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A computer model has been constructed for amorphous FeF; using a method involving the sequential
addition of hard spheres of two different radii. A recognition of the effects of Coulomb forces is included by
separating the ions of like charge as far as possible within the basic building scheme. A cluster sample of
858 ions has been produced and used to compute iron-iron, iron-fluorine, and fluorine-fluorine pair
correlation functions, ion density, packing fractions, and such details of local configurational structure as
the distribution of Fe-F-Fe bond angles 6. The electric field gradient distribution at the iron sites has
been computed using a point-charge model and used to interpret the measured Mdssbauer quadrupole
spectra. Comparisons are made with the earlier model presented for amorphous yttrium iron garnet (YIG)
and reveal subtle differences in the iron coordination between the two. It is suggested that whereas the
dominant exchange energy in amorphous YIG comes via essentially contact Fe-anion-Fe nearest-neighbor
bonds, well over half the magnetic energy in amorphous FeF, may come from “noncontact” bonds.

I. INTRODUCTION

The recent synthesis of a few magnetic non-
crystalline insulators has added a new dimension
to the study of amorphous magnetism. Earlier
noncrystalline magnets had been metallic alloys
with long-range exchange interactions and usually
a broad distribution of magnetic moments. The
noncrystalline insulators, such as FeF,,! YIG,?
and FeF,,** are synthesized without the addition
of extraneous glass-forming constituents and fall
into an intermediate class of amorphous materials
(loosely termed “ionic glasses”) between metallic
glasses, for which structural coordination numbers
are largest, and covalent glasses (e.g., silicate
glasses) for which the coordination numbers are
smallest. In addition to representing a new class
of amorphous materials, they hold particular in-
terest since their magnetic properties are pre-
sumably dominated by interactions between near-
neighbor magnetic cations and therefore directly
reflect in some way local structure such as bond
distances and angles. It therefore opens up the
possibility of using magnetic experiments as
probes of local coordination in the amorphous
state.

The first requisite in such a project is a basic
model which, it is hoped, can lead to some under-
standing of the grosser aspects of experimental
observations and which can later be honed as the
number of examples studied is increased. A first
step in this direction was recently set out® for the
case of amorphous yttrium iron garnet Y, Fe,O,,,
commonly referred to as YIG. In Ref. 5 a com-
puter model was constructed using a modification
of the method pioneered by Bennett® based on the
sequential addition of hard spheres. The modifi-
cation allows for the presence of spheres of dif-
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ferent radii corresponding to the different ion
species present, and most importantly recognizes
the presence of local Coulomb forces which are
assumed to keep neighboring ions of like charge
as far apart as the basic building algorithm will
allow. Any tendencies towarddirectional (covalent)
bonding are neglected.

In the present paper we use this technique to
build a computer model for amorphous FeF,.
Cations can be separated by a distance d=2.7 A
compared with d=2.4 A in YIG, and the model
suggests a slight increase in density in passing
to the amorphous phase in FeF, compared with
a decrease in density on passing to the amorphous
phase in YIG. After the calculation of densities
and packing fractions in Sec. II we pass to a point-
charge calculation of the electric field gradient
(EFG) at the iron sites in Sec. III. The larger
value of d for FeF, leads to a better packing of
anions around an average iron (though not to a
larger number of actual contact anions) and results
in a smaller EFG distribution width and hence a
smaller quadrupole splitting than in amorphous
YIG, in agreement with the observed Mdssbauer
measurements.

In Sec. IV we compute the correlation functions
for iron-iron, iron-fluorine, and fluorine-fluorine
pairs out to a range of 10 A. Identifiable details
of local structure are recognizable out to a larger
range than was possible for the computer YIG
model, indicating a higher degree of local order
in FeF,. This is partly due to the larger d value
but also to the fact that the ratio of the F to Fe
ionic radii (determined from the crystalline FeF,
lattice) is almost perfect for the packing of six flu-
orines around one iron.

In Sec. V we examine the details of local struc-
ture, bond angles, and coordination, and relate
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them where possible to magnetic properties. Al-
though an almost perfect six-packing of fluorines
around iron is found close to the seed cluster of
the computer sample, this feature is somewhat
less pronounced in the main body of the “sample.”
We compute, in particular, the angular distri-
bution of nearest-neighbor iron-fluorine—iron
bonds and infer the distribution of exchange en-
ergy which results from those cations which are
essentially in contact with the same anion. Com-
paring these findings with magnetic measurements
on the amorphous material, we find that signifi-
cantly less than half the exchange energy in amor-
phous FeF, can be attributed to these nearest-
neighbor (or “contact”) pairs. By contrast, we
find that most of the magnetic energy does arise
from contact neighbors in amorphous YIG.

Both crystalline FeF, and crystalline YIG ex-
hibit long-range magnetic ordering above room
temperature while their amorphous equivalents
undergo a “spin freezing” only at very low tem-
peratures (T~30 K). The amorphous ordered
phase in both cases is probably speromagnetic,
which.involves an antiferromagnetic alignment
on a local scale without the definition of sublattices.
Our work suggests that the low ordering tem-
peratures in amorphous FeF, and YIG may have
somewhat different origins, being dominantly a
frustration effect in the former but arising in
YIG as a direct result of a low coordination number
for strongly antiferromagnetic interactions.

II. THE COMPUTER MODEL

Details of the crystal structure of crystalline
FeF, have been given by Hepworth ef al.” Each
ferric ion is equidistant some 1.92 A from six
fluorine anions which form an almost regular
octahedron around it. Using the conventional ionic
fluorine radius of R(F)=1.36 A establishes aferric
radius R(Fe)=0.56 A as appropriate for crystalline
FeF,. Our first assumption is that these radii
remain appropriate for use in constructing a hard
sphere model for amorphous FeF,.

In constructing the model we follow closely the
procedure set out in Ref. 5 for amorphous YIG
but now, since we are concerned with a binary
rather than a ternary system, we can dispense
with the recipe for choosing between two types of
cations in the sequential addition procedure. A
seed cluster is formed from two fluorine spheres
and one iron sphere all in contact in the xy plane,
with one of the fluorine centers adopted as the
origin [ or more accurately as the point (0,0, 10°°
A), aprocedure which removes (z, -z) symmetry
around the seed and prevents the occurrence of
pockets which are equidistant from the origin)].

In adding spheres, our primary criterion is that
no two cations shall touch or indeed come closer
than an initially arbitrary center-to-center dis-
tance d>2R(Fe). Starting from the seed we com-
pute the possible positions (pockets) of a new
fluorine sphere in contact with the three spheres
of the seed (the first pockets must be anionpockets
since they involve contact with a cation). Thus the
seed-pocket calculation results in a substrate of
N =3 ions and the positions of M =2 new sites for
an additional anion. Labeling all substrate ions
and pockets by their formal valence charges
(F=-1, Fe=+3), the following procedure is now
general for general N and M.

We first choose the pocket nearest to the origin
(the “global” pocket) and fill it as long as it does
not result in a violation of the d criterion. If it
does, we strike out this pocket and proceed to the
next global pocket until one is found which does
not violate this criterion. After filling this pocket
we strike out all pockets which overlap the added
(N +1)th sphere and compute the newly created
pockets involving this sphere. If a newly created
pocket involves contact with a cation, then it is
designated a fluorine pocket; if not, the pocket
type (F or Fe) is decided by summing the valence
charge on the existing substrate and adding that
pocket which tends toward establishing charge
neutrality. After calculating all new pockets, we
strike out those which overlap the existing sub-
strate. We now redefine N and M to represent the
new substrate and pocket sets and repeat the en-
tire procedure.

If the distance d is too large, M goes to zero
at some stage of the building process and the pro-
cedure terminates. The largest value of d for
which the building program will propagate in some
sense therefore minimizes the local Coulomb en-
ergy within the building algorithm. This value of
d is found by trial and is 4= 2.7 A in FeF, com-
pared with d=2.4 & in YIG.> With d=2.72 A&,
building ceases at N=6 so that the exact value
of d for FeF, is between 2.70 and 2.72 A. We
have used d=2.70 A to construct a cluster of 858
ions with cluster size limited only by computer-
time restriction.

This approximately spherical “computer sample”
of amorphous FeF, is 27.4 A in diameter and con-
tains N(Fe)=215 cations and N(F)=643 anions,
giving a ratio N(Fe)/[N(Fe)+N(F)]=0.251 to be
compared with the ideal 0.250. However, since
R(Fe) is small compared to R(F), occasional
pockets for Fe are created and immediately filled
as much as 1.8 A inside the “surface” of the clus-
ter, tending to make the surface region slightly
iron deficient and the rest of the cluster very
slightly iron rich. Withd=2.7 f&, the smallest



allowed Fe-F-Fe bond angle 6, is very close
to 90° (actually 89.4°) and is considerably larger
than its equivalent (i.e., Fe-O-Fe) 6_,,=76° in
computer model amorphous YIG.®

Plotting the surface radius of the cluster sample
7(N), defined by the radial coordinate of the fairly
smoothly varying anions alone as a function of
1/N, we can graphically extrapolate to 1/N-0 to
obtain the reciprocal atomic density

min

pt= lim [4m°(N)/3N]=(12.80+0.15) A* (1)
1/N=0

(per atom) for amorphous FeF,. This compares
with the equivalent crystalline value” of 13.00 A®
and suggests a possible slight increase in density
in going to the amorphous phase. This result is
to be contrasted with the YIG situation® where a
decrease of density of some 5% was suggested
by the same model on passing to the amorphous
phase. The difference is due both to a more ef-
ficient packing of FeF, in the glass and a less
efficient packing in the crystal. Quantitatively
the effect is expressed by packing-fraction cal-
culations as shown in Table I where we also show
other data comparing the FeF, and YIG systems.

III. EFG AT THE IRON SITES

A particularly useful probe of local structure
in amorphous materials containing Mdssbauer
nuclei is the M6ssbauer quadrupole spectrum. In
FeF,, above the spin-freezing temperature ~ 30 K,
a simple two-line spectrum is expected and ob-
served for the *"Fe quadrupole resonance.® The
splitting and line shape measure indirectly the
distribution of electric-field gradients at the
iron sites. The latter can be computed from the
model of Sec. II in a point-charge approximation
as described (for the analogous YIG model) in
Ref. 5. Using formal valence charges z(Fe)=+3
and z(F)=-1, we compute directly the principal

TABLE I. Comparison of ionic radii R, minimum
cation-cation distance d, minimum iron-anion-iron an-
gle 6.4, , packing fraction f, and reciprocal ionic density
p-! in FeF; and YIG.

FeF, YIG
R(Fe) &) 0.56 0.54
R (anion) &) 1.36 1.40
R(Y) Q) 1.00
d @A) 2.7 2.4
0un (deg) 89 76
f (crystal) 0.622 0.649
f (amorphous) 0.632 0.618
p-(crystal) (A° per ion) 13.00 11.85
p-!(amorphous) (A3 per ion) 12.80 12.45
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EGF modulus |V,,| and asymmetry parameter

7 at all Fe sites more distant than 3 A from the
cluster surface. We obtain the distributions shown
in Figs. 1 and 2 in histogram form. From the
innermost Fe sites in the cluster, the accuracy of
truncating the EFG radial summation can be esti-
mated. We find that an rms error of ~+0.13 ¢/

A% is incurred (where e is electronic charge) for

a 3 A truncation and ~+0.06 ¢/A® for a 4 A cut-
off.

From the Fig. 1 histogram we see that the. |V, |
distribution p(| V,,|) is essentially zero at V,, =0,
peaks at or a little above 0.3 /A%, and falls back
to very small values above 0.7 ¢/A%. The peak
value V,, and distribution width are both smaller
than their equivalents [Fig. 2(c) of Ref. 5] in YIG.
Experimentally, the peak-to-peak quadrupole
splitting (QS) for amorphous FeF, is found® to be
~0.54 mm/sec compared with 1.05 mm/sec for
YIG. From Fig. 1 we expect that a reasonable
analytic representation for the EFG distribution
might be a (possibly asymmetric) Gaussian.®! We
therefore write this distribution as

A, exp{—[(|Vu|- Vy)/a VM]2}9 | Vi< Vy

p( | Vi | )= (2)
A, exP{‘[(lvul' VM)/bVM]z}y |V11\> Vy

P (Vyy)
N
v

| 1 1 ] | I
(o] 04 02 03 04 05 0.6 o7

Vyy (e/A%)

FIG. 1. Histogram for the probability distribution
p([Vy4]) of iron site principal EFG matrix elements [V,]
calculated from the computer model in a point-charge
approximation. Also shown for comparison are the
asymmetric Gaussian distributions which result from
fitting the QS line shape via Eq. (3). The dashed curve
arises from the use of a natural Lorentzian line width
w=0.20 mm/sec in (3), and the solid curve from putting
w=0.38 mm/sec (see text).
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p(m)

FIG. 2. Histogram of the probability distribution p (1)
of the EFG asymmetry parameter 71 from the computer
model point-charge EFG calculation.

in which a and b are dimensionless parameters
measuring distribution width. In terms of this

distribution we calculate a Lorentz-broadened

symmetric doublet line shape in the form

_ = (w/2)exp{-[(1V,,| - VM)/xVM]z}dV 1
=4, J /2P 5 =V, S

®3)

where A, is an amplitude factor, y runs between
— and «, w is the full Lorentz width at half maxi-
mum, and x takes the value a(b) when |V, | is
smaller (greater) than V,, the latter parameter
being defined as positive.

The correct value to be used for w is uncertain,®
although it must be greater than w =0.20 mm/sec,
corresponding to a natural linewidth, and less
than w=0.38 mm/sec, the width observed® for the
(possibly split but unresolved) closely Lorentzian
single-line quadrupole spectrum of paramagnetic
crystalline FeF,. Using Eq. (3) we show in Fig. 3

fy)

(o] 05 1.0
y (mm/sec)

FIG. 3. Best theoretical fits [using Eq. (3)] to the ex-
perimental Mossbauer line shape (filled circles; data
taken from Ref. 3). The solid and dashed curves cor-
respond to their counterparts in Fig. 1.

LINES 21

the separate best fits to the amorphous QS data®
obtainable with these two extreme values for w.
The parameter values defining these fits are, re-
spectively,

(A) w=0.20 mm/sec, a=0.80,

b=0.95, V,=0.27 mm/sec,

4)

(B) w=0.38 mm/sec, a=0.45, (
b=0.60, V,=0.27 mm/sec.

The uncertainty involving w is of much greater
significance for FeF, than it was for YIG because
of the much narrower QS in the former case. In
Ref. 5 the QS-fit for YIG was performed with the
natural linewidth w =0.20 mm/sec, although later
more detailed study® suggested that a somewhat
larger value optimized the fit.

In Fig. 1 we show the distributions p(| V,,|)
a=0.80, b=0.95 (dashed curve) and a =0.45,
b=0.60 (full curve), compared with the computer
histogram. Both the QS-fits of Fig. 3 and the
histogram comparison of Fig. 1 suggest that the
appropriate value for w in the experimental con-
text of Ref. 3 should be closer to 0.38 than 0.20
mm/sec. The former value provides an excellent
fit to the computer EFG histogram if V,=0.30
e/A. The relationship between the QS units
(mm/sec) and the EFG units (e/A®), using the
most accurately available values for nuclear
quadrupole moment and Sternheimer antishielding
factor,'®! is (see Ref. 5)

1(e/A%=1.35 mm/sec, (5)

so that the computer EFG leads to avalue V,,=0.30
%x1.35=0.40 mm/sec, to be compared with the
observed V,=0.27 mm/sec of Eq. (4). Since the
EFG calculation was performed with valence point
charges, this formally would imply that effective
point charges be reduced to some 70% of their
valence values. Although this seems physically
quite reasonable, the errors incurred in the hard-
sphere aspects of the model and the point-charge
aspects of the EFG calculation itself suggest that
no quantitative significance yet be attached to such
effects. For example, no reduction was found
necessary for the equivalent YIG calculation,® al-
though for a ternary system such as YIG, a single
reduction parameter would not be appropriate in
any case.

IV. THE PAIR-CORRELATION FUNCTIONS

In this section, again following the procedures
set out in Ref. 5, we have computed the various
pair-correlation functions for amorphous FeF,
directly from the computer model cluster. For
FeF, there are only three such independent func-



tions g, 8(1'), which measure the average density
of ions of type B at a distance 7 from ions of type
a, since g,,(r) and g,,(r) are trivially related.’
In Figs. 4, 5, and 6, we display, respectively,
Erer(”), Zrere”), and gpp(¥), each out to a radius
of ten angstroms.

As for YIG, certain obvious features of these
correlations for comparatively short range » can
be correlated with planar geometrical configura-
tions of the hard-sphere components (see the
figures). However, with the larger d value, the
FeF, amorphous structure is “less randomly
structured” on the local scale than YIG and details
in the iron-fluorine and fluorine-fluorine functions
are recognizable out to the third-neighbor “shell”
with »~7 A. Statistics for the iron-iron function
are less impressive than the others by virtue of
the relatively small number of Fe-Fe pairs in the
sample compared to Fe-F or F-F pairs. One
significant feature in the gg,p(7) histogram at
r=3.4 A is not a planar feature but is readily
identified as a simple three-dimensional con-
figuration obtained by adding a fluorine-contact
sphere to the planar configuration indicated in
Fig. 5 for the Fe-Fe function at »=2.7 A. »

We note from the amplitude (0.832) of the 0.1-A
wide “contact spike” at 2.9-3.0 A in Fig. 4 that
approximately 3.9 fluorine ions “contact” an aver-
age ferric ion. This is almost exactly the same
figure (3.8) calculated from the iron-oxygen contact
spike in YIG (Fig. 8 of Ref. 5) for the number of
oxygen ions in contact with an average ferric ion
in amorphous YIG. In spite of this similarity
there are, in fact, some interesting differences

o4r 0.832

Qrer (MN(A3)
[e]
o
@

r(A)

FIG. 4. The pair correlation function ggr(») which
measures the density of fluorine ions at a distance »
from an iron ion, as determined directly from the com-
puter sample. Shown in this and the other pair correla-
tion figures are » values corresponding to simple planar
geometric configurations of the constituent hard spheres
as illustrated, where open circles represent F ions and
closed circles represent Fe ions.
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FIG. 5. As Fig. 4 but for correlations ggey,(r) of iron-
iron density.

in local iron-anion-iron coordination between the
two amorphous models, and these will be set out
in the following section.

V. LOCAL COORDINATION AND MAGNETIC
PROPERTIES

Crystalline FeF, is a weak ferromagnet'? with
dominant exchange forces which are strongly
antiferromagnetic’® arising from kinetic super-
exchange via Fe-F-Fe single-bridge anion ligands
with a bond angle (at the anion site) of 6 .,,,=153°"
Each ferric ion in the crystal couples equally to
six iron nearest neighbors and produces, below
the Neel temperature, a simple two sublattice
antiferromagnetic structure (neglecting the small
canting) with coordination number z =6, i.e.,
essentially a simple cubic antiferromagnet.

The crystalline Neel temperature is T =363 K
and the reported Curie-Weiss constant is 6,
=-610 K. Since the crystal structure seems to
preclude the possibility of significant exchange
from other than nearest neighbors, we can use
the series expansion formula for a six-coordinated
two-sublattice antiferromagnet,'® viz.,

0 14p
0.800

o040t \

0.08r

Qee(n) (RT3

0.06F

004+

0.02r

r(A)

FIG. 6. As Fig. 4 but for correlations gpp(r) of fluo-
rine-fluorine density.
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kT ,=(50J/192)[11S(S+1) - 1]
x{1+[0.10/S(S+1)]}, (6)

to extract the exchange constant J (defining J by a
pair exchange —2J§i -§,) for the crystal. Putting
S=3 in Eq. (6) leads to J=-14.5 K. Using the
Curie-Weiss relationship 12JS(S+1)/3=-610 K,
on the other hand, gives an estimate J=-17.4 K.
For high-temperature antiferromagnets of this
type, such a discrepancy is common and usually
results when the experimental 6. is extracted from
data for which 7/T,, is not sufficiently large for
the simple Curie-Weiss relationship to be rig-
orously valid. For our purposes, however,
J(crystal)= -16 K will be quite sufficient.

Amorphous FeF, is magnetically very different®
from its crystalline counterpart. Although it has
a high value of Curie-Weiss constant 9, =-486 K,
suggesting a dominance of antiferromagnetic
forces, it does not exhibit a sharp magnetic tran-
sition at any temperature although a gradual spin
freezing to an amorphous antiferromagnetic
(termed speromagnetic'®) phase takes place at
T,~28 K.

In the computer model for amorphous FeF,
there exists a complete spectrum of iron-fluorine—
iron bond angles 8 between about 90° and 180°.

To examine this bond-angle distribution p(6), we
have sampled all pairs of iron spheres which
touch a common fluorine sphere and for which

at least one iron is less than 9 A from the sample
origin (to avoid surface effects). The result, in
histogram form, is shown in Fig. 7. Two dif-
ferences from the equivalent distribution in YIG
(Fig. 12 of Ref. 5) are noted. First, since the
minimum value of 6 in amorphous FeF; is only

a fraction of a degree less than 90° (89.4° to be
precise), and double-bridging requires 6 < 89.8°,
extremely few of the iron ions are double-bridged
in FeF,, whereas a significant fraction were®

in YIG. Second, we note in the FeF, model (but
not to anything like the same extent in YIG) that
the iron ions close to the origin (i.e., close to the
seed cluster) of the sample are atypical, with a
much higher local degree of close-packing than

the rest. They have, for example, in addition to
four contact fluorines, two other fluorines (which
I term neocontact) for which the Fe-F distance

is <2.0 A (contact distance being 1.92 A). Thus,
they are all approximately six-coordinated where-
as, farther out in the cluster, the iron coordination
(including neocontact out to 2 A) is dominantly

four (59%) and three (39%) with very few examples
of five and six coordination. The effect is probably
the result of having a high-symmetry seed together
with a sphere-radius ratio R(Fe)/R(F)=0.412
which is extremely close to the packing ratio
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FIG. 7. Histogram of the probability distribution p (6)
of Fe—F—Fe bond angles 6 within the computer “sample?’
We have shaded contributions (see text) which arise from
an atypical core section defined here as involving at
least one iron closer than 4 A to the origin of the sample.

(V2 -1)/1=0.414, which would enable six F to
perfectly pack one Fe. Because of this situation,
we have marked separately (shaded) in Fig. 7
(and in Fig. 8 to follow) those contributions which
come from irons closer than 4 A to the origin.

In Fig. 8 we examine the distribution of nearest-
neighbor magnetic ions defined as cations in actual
contact or neocontact (separation <2 A) with a
common anion. We compute, in particular, the
probability p(z) that a ferric ion has » magnetic
nearest neighbors and the results for actual con-
tact pairs (labeled contact) and for contact plus
neocontact pairs (labeled neocontact) are separately
displayed. Also in Fig. 8 we show the equivalent
distribution p’ (z) of all iron nearest-neighbor pairs
with a bond angle 6 >115°. These, as discussed
in Ref. 5, are the pairs which are likely to be
strongly coupled antiferromagnetically. Thus, the
most probable number of iron-pair nearest-
neighbors (including neocontact) of a particular
cation is four, with two or three of them strongly
coupled antiferromagnetically. This leads to a
certain amount of “frustration” (iron triads inter-
acting antiferromagnetically). Some of the more
significant of these results, compared with their
equivalents for YIG, are given in Tables II and
III. In particular, from Table III, which tabulates
data relevant for a discussion of frustration, we
see that the density of frustrated triads in both
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FIG. 8. The probabilities p (r) and p’ (x) that a magnetic
ion in the amorphous FeF; computer sample has, respec-
tively, n single-anion-bonded magnetic nearest neighbors
and z such neighbors with a bond angle 6 greater than
115°. The latter are those which are strongly magneti-
cally interacting. The pair of histograms labeled “con-
tact” include only those cation spheres which literally
touch a common anion sphere (contact radius 1.92 &).
The histograms labeled “neocontact” include also those
noncontact pairs for which the cation-anion center-to-
center distance is less than 2 A. We have again shaded,
as in Fig. 7, contributions arising from the atypical
core section of the sample.

FeF, and YIG is quite small if iron-anion dis-
tances <2 A are deemed essential for strong ex-
change. If this restriction is relaxed, however
(and this point will be discussed further below),
Table III shows that frustration in amorphous
FeF, increases rapidly as a function of iron-anion
distance whereas that in amorphous YIG does not.
Comparisons with YIG are now instructive.
Crystalline YIG has a Curie temperature of 559
K and an iron-oxygen—iron bond angle 6,4,
=127°. The dominant exchange has been calculated
by Wojtowicz'” and found to be J (crystal)=-33 K.
If we assume that the contact bonding in the glass
and in the crystal is similar, then we would anti-
cipate that J (glass) at 6 =6_.,,, would be of the
order J(crystal), both in FeF, and YIG. Since the
angular dependence of ferric exchange is known'®
for larger values of 6, viz., J(9) < cosd, this
suggests maximum values of J (i.e., for 9=180°)
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TABLE II. Comparison of magnetic and crystalline
data for FeF; and YIG. The last three entries are cal-
culations from the computer model in regions well re-
moved from the “seed cluster.”

FeF, YIG
Fe-anion-Fe

bond angle 6 (crystal) 153° 127°
Ty (crystal) 363 K 559 K
Ty (glass) ~30 K ~30 K
Curie-Weiss constant

(glass) —-486 K =500 K
Magnetic coordination

number (crystal) 6 5 (average)
Nearest-neighbor

exchange J (crystal) -16 K -33 K
180° nearest-neighbor

exchange J,(glass) ~-18 K ~=55K
Fe-—anion contact distance .

(glass) 1924 1.94 4
% iron with contact anion #=3 (48%) n=3 (28%)

coordination number n n=4 (52%) n=4 (712%)
% iron with n anions n=3 (39%) n=3 (26%)

closer than 2 n=4 (59%) n=4 (74%)

(neocontact) n=5 (2%) n=5 (0%)
% iron with » anions n=3 (0% n=3 (10%)

closer than 2.4 A n=4 (45%) n=4 50%)

n=5 (45%) n=5 (38%)
n=6 (10%) n=6 2%)

in the amorphous materials of order J,,=-18 K
(FeF,) and J,, =-55 K (YIG). Now the reported
values of the Curie-Weiss constant ©, are essen-
tially the same (= -500 K) for each. This enables
us to extract an average exchange energy (where
z is the number of magnetic neighbors),

TABLE III. A comparison of “frustration” in the com-
puter models for FeF; and YIG. Defining as frustrated
all iron atoms involved in magnetic triads for which all
three exchange pairs are strongly antiferromagnetically
coupled (6 >115°), we have computed the number Ny of
frustrated triads involving at least one of the innermost
100 iron atoms and also the number N of frustrated
atoms in this 100 iron atom core. Results are given for
several different values of iron-anion “bond length” D,
assuming in each case that strong magnetic superex-
change can result only if the cation-anion distance is
less than or equal to D.

FeF, YIG

D @A) Ng  Np D @A) Ne  Np
contact 5 12 contact 5 8
(1.92) (1.94)

2.0 11 19 2.0 5 8
2.2 15 26 2.2 6 9
2.4 18 29 2.4 7 9
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27 =30,/[25(5+1)]=-85 K, (7)
leading to
2d/J o ~4.T (FeF,), zJ/J...,~1.5 (YIG). (8)

For contact iron pairs we can determine from
the computer model the bond angle 8 distribution
of neighbors at each iron site. Since the qualitative
form for exchange distribution J(6) as a function
of 6 is known for ferric ions® [see Fig. 9(a)], we
can therefore compute 2 /(8)/J . for each iron
site. The resulting distribution, which we term
p(zd,,,), as a function of zJ,,,/J . is shown in
Fig. 9(b). The calculation is actually performed
for contact plus neocontact pairs, which we term
nearest-neighbor (NN) pairs. The mean value of
this distribution along the abscissa defines an
average exchange energy per site, which we
designate zJ, in units of J,,. We find, where we
include also the result of an analogous calculation
for YIG,'®

(2T /T pax)xn = 1.6 (FeFy), (27/J,,)nn=1.2 (YIG),
(9)

where the subscript NN reminds us that Eqs. (9)
are relevant only for nearest neighbors as defined
above. The smaller YIG value results primarily
from the larger concentration of ferromagnetic
pairs (74°< 6 <100° in YIG. Comparing Egs. (8)
and (9), a striking difference between amorphous
YIG and amorphous FeF, emerges, whereas
~80% of the magnetic energy in amorphous YIG
arises from nearest neighbors, only ~35% of that
in amorphous FeF, does.

This implies that whereas a contact model (in-
cluding exchange only between iron pairs actually
in contact, or neocontact, with a common anion)
is likely a fairly valid model for amorphous YIG,
it almost certainly is not adequate for amorphous
FeF,. We can, in fact, within the computer
models, see the origin of this difference. In
YIG, with a contact distance for Fe-O of 1.94 .7\,
only 2% of the iron cations possess additional non-
contact anions closer than 2 A (i.e., neocontact
anions) and only 20% possess noncontact anions
closer than 2.2 A. The equivalent figures for
FeF, are 13% and 53%, respectively (excluding
the atypical “seed” region for which these values
are even larger). Thus, if significant exchange
interactions can occur between iron pairs with
Fe-anion separations up to, say, 10-15% larger
than contact (which from the above calculation
now seems likely), then the fraction of exchange
energy coming from “noncontact” pairs will be
very significantly greater for FeF; than for YIG.

)
s
o
1 1 1 ul 1
100 120 140 160 180
8 (deg)
(b)
3
L]
Q
TR B N |
0 2 4

ZJeff

FIG. 9. (a) The qualitative form expected for Fe—F—
Fe superexchange J(6) as a function of bond angle 6. The
dashed curve is proportional to cos6 and is the form ex-
pected to be valid (Ref. 18) for the larger bond angle values.
(o) The distribution p(zJ4) of the sum of exchange T J(6)
=2zJ 44¢ Over all contact and neocontact bonds at each
iron site. The abscissa units are J ., =J (6=180).

We conclude, finally, that the low-ordering
temperatures T, ~30 K reported for both amor-
phous FeF, and YIG may have somewhat different
origins. Since the contact model seems fairly
adequate for YIG the discussion given in Ref. 5
remains valid for this material, with the low T,
resulting from a low coordination number for
strongly antiferromagnetic interactions [Eq. (8)].
In this picture a resemblance to dilute antiferro-
magnetism is suggested® and frustration (Table
III) plays a minor role at best. In FeF,, by reason
of the large number of strongly magnetic non-
contact neighbors, the effective coordination
number for strongly antiferromagnetic neighbors
is much higher [Eq. (8)]. From Table III we see
that this situation leads to a much larger potential
for frustration. If, for example, iron-anion bond
lengths up to 2.4 A can be included in the exchange
network then (Table III) close to 30% of the spins
may be frustrated in FeF;. This number increases
to 40% if we include bond angles to 9=110°. Since
the truly relevant quantity is the percentage of
frustrated spins in the “infinite cluster” and not
in the total assembly, these numbers should per-
haps be even higher, suggesting that frustration
may well be the primary mechanism responsible
for the low magnetic ordering temperature in
amorphous FeF,.
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