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A self-consistent unrestricted Hartree-Fock pseudocluster calculation has been performed to
investigate the roles of various bands in doped semiconductors. While the lower and the upper
Hubbard bands of the Mott-Hubbard-Anderson (MHA) model are well defined at low concen-
tration, the donor-excitonic states are important at higher concentration where the upper Hub-
bard band is pushed into the conduction band. The so modified MHA model can still explain

almost all the experimental results.

The Mott-Hubbard-Anderson (MHA) model’
which explicitly emphasizes the electron correlation
and the Anderson localization has been generally ac-
cepted as a proper description of the novel behavior
of the shallow impurity band in doped semiconduc-
tors. The MHA model consists of three bands,
namely, the lower Hubbard band (LHB), the upper
Hubbard band (UHB), and the semiconductor con-
duction band (SCB). It can account qualitatively for
almost all the existing experimental data associated
with the metal-nonmetal transition.

On the other hand, different authors have em-
phasized various parts of the MHA model in their
own simplified model approaches to investigate cer-
tain special aspects of the shallow impurity band.
Berggren,? Sernelius,’ and Ghazali and Leroux
Hugon* have ignored the UHB, and Berggren and
Sernelius even approximated the LHB by a single im-
purity level. Aoki and Kamimura,® Kikuchi,® Yone-
zawa et al.,’ and Chao and Berggren® have concen-
trated their efforts on the LHB and the UHB with
fixed centers of gravity of the bands. Finally, Matsu-
bara and Toyozawa,® Ishida and Yonezawa,'® and
Chao and co-workers'! have calculated various physi-
cal quantities as weighted averages over the contribu-
tions from the LHB and the UHB. Although such
specific approaches are valid in a limited impurity-
concentration (IC) regime,'? it is difficult to general-
ize them to a wider range of the IC.

Although the MHA model contains almost all the
characteristic features derived from experimental

data, certain points remain to be clarified. First we
need to know the IC dependences of the positions of
the centers of gravity of the LHB and the UHB, as
well as the modification of the SCB states near the
SCB minima. With decreasing effective Hubbard U
at higher IC due to the screening effect, whether one
can still identify the LHB and the UHB is a serious
question. Furthermore, recent experiments on D~
states in a magnetic field by Narita'® and far-infrared
transmission measurements'* have shown the ex-
istence of negatively charged impurity clusters and
bound D*D~ pairs. The fack of sufficient informa-
tion on the above-mentioned phenomena must be
the reason why a general analytical approach for
quantitative investigation of the shallow impurity
states in a wide range of IC has so far not emerged.
The purpose of this paper is to clarify the above list-
ed ambiguities with the exact numerical solution of a
self-consistent unrestricted Hartree-Fock pseudoclus-
ter calculation where a spin-polarized nonlocal poten-
tial is used.

For a given IC we generate a cluster of N random
sites {ﬁ,-; i=1,N}in a volume Q as the locations of
N substitutional impurities with a hard-core impu-
rity-pair-correlation function of radius Ry. At each
site is attached an impurity orbital ¢(F —R;) which is
approximated by a hydrogenlike wave function with
an effective Bohr radius aq. ag is determined empiri-
cally from the measured binding energy of a single
isolated impurity. It will be helpful for the calcula-
tion if we first obtain an orthonormal set
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(wi(T)=3,6(F—R,)4y; i =1,N} and then intro-
duce the spin-wave function to express the orthonor-
mal set as {Y;o(T); i=1,Nand o =1, |}.

The Hamiltonian of this finite system is simply

H=2;—'m+2w°"(?,~)+%ZJZV""‘"(?,-—ﬂ) G

where V°"(T,) is the impurity-ion potential acting on
the ith electron, V*!(T,—T;) is the Coulomb in-
teraction between the ith and the jth electrons, and
the summations are over all the N electrons. In
Hartree-Fock approximation, we have to solve the
Schrodinger equation

[p¥/2m + Vo (T) + Ve (I} 1, (T) = E; ;¥4 (T)

@
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self-consistently, where V, is the Coulomb and the
exchange interaction potential derived from V&'~ via
the Hartree-Fock approximation and nj, is the occu-
pation probability for y;,(T'). At zero temperature
we have n;,=0or 1.

We can expand the eigenfunctions of a finite clus-
ter as

‘yia(?) = 2(“]0(?)8];’ . (3)
J

Substituting this expansion into Eq. (2), the eigene-
quation problem reduces to the diagonalization of the
effective one-particle Hamiltonian matrix H,({n;})
with the elements defined as

2 .
H o( lnks}),-,=f¢,-‘§,(?)[‘2"—';+ Vior(F) + Ve (i) [W,0(T) dT )

Using Eq. (3) and the definition y;,(T) = 21 ¢.(T —R,) A, it is easy to see that to calculate Eq. (4) we have to

compute such integrals as

f¢>;l(?—§,)¢'¢,2 T'—R;) 06, (T —Ri) ¢, (T ~R) dT dT" ,

where Q can be either a one-particle or a two-particle
operator. The one- and the two-center integrals can
be calculated analytically. In this paper we are in-
terested in the IC regime which is lower than or
around the critical IC, and so the three- and the
four-center integrals are less important and can be
neglected.

The diagonalization of H,({n;}) can be performed
self-consistently by iteration. We first randomly
choose half of the N impurity orbitals and let them
being occupied by up-spin electrons and the rest half
occupied by down-spin electrons. We can then con-
struct the initial ¥ from such occupations and calcu-
late Eq. (4). The H,({n,}) is diagonalized to obtain
N eigensolutions for the o-spin electrons. At zero
temperature, only the eigenstates corresponding to
the lower half of the eigenenergies will be occupied.
Using these new occupied eigenstates for o-spin elec-
trons and the old occupied states for (—o)-spin elec-
trons, we can construct a new V., and calculate Eq.
(4). Then we diagonalize H_,({n;)}) to get the N
eigenstates for (—o)-spin electrons. We continue
this process for the o and (—o) spin alternately until
we get a self-consistent solution.

To take care of the surface effect, we surround the
N impurities in © by M random impurities but keep
the IC unchanged. The effect of the M surrounding
impurities on the N impurities in () will be approxi-
mated by an effective field, which has been explained
in detail in an earlier paper.!> We call such modified

|

cluster the pseudocluster.

We will use a dimensionless IC defined as P =32«
x(N/Q)ag, which has been used by many au-
thors.>~"°~12 For most doped semiconductors the
critical concentration P, is around 0.8 to 0.9, for ex-
ample, P.=0.81 for Si:P and P. =0.80 for Ge:Sb.
We have set the hard-core radius Rog=a, and
M =900, but we found that for the IC regime con-
sidered in this paper the value of Ry is not important.
In Fig. 1 we show the density of states for P =0.6
from two pseudocluster calculations. For histogram
A we use N =40 and average over 50 samples, while
for histogram B we use N =50 and average over 40
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FIG. 1. Two pseudocluster results of density of states for
P=0.6.
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samples. Except for the small difference around the
peaks, the two density of states curves have the same
gross features. Since the computer time for B histo-
gram is twice as much as that for 4 histogram, in our
calculation we have chosen N =40 and average over
50 samples.

The effective Hartree is chosen as our energy unit
measured from the bottom of the SCB. The density
of states (DOS) is normalized to fp(E) dE
=P/327=(N/Q)aj. In Fig. 2 we show a series of
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FIG. 2. Systematic change of the density of states from
P=0.0251t0 1.

DOS with increasing IC. The heavy (or thin) lined
histograms correspond to the ensemble averages over
the lower (or upper) halves of the energy spectra.
Since there is no preferable direction for the spin, the
ensemble averaged DOS curves are identical for both
spins. Hence, p(E) is defined for a single spin.

At very low-impurity concentration P =0.025, the
lower half of the energy spectrum (LHES) is com-
pletely separated from the upper half of the energy
spectrum (UHES). In this case we can check the
eigenfunctions. We found that the states around the
center of the LHES are D°-type localized on different
impurity ions. Most of the states around the tails of
the LHES are molecular-orbital type localized on
close neutral impurity pairs or neutral aggregates of
small number of impurities, as a result of the density
fluctuation. On the other hand, the states in the
UHES are either the D~ states or the molecular-
orbital-type states localized on small but singly nega-
tively charged clusters of close impurities. Conse-
quently, we can identify the LHES as the LHB and
the UHES as the UHB in the MHA model. For the
ground state, up spins keep away from down spins.

This feature of localization persists with increasing
IC up to P =0.2. In each sample there is no overlap
between the LHES and the UHES, but the LHES of
one sample may overlap the UHES of the other sam-
ple. If we treat each sample as a small part of a bulk
material, the overlap of the band tails suggests a
slight further delocalization of the states with ener-
gies in the overlap region of the LHES and the
UHES. From Figs. 2(a)—2(d), we can say that the
LHB and the UHB as well as the Hubbard parameter
can be well defined up to P =0.2. Around P=0.2, a
pseudogap begins to develop. The insets in Figs.
2(e)-2(h) are the resultant density of states near
the peak region. From P =0.2 to 0.8, the g ratio de-
fined by Mott! as a measure of the strength of the
pseudogap should gradually diminish.

Suppose one state in the LHES of Fig. 2(a) is lo-
calized around i,- and is occupied by an up-spin elec-
tron. We can always find a D~ state in the UHES of
Fig. 2(a) which is also localized around R;. But the
possibility for such identification becomes less and
less when P increases from P =0.4. Therefore, the
definitions of the LHB and the UHB as well as the
Hubbard U become more ambiguous for larger P.

Since the total number of states in the long tails of
the LHES is rather small, the location of the Fermi
energy does not provide much information. Let us
instead define N, (and N,) as the total number of
states in the LHES (and UHES) with positive (and
negative) energies. To calculate N,, we should note
that the center of gravity of the UHES approaches
0.125 as P —0. This is because in our calculation we
have used the rigid impurity orbital which is valid for
neutral impurities but not for D~ configuration. The
proper wave function for D~ state can be constructed
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FIG. 3. Measure of the shift of density of states with P.
See text for detail.

with LCAO and the binding energy of D~ can be cal-
culated as 0.0278 effective Hartree. For the IC we
consider here such wave-function correction gives al-
most a rigid shift of the UHES by an amount of en-
ergy 0.152 to the low-energy side. With this correc-
tion we have calculated N, and N,, and the results
are shown in Fig. 3.

With increasing P, N,/N drops very fast while
N,/ N increases very slowly, suggesting a slow shift of
the LHES to the high-energy side and a rapid moving
of the UHES entirely into the SCB. For P > P
=0.57, (N;—N,)/N increases to positive value; the
SCB will then be populated and holes appear in the
high-energy tail of the LHES. Since the holes in the
LHES are relatively localized, they attract the elec-
trons in the SCB to form donor excitons. With in-
creasing P, the donor excitons will form a band and
eventually merge with the SCB. In this case, the
eigensolutions should be recalculated with the poten-
tial including the contribution from the donor-
excitonic states. Consequently, our solution is self-
consistent for P < P, and in this concentration re-
gime it is reasonable to neglect the three- and the
four-center integrals.

To summarize, we have shown that the original
MHA model is valid for P < P;. For P,<P <P,
the role of the UHB is taken over by the donor-
excitonic states. Of course, such transformation is
gradual around P;. The so modified MHA model can
still explain almost all the experimental results. Cal-
culations of the thermodynamic properties with the
pseudocluster model will be reported in the future.
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