Electronic and impurity-induced Raman scattering in MgO:Co²⁺

Soumyendu Guha

Instituto de Física, UNICAMP-Campinas, São Paulo, Brazil (Received 17 September 1979)

Theoretical and experimental Raman-scattering studies of impurity-induced vibrations have been carried out in MgO:Co²⁺. The experimental spectra are taken as a function of temperature from 18°K to room temperature. The temperature dependence of a peak at 935.7 cm⁻¹ indicates that its origin is of electronic nature. We assign it to the $\tau_6 \rightarrow \tau_8^2$ transition between the low-lying energy levels of the Co²⁺ ion in cubic fields. Theoretical calculations for the Raman spectra are presented, assuming the electron-phonon interactions to be a linear function of the displacements of the defect's first-, second-, third-, and fourth-nearest neighbors. This assumption leads to a very good agreement of the line-shape and peak positions between theory and experiment. As an alternative model, we also consider the perturbed-phonon model in which changes of the longitudinal force constants between the defect and its nearest neighbors as well as nearest and fourth-nearest neighbors have been assumed. This model leads to an unsatisfactory agreement between theory and experiment.

I. INTRODUCTION

In crystals of rock-salt structure such as pure MgO, every ion is at its own inversion site. None of the zero-wave-vector $(\vec{q}=0)$ phonons are of even parity and therefore, first-order Raman scattering is not allowed. However, when an impurity is introduced at a substitutional lattice site, the translational symmetry as well as the inversion symmetry is destroyed except at the impurity site. Thus, the $\vec{q} = 0$ selection rule no longer holds and first-order Raman scattering is allowed. Numerous studies of first-order Raman spectra for a variety of crystals have revealed valuable information about the host lattice. The first-order Raman spectra also provide information about the electronic energy states of the defect when it is embedded in the host lattice at a substitutional lattice site. We report here an experimental and theoretical study of the first-order vibrational spectrum in MgO:Co²⁺. We have also observed a strong peak at 935.7 cm⁻¹. From the temperaturedependence study of this peak, we assign it to an electronic transition $(\tau_6 - \tau_8^2)$ between the low-lying electronic states of the Co²⁺ ion in cubic fields. In an earlier paper, Billat $et \ al.^1$ have reported the first-order spectrum in this crystal at 77 °K. They have also calculated the first-order spectrum using the breathing-shell model (BSM) of Schroder et al.² However, their calculations lack the following details for which they were unable to produce the sharp features in the observed spectrum: (i) they used a mesh of 264 points in a 1/48th section of the Brillouin zone, corresponding to about 8000 points in the entire zone, and (ii) they assumed the electron-phonon interaction to be a linear function of the displacements of the defect's nearest neighbors.

21

5808

We have reexamined the problem of the firstorder Raman scattering in MgO:Co2+ for the following reasons: (i) Adopting the BSM calculations of Sangster et al.³, we have obtained host-lattice phonon frequencies and polarization vectors for 1686 \vec{q} vectors in the Kellermann 1/48 section of the Brillouin zone. Through symmetry operations, this is equivalent to a uniform mesh of 64 000 \vec{q} vectors. This large number for the frequency mesh has enabled us to produce a more detailed and accurate theoretical spectrum compared to that of Billat *et al.*¹ (ii) It has been shown recent- $1y^{4,5}$ that a significant improvement between theory and experiment is achieved when second- as well as first-nearest-neighbor displacements in the electron-phonon interaction are included. In this work, we include in our calculations fourth-, third-, second-, and first-nearest neighbor displacements in the electron-phonon interactions. (iii) We also examine the force-constant perturbation model of Gethin et al.,⁶ in which a force-constant change between the nearest and fourth-nearest neighbor is assumed, in addition to the longitudinal-force-constant change between the defect and its nearest neighbors. (iv) We have conducted a temperature-dependent study from 18 °K to room temperature to identify the phonon and electronic Raman excitations.

II. THEORY

A. Green's-function matrix

In the perfect crystal, the equation of motion for a normal mode is given by

$$(\underline{A} - \omega^2 \underline{I}) \, \underline{v} = 0 \,, \tag{1}$$

where \underline{A} represents the harmonic-coupling-constant matrix and I is the unitary matrix. The eigenvalues will be denoted by $\omega_{q\lambda}^2$ and the orthonormal phonon eigenvectors by $v_{q\lambda}$, with components given by

21

$$|q\lambda\rangle = v_{q\lambda}^{j\alpha}(\vec{\mathbf{R}}_{j}) = \frac{1}{\sqrt{N}} \exp(i\vec{\mathbf{q}}\cdot\vec{\mathbf{R}}_{j}) \epsilon_{q\lambda}^{j\alpha} .$$
(2)

Here the $\{\tilde{q}\}$ form a set of N wave vectors in the first Brillouin zone, λ is the polarization index, and $\tilde{R}_{,i}$ is the position vector of the *j*th atom. The $\epsilon_{q\lambda}^{j\alpha}$ are the components of the polarization vector for mode $(q\lambda)$ which is orthonormal,

$$\sum_{j\alpha} \left(\epsilon_{q\lambda}^{j\alpha} \right)^T \epsilon_{q\lambda'}^{j\alpha} = \delta_{\lambda\lambda'} .$$
(3)

The Green's-function matrix for the unperturbed crystal is given by

$$\underline{G}_{0}(\omega^{2}) = \frac{1}{\underline{A} - \omega^{2}\underline{I}} = \sum_{q\lambda} \frac{|q\lambda\rangle\langle q\lambda|}{\omega_{q\lambda}^{2} - \omega^{2}}.$$
(4)

The component form of Eq. (4) can be obtained using Eq. (2) as

$$\underline{G}_{0}(R_{j}, R_{j},) = \frac{1}{N} \sum_{q\lambda} \frac{\exp[i\vec{q} \cdot (\vec{R}_{j} - \vec{R}_{j},)]}{\omega_{q\lambda}^{2} - \omega^{2}} (\epsilon_{q\lambda}^{j\alpha})^{T} \epsilon_{q\lambda}^{j^{\alpha}\alpha}.$$
(5)

B. Raman-scattering intensity

Harley et al.⁷ have shown that the Raman-scattering intensity for the first-order Stokes scattering at frequency $\omega_s = \omega_i + \omega$ is given by

$$= \frac{\hbar}{\pi} \operatorname{Im} \sum \underline{G}_{B0}(\Gamma_{i}, tt')(\underline{P}_{\alpha\gamma})^{T} \xi(\Gamma_{i}t)(\underline{P}_{\beta\beta})^{T} \xi(\Gamma_{i}t') .$$
(6)

Here $\underline{G}_0(\Gamma_i, tt') = \xi(\Gamma_i t)G_0\xi(\Gamma_i t')$ is an element of the Green's-function matrix given by Eq. (5) but expressed in a symmetry basis for irreducible representation Γ_i of the O_h point group. The sums over t and t' run over the symmetry basis vectors $\underline{\xi}(\Gamma_i t)$ belonging to Γ_i . The component $P_{\alpha\beta}(m\gamma)$ $\equiv [\delta P_{\alpha\beta}/\delta v(m\gamma)]$ of $\underline{P}_{\alpha\beta}$ are first derivatives of the static polarizability tensor with respect to nuclear displacements. We assume that the elements of $\underline{P}_{\alpha\beta}(m\gamma)$ are nonzero for the defect's nearest, second-nearest, third-nearest, and fourth-nearest neighbors. The scattering from E_g mode is proportional to I_{11} - I_{12} , where $I_{11} = I_{xx,xx}$ and $I_{12} = I_{xx,yy}$. Thus one obtains from Eq. (6)

$$I(E_g) = \frac{2\hbar}{\pi} \operatorname{Im} \sum_{ij} P_i P_j \underline{G}_{B_0}(E_g, ij).$$
(7)

The parameters P_i 's are expressed as P_i

 $=P_{xx}^T \underline{\xi}(E_g i)$, where *i* runs from 1 to 6. This is because there are six E_g modes, one from the nearest, two from the second-nearest, one from the third-nearest, and two from the fourth-nearest neighbors. Some of these basis vectors are tabulated in Ref. 5.

C. Perturbed phonons

For the case of perturbed E_{ϵ} phonons, one considers the longitudinal-force-constant changes δf_{l} between the defect and its six nearest neighbors. One can write the Raman-scattering intensity from $\text{Im}G(E_{\epsilon})$, which is expressed as

$$ImG(E_{g}) = \frac{ImG_{B0}(E_{g})}{(1 + \delta f_{i} \operatorname{Re}G_{B0})^{2} + (\delta f_{i} \operatorname{Im}G_{B0})^{2}}, \qquad (8)$$

where

$$\operatorname{Re} G_{B_0}(E_g, \omega^2) = \frac{1}{\pi} \operatorname{P} \int_0^{\omega_m^2} \frac{\operatorname{Im} G_{B_0}(E_g, \omega'^2)}{\omega'^2 - \omega^2} d\omega'^2 d\omega'$$

Gethins *et al.*⁶ assume changes in the force constants between the defect ion and its first-nearest neighbors (δf_i) as well as first- and fourth-nearest neighbors (δg_i) . We have also examined this model as an alternative method to calculate the theoretical spectrum.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental spectra

The defect-ion (Co^{2+}) concentration in the MgO crystal is approximately 2500 ppm as quoted by its manufacturer, W. & C. Spicer Ltd. The incident and scattered lights are propagated along the [001] and [110] directions of the crystallographic axes. This particular choice of the propagation directions allows us to observe the spectrum in the E_{μ} polarization geometry with the incident $(\tilde{\epsilon}_i)$ and scattered $(\tilde{\boldsymbol{\epsilon}}_s)$ polarization vectors along the [110] and $[1\overline{10}]$ directions. The spectra have been recorded with a Spex 1400 double monochromator using the 5145-Å wavelength of the argon-ion laser source. The signal is collected by a photomultiplier, picoammeter, and is finally plotted on a X-Y chart recorder. The sample is mounted inside a cryostat of the closed cycle refrigeration system by Air Products. We have been able to control the temperature from 18 °K to room temperature with an accuracy of ± 2 °K. The E, spectrum at 18 °K is shown in Fig. 1.

The temperature dependences of the three peaks at 278.5, 304.75, and 935.7 cm⁻¹ are shown in Fig. 2. The T_{2g} spectrum in this sample is weak and is not shown.

B. Energy-level scheme of the CO²⁺ ion in cubic symmetry

The ground electronic state of the Co^{2*} ion in a cubic field is an orbital triplet $({}^{4}T_{1})$. First-order spin-orbit coupling splits the ground electronic

FIG. 1. E_g spectrum at 18° K. The peaks at 278.5 cm⁻¹, 304.75 cm⁻¹, 373.8 cm⁻¹ and 421.4 cm⁻¹ are the one-phonon spectrum. The peak at 935.7 cm⁻¹, which is superimposed on the two-phonon spectrum of pure MgO, is identified as the $\tau_6 \rightarrow \tau_8^2$ electronic transition between the low-lying energy levels of the Co²⁺ ion.

state into two Kramer doublets (τ_6, τ_7) and two quartets ($\tau_8^{1,2}$). The separation between the energy levels has been calculated by Mann *et al.*⁸ and is shown in Fig. 3. From the temperature dependence of the 935.7-cm⁻¹ peak, we assign it to the

FIG. 2. Temperature dependence of the peaks at (a) 304.75 cm^{-1} , (b) 278.5 cm^{-1} , (c) 935.7 cm^{-1} . The intensity of one-phonon peaks at 278.5 cm^{-1} and 304.75 cm^{-1} obey the $1 - \exp(-h\omega/kT)$ law. The experimental points are joined for convenience.

FIG. 3. Low-lying energy levels of Co^{2^+} ion in cubic field with spin-orbit coupling $(\vec{L} \cdot \vec{S})$. Calculated values are quoted from Ref. 8.

 $\tau_6 - \tau_8^2$ electronic transition. According to calculations, a peak should also appear at ~ 300 cm⁻¹ due to the $\tau_6 - \tau_8^1$ transition. Why it did not appear in the experimental spectrum is not very clear. The temperature-dependent behavior of the peaks at 278.5 and 304.75 cm⁻¹ clearly ruled out the possibility that their origins were of an electronic nature. We plan to investigate the electronic Raman scattering in this system in the presence of a magnetic field in the near future.

C. Calculations with unperturbed phonons

The frequencies and the polarization vectors of the host lattice are obtained with the BSM calculations of Sangster et al.³ In this model, the unperturbed vibrational frequencies and core polarization vectors have been calculated for a uniform mesh of 1686 points in a 1/48 section of the Brillouin zone from a fit to the neutron-scattering data. We have used these eigenvectors to calculate the $ImG_{B0}(E_{e}, ij)$ for the six E_{e} displacements due to the first-, second-, third-, and fourth-nearest neighbors. They are then sorted out into 100 bins of equal width with appropriate weightage factors. Independent contributions of the E_g displacements to the $ImG_{B0}(E_g, ij)$ are shown in Fig. 4. The inclusion of the two E_g modes arising from the vibrations of the second-nearest neighbors which are twelve magnesium ions enhances the intensity of the acoustic peak at 304 cm⁻¹ and the optic mode at 421 cm⁻¹ as compared to the nearest-neighbor coupling calculations. In order to produce an agreement in the line shape between theory and experiment, we have combined the five E_{e} displacements in accordance with Eq. (7). The second E_{g} mode coming from the fourth-nearestneighbor displacements has been ignored because the inclusion of this mode, which is out of phase with the first-nearest neighbor displacements, enhances the intensity of the optic mode and deteriorates the agreement between theory and experiment. In Fig. 5(b) we show the calculated intensity for the combined E_g displacements. It is to be noted that we have assumed the electron-phonon coupling to be the same for all five modes. In Fig.

FIG. 4. Theoretical E_g spectra for first (10000) -, second (01000,00100) -, third (00010)-, and fourth (00001)-nearest neighbors of the defect with unperturbed phonons of the BSM. Here the indices correspond to the electron-phonon coupling strength P_i .

5(c) fractional values of P_1 and P_4 are taken which also lead to a good agreement between theory and experiment. For both sets of values P_i we have been able to achieve a good agreement between theory and experiment, except for the peak at 278.5 cm⁻¹ which we attribute to a local mode.

D. Perturbed-phonon model

As an alternative model, we also examine the change in longitudinal force constants between the defect and its nearest neighbors. The line shapes for a change of nearest-neighbor force constants of 4% and 8% are shown in Fig. 6. A local mode appears at 278.5 cm⁻¹, but the line shapes and peak positions for other modes are in poor agreement with experiment. We have also examined the model of Gethins *et al.*,⁶ in which a longitudinal-force-constant change between the nearest and fourth-nearest neighbors has been assumed. Unfortunately, this model does not lead to any significant change in the line-shape spectrum for about 20% change in the force constant between defect's first- and fourth-nearest neighbor. This is shown

FIG. 5. Theoretical and experimental E_g spectra. The calculated spectra are: (b) the combined E_g displacements which include defect's first-, second-, third-, and fourth-nearest neighbors, with unperturbed lattice phonons, (c) the same as (b) without fourth-nearest neighbor displacements, but with different coupling parameters.

in Fig. 7. Any further changes in force constants worsen the line-shape profile.

IV. CONCLUSION

We have found that the inclusion of second-, third-, and fourth-nearest-neighbor displacements in electron-phonon interaction results in a good agreement between theory and experiment as compared to the nearest-neighbor coupling model. We have also examined the perturbed-phonon model of Gethins $et \ al.^6$ in which the change in positions of nearest and fourth-nearest neighbors of the defect gives rise to a change in force constant between them. We have found this model to be unsatisfactory. Robbins et al.⁵ have also achieved a good agreement between theory and experiment when defect's second-nearest-neighbor displacements are included in calculations as compared to the nearest-neighbor coupling and perturbed-phonon models. The strong evidence of the superiority of the electron-phonon coupling model with defect coupled to displacements of distant neighbors, over the complicated perturbed-phonon model, suggests that it would probably be of scientific interest to calculate the strength of the electron-phonon interaction as a function of displacements of nearest as well as distant neighbors. It has been shown⁴ that

5811

FIG. 6. Perturbed theoretical E_g spectra for nearestneighbor force constant change model. The fractionalforce-constant changes $(\delta f_l/f_l)$ are indicated on the side of each curve. The value of f_l is taken as the unperturbed nearest-neighbor overlap (shell-shell) longitudinal force constant $\frac{1}{2}A$ of the BSM.

for Jahn-Teller ions which are strongly coupled to the lattice, the displacements of distant neighbors fall off as $\sim 1/r^2$ where r is the distance of neighboring ions from the defect. Therefore the inclusion of second-, third-, and fourth-nearest-neighbor displacements in our calculations is probably justified. How strongly these distant neighbors are coupled to the defect is a conundrum. It requires

FIG. 7. (a) Perturbed theoretical E_g spectrum for changes in longitudinal force constants between defect and its nearest (δf_i) as well as nearest and fourth-nearest (δg_l) neighbors, (b) E_g Raman spectrum at 18 ° K, (c) perturbed theoretical E_g spectrum for changes in longitudinal force constants between defect and its nearest neighbors only.

a systematic study of impurity-induced vibrations of ions which are strongly coupled to the lattice (e.g., Fe²⁺, Cu²⁺, Mn³⁺, etc., in CaO or MgO) along with weakly coupled ion-lattice systems. We have also observed a peak at 935.7 cm⁻¹ due to electronic transition $\tau_6 \rightarrow \tau_8^2$ between energy levels of Co²⁺ ion.

ACKNOWLEDGMENTS

I wish to thank Professor S. P. S. Porto for inviting me to UNICAMP, Brazil. I also thank Professor R. S. Katiyar for providing his laboratory facilities to me. Finally, I would like to express my gratitude to José Claudio Galzerani for his assistance in the laboratory. This research was supported by FAPESP of São Paulo, Brazil, Grant No. 77-0896.

- ¹A. Billat, J. P. Mon, and M. Voisin, Phys. Status Solidi B 67, 335 (1975).
- ²U. Schröder, Solid State Commun. 4, 347 (1966).
- ³M. J. L. Sangster, G. Peckham, and D. H. Saunderson, J. Phys. C 3, 1026 (1970).
- ⁴S. Guha and L. L. Chase, Phys. Rev. B 12, 1658 (1975).
- ⁵D. Robins and J. B. Page, Phys. Rev. B 13, 3604

(1976).

- ⁶T. Gethins, T. Timsuk, and E. J. Woll, Phys. Rev. <u>157</u>, 744 (1967).
- ⁷R. T. Harley, J. B. Page, and C. T. Walker, Phys. Rev. B 3, 1365 (1971).
- ⁸A. J. Mann, P. J. Stephens, Phys. Rev. B <u>9</u>, 863 (1974).