FIG. 1. m~~ as a function of E, with V= 500 meV: (a)
effective masses in layers assumed energy independent,
(b) effective masses in layers assumed energy dependent,
(c) m~ (1+2 a, E). Ej, E2, E&, and E2 are the miniband
edges for parabolic and nonparabolic cases.

FIG. 2. m~ as a function of E, with V=1100 meV; (a)
effective masses in layers assumed energy independent,
(b) effective masses in layers assumed energy dependent,
(c) m~ (1+2 n&E). E&, E2, E'~, and E2 are the miniband
edges for parabolic and nonparabolic cases.
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The energy dependence of the isotropic effective
masses in the individual layers is important in
superlattice structures because the electron en-
ergies encountered in the minibands are usually
quite far from E„and E„. The values of m,*
when this dependence is taken into account are
shown by the curves (b). For comparison with
the corresponding energy dependent effective mass
in the first layer, the quantity m,*(1+2a,E) is
also shown alongside [curves (c)]. It is seen that
m,* differs from the effective mass in the first
layer by about +.002mo for the system considered.
The difference is also found to increase with de-
crease in the barrier height.

It is interesting to note that whereas m,* is
greater then the energy-dependent effective mass
in the first layer for a low barrier, the situation
is reversed for a high barrier. This happens be-
cause the energy dependence of the effective mass
in the barrier layer always causes it to be smaller
than m,* for the energies considered (E& V). As
the barrier height increases, the effective mass
in the second layer gets further reduced for the

same energy, until for large barriers this mass
actually becomes less than the effective mass in
the first layer. In this situation, the contribution
of the second layer is to reduce m,* to a value
smaller than the effective mass in the first layer.

IV. CONCLUSION

We have obtained an analytical expression for
the effective mass in the transverse direction in
a semiconductor superlattice, beginning with the
dispersion relation for the superlattice. Numeri-
cal solution of the expression indicates that the
transverse mass represents a complex average
over the effective masses in the individual super-
lattice layers. The mechanism of this averaging
process involves the electron energy, probably as
a consequence of the fact that the nature of the
transit of the electron through the barrier layer
depends on its energy. The value of the trans-
verse mass is, in general fairly close to the ef-
fective mass in the layer with the smaller band
gap
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