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A self-consistent-field method to calculate energy levels of deep transition-metal centers in semiconductors
based on the complete-neglect-of-diAerential-overlap (CNDO) approximation is presented. The method can
be used for a quantitative interpretation of optical transitions between strongly localized states at the
impurity center, which are usually interpreted by crystal-field theory in terms of unknown parameters like
the crystal-field splitting parameter 6 =10Dq. Special emphasis is laid on the formulation of correct
boundary conditions for the cluster of 17 atoms in II-VI compounds. In case of Cu centers in cubic ZnS 6
is calculated to be 0.84 eV compared with the experimental value of 0.77 eV. The method does not use any
parameter which is adjusted to properties of the center or the crystal, as has to be done using the extended
Hiickel approximation.

I. INTRODUCTION

The properties of deep energy level impurities
in semiconductors have become a point of special
interest in the last few years. This is due to the
fact that these centers control the efficiency of
optoelectronic devices such as solar cells as well
as other semiconducting circuits (e.g., the carrier
lifetimes). On the other hand, the optical and
EPR properties of deep centers have been the
subject of many investigations for a long time.
For a great number of impurity centers, some
properties as well as the observed spectra are
at least qualitatively understood. Because of the
great variety of such deep impurity centers the
situation is much more complex than with the so-
called shallow impurities which can be described
with successive approximations in the framework
of effective mass theory. Deep centers cannot be
understood as starting from crystal properties
but only from the local properties of the atoms
surrounding the impurities.

Although the methods described here may be
applied to many different deep impurity centers,
we want to restrict ourselves to transition-metal
impurity centers in II-VI and similar compounds.
For many purposes, transitions from strongly
localized electronic states into band states are of
special interest. As far as the optical and EPR
spectra of transition-metal impurities are con-
cerned, however, transitions between strongly lo-
calized states are experimentally and theoreti-
cally intensively studied. Very detailed spectra.
can be observed and are interpreted in terms of
group-theoretical methods in a qualitative way by
crystal field theory. '

This method starts in the zeroth approximation
with the free impurity ion. As a first step the
interaction with the surrounding crystal is des-

cribed by a crystal-field potential, thus neglec-
ting overlap between impurity electrons and the
electrons of the rest of the crystal. In a second
step the effects of electron overlap are partly
taken into account. It is a special feature of cry-
stal-field theory that except for these assump-
tions, no other approximations are necessary.
Crystal-field theory is mainly a group-theoreti-
cal method answering the question, what is the
most general energy level scheme of a special
center which is consistent with the symmetry of
the surrounding crystal? The energy level
scheme is then calculated in terms of certain un-
known crystal-field parameters whose number is
determined by symmetry arguments and whose
values are found by fitting to the experimentally
observed spectra.

For many centers such as transition-metal im-
purities in II-VI compounds the assumption of a
crystal-field potential can in no way be used for
a quantitative estimation of the observed spectra,
which indicates that covalent bonding plays a
dominant role. Nevertheless, all these spectra.
can be interpreted completely in terms of crystal-
field parameters. Crystal-field theory is there-
fore a more general method than expected from
the assumptions involved. It can be used for
strongly localized states whose transitions are
not dominated by lattice relaxation effects. Phonon
coupling can also be included and a great number
of centers have to be interpreted in terms of a
Jahn- Teller effect. This effect mostly influ-
ences the fine structure and Zeeman effect of the
spectra as well as the phonon satellites.

In spite of the fact that crystal-field theory is
a well-established method, little has been done
for a quantitative estimation of the crystal field
parameters. We here present a calculation based
on a linear-combination-of-atomic-orbitals-com-
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piete-neglect-of -differential-overlap-self-con-
sistent-field (LCAO-CNDO-SCF) method. This
method gives not only the crystal-field splitting,
but also the wave functions from which all the
fine-structure properties may be found by simple
perturbation theory. We restrict ourselves to the
calculation of the crystal-field splitting parame-
ter &=10Dq.

II. CLUSTER MODEL FOR DEEP IMPURITIES
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FIG. 1. Number of dangling bonds per cluster atom
for various sizes of tetrahedral clusters.

To calculate strongly localized states of iso-
lated impurities, a cluster of atoms has to be
used which contains the impurity at the center and
which has the correct point symmetry of the cry-
stal (cf. Messmer and Watkins, "Hemstreet, "
and others) . With one atom of the first, second,

neighbors, all others have to be included so
that they can be transformed by the symmetry
transformations. This has to be done to enable
a comparison with crystal-field theory. The
suggestion of a very large cluster containing the
impurity but having the symmetry of the unit cell
with periodic boundary conditions is not feasible
with an SCF-CNDO method, but may be used to
determine energy differences between strongly
localized states and band edges.

In calculating the energy levels of a cluster of
atoms, serious problems involving the boundary
conditions arise. In II-VI compounds, covalent

bonding and long-range ionic bonding are both
important. Picking the cluster of atoms out of the
crystal, one must be concerned with a number of
dangling bonds at the surface. These dangling
bonds imply a certain amount of electron charge
which would move inside the cluster unless fixed
there by additional states. The method adopted
here involves an additional potential at the outer-
most atoms which is described in Sec.V. Figure 1
by M. Stadele shows the number of dangling bonds
at the surface of a cluster divided by the number
of atoms in the cluster for various cluster sizes
with tetrahedral symmetry. One can clearly see
that the error from improper treatment of the
dangling bonds will not become small by simply
increasing the size of the cluster. For the des-
cription of transitions between strongly localized
states only, the correct formulation of the boun-
dary conditions is more important than increasing
the size of the cluster. We therefore restrict
ourselves to tetrahedral clusters consisting of
only 17 atoms.

The long-range ionic bonding forces are taken
into account by calculating the electrostatic po-
tential of all the effective point charges outside
the cluster. The spherically symmetric part,
which is constant inside the cluster, is described
using Madelung's constant. The other terms of
the potential with tetrahedral symmetry have a
more rapid convergence. This Madelung poten-
tial can then be added to the Hamiltonian of the
valence electrons of the cluster.

The Madelung potential is proportional to the
effective charge of the ions which can be deter-
mined by the condition of self-consistency in
connection with the condition of periodicity of the
crystal. This is described in Sec. IV. The ef-
fective charge is not estimated here by a CNDO
calculation of a unit cell with periodic boundary
conditions because of the poor results of this
method for energy-band calculations of II-VI
compounds. The long-range ionic bonding also
produces an effect which will not become small
by increasing the size of the cluster.

As pointed out already by Kunz and Klein such
a potential causes only a small shift of energy
level differences, though it produces a consider-
able shift of the energy level scheme as a whole.
We therefore restrict ourselves to a rough ap-
proximation of the Madelung potential.

Proper treatment of both aspects of the boun-
dary condition should result in a net charge of the
cluster, which is not an integer multiplied by the
electron charge. This may be demonstrated by
a simple example: a copper center in ZnS. If
the cluster contains five atoms, the number of
valence electrons is 35, since Cu and S have elec-
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tron configurations (3d) (4s)B and (3s) (3p), res-
pectively, and we have four sulfur atoms in the
cluster. In the case of a completely ionic picture
of the crystal we would have to take the divalent
ions instead, in which case the cluster contains 41
electrons. The charge of the cluster is then zero
or minus six. Since the LCAO formalism can be
applied to an integer number of electrons only,
the boundary condition must ensure that the charge
of the cluster is any number between zero and
minus six. In heteropolar crystals like II-VI
compounds the situation is more complicated
than in homopolar crystals like diamonds, in
which case Messmer and Watkins' saturated the
dangling bonds by simply adding extra electrons.

III. DETAILS OF THE CALCULATION

To calculate the energy levels of a cluster of
atoms, various approximations of the LCAO
formalism are possible. The extended HGckel
theory contains as an unknown parameter, the
Wolf sberg-Helmholtz constant. If this method
is not used in a self-consistent way, two other
parameters, the effective charge of the host ions
and of the impurity ion, have to be introduced.
Birman and Walter, Biernacki, ' ' and others
fitted these parameters to crystal properties
such as energy band gap and others. Introducing
boundary conditions makes it possible for us to
calculate a small cluster adopting a SCF-CNDO
approximation. '

For our ground-state function we took a single
Slater determinant with different orbitals for
different spins. Since deep levels caused by
transition elements have unfilled d shells, an
open-shell procedure similar to Roothan's proce-
dure should be performed. For the t2 config-
uration the ground-state function is then

The superscripts c and 0 denote the closed and

open shells, respectively. There are A closed
orbitals with n spin and 1V' closed orbitals with

P spin, while P is the g-fold degenerate orbital
with a missing P electron. This method presents
a combination of the procedure of different orbi-
tals for different spins" by Pople and Nesbet and
Roothan's procedure for open shells. By analogy
with Roothan's procedure the variation is carried
out yielding three eigenvalue equations:

(2a)

(h+J"+~"+~cB-K'-SCBB)
~q B) = g e„~gB), (2b)

(h+ Jc~+ScB+aSBB-KcB- bK")
~

gcB) = g e, ~P', ) .

(2c)

a, b, and f are Roothan's coefficients for the open-
shell treatment. For a t', orbital f=-'„a=b = —,'.
The operators J, J~, K', K~ for closed and open
shells are defined as in Ref. 21. Neglecting the
coupling between the open shell and the closed-
shell core, Eqs. (2a)-(2c) can be diagonalized.

FCCR pic cr —gCO (C(x (3a)

Fc8yc8 —~cgqcg (3b)

Fogqag ~appal
m m (3c)

(Q+ Jcc+QcB ~ca ~cB)
~

~pc) p e ~qc) (4a)

which can be diagonalized yielding

~k~k (4b)

The occupied orbitals can be directly identified
by -qk. For our calculations of a 17 atom cluster
we use 73 atomic orbitals: central copper,
3d, 4s, 4p, 4 next-neighbor sulfur 3s, 3p, and 12
second-neighbor zinc 4s, 4p. We report here on
calculations of one-electron energy level schemes
which may be used to interpret the optical spectra
of one electron transition-metal ions such as
Sc ', Ti ', Cu ', Ni', and also Y", Ag ', La
and Au'+.

IV. CNDO EQUATIONS

The CNDO approximation of the LCAO formal-
ism was introduced by Pople et al." and extended
to include d orbitals by Santry and Segal" and
Clack et al." In the case of d orbitals the one-
center repulsion integrals are greatly different
from those of 4s or 4p orbitals. A different re-
pulsion integral was also used between s and d
electrons. For orbitals at the central transition-
metal ion the following diagonal elements of theI' matrix were used:

It can be shown that for the case of a missing
electron, the transition E((e )'(t, )')-E((e )'(tBB)')

can be approximated by q', B- q,
'B of (3b) using Koop-

mans theorem. The reason E((e )'(tB)')
—E ((e B)'(tBB) ) is not calculated directly is that the
total energies have great values (about 5000 eV).
Because of the several approximations made for
the integrals, the difference of the two total ener-
gies has a great error. We also made calcula-
tions for a closed-shell model. In this case N
=N', g=0, andf=0 and Eqs. (2a)-(2c) become
the single equation
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F4'~4 = I4-+ [Prr(s) —1 —P,'~, ]y4rr~ + (Prr(d) —Zr+ 2]y,~4 + p [Pss(s) —Zs]y,
B&T

(5a)

E „=-I, + [P (d) —Z +3 —P; )y, , + [P (s) —2]y, , + g [P (s) —Z ]y.
BAT

(5b)

where T denotes the transition-metal ion and I3 the surrounding neighbors, sulfur (m = 3) and zinc (m =4).
For the noncentral S (m = 3) and Zn (m = 4) iona the following diagonal matrix elements were used:

E', , = I,+-[P(~(s) —Z(+1 —P', ,]y~~, + g [P»(s) —Zs)y(s„, + [P»(d)- Zr]y, M .
B&L

(5c)

The off-diagonal matrix elements are

P co.AA Pcn AA
II V IIV gV

E'„„=—P~~s, „—P' „y„V

(5d)

(5e)

V. BOUNDARY CONDITIONS

The long-range electrostatic potential of all the
ions outside the cluster may be approximated by
a Madelung potential arising from effective point
charges. This is a good approximation for all
ions except those very close to the cluster. Owing
to the fact that crystal-field theory plays a domin-
ant role in the interpretation of the energy level
scheme, this effective point charge model is ad-
opted for all ions outside the cluster. The spher-
ically symmetric part may be described by Made-

The Fock matrix for p spin is found by replacing
P „by P;~+P;~ in Eqs. (5a)-(5e).

In contrast to the CNDO/II version, we only
used the valence state ionization energies I for the
calculation of (g„~ (--,' a- Z~lr~)

~
p.„)with orbital

p. ~ at atom A. Data for the electron affinities are
not very reliable for transition elements. The
I were calculated from Moore's table. "

An exact calculation of the overlap integrals
is needed for the description of the covalency in
crystal-field splittirlg. Therefore the overlap in-
tegrals were calculated using polyexponential
Slater-type orbitals taken from the tables of Wat-
son,"Clementi and McLean, "and Synek. " The
core integrals (ps

~
V„~ ps) were approximated by

y because it could be shown that the penetration
integral was small for the large interatomic dis-
tance (4.422 a.u. for ZnS). The two-center inte-
grals y" were calculated by single-exponential
Slater-type orbitals with Burn's exponents. "

The p parameters for S were taken from Pople's
paper. " For p, ~(Cu) we used the data of Clack. "
For Zn no data for the p parameter was available.
Since only the P„(Zn) parameter for Zn is needed,
we set P„(Zn) = P„(Cu) because the 4s orbitals of
Cu and Zn are supposed to be very similar in our
cluster.

lung's constant. The convergence of the other in-
finite sums, however, increases with increasing
angular momentum. The justification of the rneth-
od and a detailed discussion of the calculation will
be published elsewhere. The potential arising
from the atoms outside the cluster was taken to
be equal to the Madelung potential at the site of a
cluster atom A minus the electrostatic terms al-
ready calculated by the MO procedure

V, (~R„~)= e @'" —Z
i/A

(6)

where the sum is over A;, inside of the cluster.
Thus to F"," the term e( p,

~

V„(R„)
~

i() and to F,"s
the additional term e-,'S„[V„(R„)+V„(R )] was
added. This averaging procedure is justified be-
cause the electrostatic potential inside the cluster
is sufficiently Qat.

The boundary condition for proper treatment of
the dangling bonds at the surface is of special
importance for the strongly localized states of the
cluster. 'The boundary condition has to be for-
mulated in such a way as to produce the correct
charge and bond order which is actually present
in the vicinity of the impurity. For heteropolar
crystals the total charge of the cluster will then
not be an integer and therefore a method has to
be used where the total charge of the cluster may
differ from an integer value. Since the LCAO
method is formulated with an integer number of
electrons, a possible method is the introduction
of a special (not integer) surface charge at the
cluster. We introduced such a surface charge
by adding an extra potential energy to the diagonal
elements of the Fock-matrix of the outermost
atoms of the cluster. This potential energy was
determined from the condition of periodicity of
the ideal crystal during the iteration steps to
achieve self-consistency and turned out to be of
the order of 3 eV. R was determined by a separate
calculation of a cluster having a regular Zn atom
instead of an impurity atom in the center.

To demonstrate the proper effect of our boundary
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Boundary
condition
number 1

Boundary
condition
number 2

Boundary
condition
number 3

TABLE I. Effective charges of zinc and sulfur Qz„Q&,
and energy gap E~ for three different boundary condi-
tions.
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condition, we performed calculations with three
different boundary conditions and compared the
effective charges Qz Qs and energy gap in
Table I. In a first calculation the cluster from the
ideal crystal was considered as a molecule in a
Madelung potential originating from the effective
charges of the rest of the crystal, boundary con-
dition number 1. The neglect of the dangling
bonds at the surface produces effective charges
Qz, and Qs which are far from havingequal absolute
values they should have as a consequence of the
condition of translational symmetry of the ideal
crystal.

To avoid this deficiency there are two possi-
bilities: First, the electronic charge can be
redistributed after each iteration step so as to
fulfill the condition Qz, = -Qs. Another possibility
is to add an additional potential to the second-
neighbor zinc shell and to fit this potential after
each iteration step so that Qz, =-Qs holds.

In boundary condition number 2 a potential is
added to the diagonal elements of the Fock matrix
E~ ~ belonging to the outermost Zn so that they
a,re equal to the +~ ~ belonging to the central Zn
atom. However, this periodicity of the matrix
elements +~ ~ of the central Zn and the outermost
Zn does not lead to a periodic charge distribution.
The effect of the dangling bonds causes a displace-
ment of excess electronic charge from the sur-
face of the cluster to the Zn atom inside, resulting
in wrong signs of the effective charges. Therefore
in boundary condition number 3 an extra potential
is added to the second-neighbor Zn atoms. It is
changed until the surface charges are fixed in such
a way that the condition of the periodicity of the
charges Qz, =-Q, inside the cluster is fulfilled.
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FIG. 2. Energy level schemes for different CNDO
calculations: (a) ideal cluster calculation, {b) impurity
cluster calculated by the open-shell formalism, (c)
impurity cluster calculated by the closed-shell formal-
ism.

VI. RESULTS

The calculation of the host cluster with boundary
condition No. 3 is shown in Fig. 2(a). The second-
neighbor 4p orbitals have been neglected, since
calculations have shown that energy levels origi-
nating from these orbitals are very high in the
conduction band. From Table I we see that due to
the condition of periodic charges (boundary condi-
tion No. 3) the energy gap comes reasonably close
to the experimental value of 3.9 eV. It has to be
noted at this point that E is not equal to the dif-
ference q(3a, ) —q(lt, ) [see Fig. 2(a)t but rather
equal to

q(3a, ) q(lf, ) Z„„+@„,„. -
This is due to the fact that for CNDO calculations
the unoccupied levels cannot be identified by
negative ionization energies. As pointed out by
Ballhausen et al."Coulomb and exchange terms

TABLE II. Crystal-field splitting 10Dq of impurity centers in II-VI compounds (eV).

ZnS:Cu ZnS:Ag Cds:Cu ZnO:Cu ZnSe: Cu ZnSe:Au

0.60
10Dq
theor. 0.84 0.81 0.95
10Dq
expt. 0.77 (Ref. 28) 0.88 (Ref. 14) 0.69 (Ref. 28) 0.70 (Ref. 30)

1.05 2.6
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TABLE III. Dependence of & =10Dq on the P-value.

P& (eV) -8 -20 -27.5 -30 -40 -50

10Dq (e V} 0.25 0.59 0.77 0.84 1.09 1.32

have to be added. Formula. (7) presents an average
value between singlet and triplet states arising
from lifting an electron from 1t, to 3a, . Figure
2(b) shows the eigenvalues q'~ for P spin. The
diagrams 2(a) and 2(b) can be compared only
roughly because the p'~ cannot, in general, be
identified with ionization energies, as can be done
for the occupied values of the closed-shell cal-
culation of Zn S, Zn».

However, it can be seen that the designation of
the valence-band levels remain almost the same
except for the le and 2t, levels of ZnS4Zn», which
are lifted into the energy gap in CuS4Zn» and be-
come 2e and 4t, . In both cases these levels are
mainly localized at the central d orbitals.

Following the discussion of Sec. III, we identify
& with q'~(t, ) —q'~(e) yielding a & value of 0.70
eV, comparing well with the experimental value

0.77 eV." Figure 2(c) shows the eigenvalues of
the closed-shell calculation of (4). In this case
~ has a value of 0.84 eV and is lying 1.62 eV above

the 1t, orbital. The band gap calculated by the dif-
ference between the 3a, and 1t, orbitals together
with the correction for the virtual orbitals is 4.82

eV. A few other systems having a d' configuration
have also been calculated and are compared with
experimental data in Table II. The best results
are those for ZnS: Cu and CdS: Cu with errors
of 9' and 17', respectively. ZnS:Ag is cal-
culated with P,~ parameter s PM (Ag) = PM (Cu) because
no P~ parameter for silver has thus far been
given. Since the value of 10Dq depends on charges
in the P~ parameter (see Table III), reliable
values for the P~(Ag) have still to be found either
by direct calculation or by fitting P~ to the results
of a full SCF calculation. Impurities in which Zn
is substituted by Cu are probably the best to cal-
culate, s ince Cu is next to Z n in the pe riodic
chart of the elements. Silver, on the other side,
has quite a different ionic radius which may pro-
duce lattice deformations. Such effects are not
included in our calculation. The values for
ZnO: Cu and ZnSe. Au are calculations by the
open-shell formalism and were already given by

the authors. " The P~ parameter of gold was also
taken to be equal to P~(Cu).

VII. DISCUSSION

In spite of the strong approximations made by
the CNDO method, the values for 10Dq agree
quite well with experimentally found data. We
believe this is so because of the proper handling
of the boundary conditions. The most serious
approximation is the calculation of the nondiagonal
elements of I' using the parameter P. In order
to investigate how ~ depends upon changes of P~,
we made a closed-shell calculation with several
P~ values. The result is shown in Table III.
increases with increasing P,„. The correct value
for ~ is found when P~ =-27.5. This value lies
between the two values of -20 and -30 given by
Clack. Convergence of the SCF calculations is
good for the closed-shell calculations (12-20
iteration steps until i&

' —8"
i
(10 ' eV). In the

open-shell case, however, convergence is very
poor and depends strongly upon the Huckel matrix
starting the calculation. The open-shell cal-
culation of copper in ZnS converges until ~F-" '
—F."~ =0.5 eV and then oscillates about this value.
The reason for this is the strong effect caused by
the one-center Coulomb integrals of the central
d functions. If one electron is taken out of the t,
orbital localized at the central d orbital, very
strong Coulomb interaction integrals between the
d functions arise (y~,~ is about 20 eV). Thus, the

approximation of the 3d one-center integral by
only one integral seems insufficient. On the other
hand, we neglected the coupling terms of the open-
shell procedure which may also be a cause of the
poor convergence. Nevertheless, we believe that
the open-shell calculation yields the correct result
shown in Fig. 2(b), which may become a stable
solution if some of the strong approximations are
released.

VIII. CONCLUSION

Comparing our calculations with those done by
Birman and Walter' and Biernacki"" for the same
centers, the striking difference is the self-con-
sistency of our calculations. Self- consistent- field
wave functions are appropriate to calculate further
features of the centers such as fine structure and
correlation effects.
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